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This paper considers learning when the distinction between risk and ambiguity matters. It first de-
scribes thought experiments, dynamic variants of those provided by Ellsberg, that highlight a sense in
which the Bayesian learning model is extreme—it models agents who are implausibly ambitious about
what they can learn in complicated environments. The paper then provides a generalization of the Bayesian
model that accommodates the intuitive choices in the thought experiments. In particular, the model
allows decision-makers’ confidence about the environment to change—along with beliefs—as they learn.
A portfolio choice application compares the effect of changes in confidence under ambiguity vs. changes
in estimation risk under Bayesian learning. The former is shown to induce a trend towards more stock
market participation and investment even when the latter does not.

1. INTRODUCTION

Models of learning typically assume that agents assign (subjective) probabilities to all relevant
uncertain events. As a result, they leave no role for confidence in probability assessments; in
particular, the degree of confidence does not affect behaviour. Thus, for example, agents do not
distinguish between risky situations, where the odds are objectively known, and ambiguous situ-
ations, where they may have little information and hence also little confidence regarding the true
odds. The Ellsberg Paradox has shown that this distinction is behaviourally meaningful in a static
context: people treat ambiguous bets differently from risky ones. Importantly, the lack of con-
fidence reflected by choices in the Ellsberg Paradox cannot be rationalized by any probabilistic
belief. In particular, it is inconsistent with the foundations of Bayesian models of learning.

This paper considers learning when the distinction between risk and ambiguity matters. We
assume that decision-makers view data as being generated by the same memoryless mechanism
in every period. This a priori view motivates the exchangeable Bayesian model of learning and
is commonly imposed on learners in a wide variety of economic applications. We view our prin-
cipal contribution as twofold. First, we describe examples or thought experiments, dynamic vari-
ants of those provided by Ellsberg, in which intuitive behaviour contradicts the (exchangeable)
Bayesian learning model. As in the static setting addressed by the Ellsberg Paradox, an agent
may lack confidence in her initial information about the environment. However, confidence may
now change as the agent learns. The examples reveal also another sense in which the Bayesian
model is extreme—it models agents who are very ambitious about what they can learn, even in
very complicated environments.

Our second contribution is to provide a generalization of the Bayesian model that accom-
modates the intuitive choices in the thought experiments. The model describes how the confi-
dence of ambiguity-averse decision-makers changes over time. Beliefs and confidence are jointly
represented by an evolving set of conditional distributions over future states of the world. This
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set may shrink over time as agents become more familiar with the environment, but it may also
expand if new information is surprising relative to past experience. We argue also that it models
agents who take the complexity of their environment seriously and, therefore, are less ambitious
than Bayesians about how much can be learnt. Finally, we show that the model is tractable in
economic settings by applying it to dynamic portfolio choice.

The Bayesian model of learning about a memoryless mechanism is summarized by a triple
(�,µ0,�), where � is a parameter space, µ0 is a prior over parameters, and � is a likelihood. The
parameter space represents features of the data-generating mechanism that the decision-maker
tries to learn. The prior µ0 represents initial beliefs about parameters. For a given parameter
value θ ∈ �, the data are an independent and identically distributed sequence of signals {st }∞t=1,
where the distribution of any signal st is described by the probability measure �(· | θ) on the
period state space St = S. The triple (�,µ0,�) is the decision-maker’s theory of how data are
generated. This theory incorporates both prior information (through µ0) and a view of how the
signals are related to the underlying parameter (through �). Beliefs on (payoff-relevant) states are
equivalently represented by a probability measure p on sequences of signals (i.e. on S∞), or by
the process {pt } of one-step-ahead conditionals of p. The dynamics of Bayesian learning can be
summarized by

pt (· | st ) =
∫
�

�(· | θ)dµt (θ | st ), (1)

where st = (s1, . . . ,st ) denotes the sample history at t and where µt is the posterior belief about
θ , derived via Bayes’ Rule.

We generalize the Bayesian learning model within the decision-theoretic framework of
recursive multiple-priors utility, a model of utility put forth in Epstein and Wang (1994) and
axiomatized in Epstein and Schneider (2003a) that extends Gilboa and Schmeidler’s (1989) model
of decision-making under ambiguity to an inter-temporal setting. Under recursive multiple-priors
utility, beliefs and confidence are determined by a process {Pt } giving for each time and history
a set of one-step-ahead conditionals. Since these sets describe responses to data, they are the
natural vehicle for modelling learning. The present paper introduces a structure for the process
{Pt } designed to capture learning about a memoryless mechanism. The process is constructed
from a triple of sets (�,M0,L). As in the Bayesian case, � is a parameter space. The set of
priorsM0 represents the agent’s initial view of these parameters. WhenM0 is not a singleton,
it also captures (lack of) confidence in the information upon which this initial view is based.
Finally, a set of likelihoods L represents the agent’s a priori view of the connection between
signals and the true parameter.

The multiplicity of likelihoods and the distinction between � and L are central to the way
we model an agent who has modest (or realistic) ambitions about what she can learn. The set
� represents features of the environment that the agent views as constant over time and that she
therefore expects to learn. However, in complicated environments she may be wary of a host
of other poorly understood factors that also affect realized signals. They vary over time in a
way that she does not understand well enough even to theorize about, and therefore she does
not try to learn about them. The multiplicity of likelihoods in L captures these factors. Under
regularity conditions, we show that beliefs become concentrated on one parameter value in �.
However, ambiguity need not vanish in the long run, since the time-varying unknown features
remain impossible to know even after many observations. Instead, the agent moves towards a
state of time-invariant ambiguity, where she has learnt all that she can.1

1. Existing dynamic applications of ambiguity typically impose time-invariant ambiguity. Our model makes
explicit that this can be justified as the outcome of a learning process. See Epstein and Schneider (2003b) for further
properties of time invariant ambiguity.
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As a concrete illustration, consider independent tosses of a sequence of coins. If the decision-
maker perceives the coins to be identical, then after many tosses she will naturally become confi-
dent that the observed empirical frequency of heads is close to a “true” frequency of heads that is
relevant for forecasting future tosses. Thus, she will eventually become confident enough to view
the data as an i.i.d. process. This laboratory-style situation is captured by the Bayesian model.2

More generally, suppose that she believes the tosses to be independent, but that she has no
reason to be sure that the coins are identical. For example, if she is told the same about each coin
but very little (or nothing at all) about each, then she would plausibly admit the possibility that
the coins are not identical. In particular, there is no longer a compelling reason why data in the
future should be i.i.d. with frequency of heads equal to the empirical frequency of heads observed
in the past. Indeed, in contrast to a Bayesian, she may not even be sure whether the empirical fre-
quencies of the data will converge, let alone expect her learning process to settle down at a single
i.i.d. process.3 This situation cannot be captured by the exchangeable Bayesian model.4 One can
view our model as an attempt to capture learning in such complicated (or vaguely specified and
poorly understood) environments.

To illustrate our model in an economic setting, we study portfolio choice and asset mar-
ket participation by investors who are ambiguity averse and learn over time about asset returns.
Selective participation in asset markets has been shown to be consistent with optimal static (or
myopic) portfolio choice by ambiguity-averse investors (Dow and Werlang, 1992). What is new
in the present paper is that we solve the—more realistic—inter-temporal problem of an investor
who rebalances his portfolio in light of new information that affects both beliefs and confidence.
A key property of the solution is that an increase in confidence—captured in our model by a pos-
terior set that shrinks over time—induces a quantitatively significant trend towards stock market
participation and investment. This is in contrast to Bayesian studies of estimation risk, which
tend to find small effects of learning on investment.

Another novel feature of the optimal portfolio is that the investment horizon matters for
asset allocation because investors hedge exposure to an unknown (ambiguous) factor they are
learning about. This hedging of ambiguity is distinct from the familiar hedging demand driven
by inter-temporal substitution effects stressed by Merton (1971). Indeed, we show that it arises
even when preferences over risky pay-off streams are logarithmic, so that the traditional hedging
demand is 0.

We are aware of only three formal treatments of learning under ambiguity. Marinacci (2002)
studies repeated sampling with replacement from an Ellsberg urn and shows that ambiguity is re-
solved asymptotically. A primary difference from our model is that Marinacci assumes a single
likelihood. The statistical model proposed by Walley (1991, pp. 457–472) differs in details from
ours, but is in the same spirit; in particular, it also features multiple likelihoods. An important
difference, however, is that our model is consistent with a coherent axiomatic theory of dynamic
choice between consumption processes. Accordingly, it is readily applicable to economic set-
tings. A similar remark applies to Huber (1973), who also points to the desirability of admitting
multiple likelihoods and outlines one proposal for doing so.

The paper is organized as follows. Section 2 presents a sequence of thought experiments to
motivate our model. Section 3 briefly reviews recursive multiple-priors utility and then introduces

2. Under regularity conditions, the posterior µt converges to a Dirac measure on �, almost surely under p, the
Bayesian’s subjective probability on sequences of data; see Schervish (1995).

3. For the exchangeable Bayesian model, convergence of empirical frequencies is a consequence of the law of
large numbers for exchangeable random variables; see Schervish (1995).

4. If the data are generated by a memoryless mechanism and information about each observation is a priori the
same, the exchangeable model is the only relevant Bayesian model. More complicated Bayesian models that introduce
either serial dependence or a dependence of the distribution on calendar time are not applicable.
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the learning model. Section 4 establishes properties of learning in the short and long runs. The
portfolio choice application is described in Section 5. Proofs for results in Section 4 are collected
in the appendix; proofs for some results in Section 5 are relegated to a supplementary appendix
to this paper (Epstein and Schneider, 2007b).

2. EXAMPLES

In this section, we consider three related learning scenarios. Each involves urns containing five
balls that are either black or white; Figure 1 illustrates the composition of the urns. However, the
scenarios differ in a way intended to illustrate alternative hypotheses about learning in economic
environments and to motivate the main ingredients of our model. In particular, we highlight
intuitive behaviour that we show later can be accommodated by our learning model but not by
the Bayesian model.

2.1. Scenario 1: Pure risk

An urn contains five balls. The agent is told that two are black, two are white and the fifth is
either black or white depending on the outcome of the toss of an unbiased coin—the “coin ball”
is black if the coin toss produces heads, and it is white otherwise. She cannot see the outcome of
the coin toss, but she does observe, every period, a black or white ball. Her ex ante view is that
these data are generated by sampling with replacement from the given urn. This may be either
because she is actually doing the sampling or because she has been told that this is how signals
are generated. Alternatively, it may simply reflect her subjective view of the environment. In any
case, the obvious version of the Bayesian learning model (1) seems appropriate. In particular, she
can be confident of learning the colour of the coin ball.

2.2. Scenario 2: Ambiguous prior information about a fixed urn

The information provided about the urn is modified to there is at least one non-coin ball of
each colour. Thus unlike Scenario 1, no objective probabilities are given for the composition
of the urn—there is ambiguity about the number of black non-coin balls. However, signals are
again observed in each period, and they are viewed as resulting from sampling with replacement
from the given urn. Because the agent views the factors underlying signals, namely the colour
composition of the urn, as fixed through time, she can hope to learn it. That is, she would try to
learn the true composition of the ambiguous urn.

FIGURE 1

Urns for Scenarios 1–3
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Compare this situation with the purely risky one, Scenario 1 above, assuming the two coin
tosses are independent. In particular, consider the choice between betting on drawing black
(white) from the risky urn as opposed to the ambiguous one. (Throughout, a bet on the colour
of a ball drawn from an urn is understood to pay 1 until the ball has the desired colour and 0
otherwise.) The Ellsberg Paradox examines this choice prior to any sampling. As recalled in the
Introduction, the intuitive behaviour pointed to by Ellsberg—the preference to bet on drawing
black from the risky urn as opposed to the ambiguous one and a similar preference for white—is
inconsistent with a single prior on the composition of the ambiguous urn.

Consider the ranking of bets after some sampling. It is plausible that Ellsberg-type behaviour
persists in the short run: for any sufficiently short common sample history across the risky and
ambiguous urns, a bet on the risky urn should remain preferable to an analogous bet on the
ambiguous urn. At the same time, given the ex ante view that sampling is from an unchanging urn,
it is intuitive that learning should resolve ambiguity in the long run. Asymptotically, the agent
should behave as if she knew the fraction of black balls were equal to their empirical frequency. In
the limit, for any common sample history across the two urns, she should be indifferent between
betting on the next draw from the risky as opposed to the ambiguous urn. Both Scenarios 1 and
2 are thus conducive to inference and learning because there is one urn with fixed composition.
Next, we examine learning in a more complex setting where signals are generated by a sequence
of urns with time-varying composition.

2.3. Scenario 3: Unambiguous prior and changing urns

Signals are generated by successive sampling from a sequence of urns, each containing black and
white balls. The urns are perceived in the following way: each urn consists of a coin ball and four
other balls as above. The coin is tossed once at the start and determines the same colour for coin
balls in all urns. However, non-coin balls are replaced every period with a new set of non-coin
balls. This task is performed every period by an administrator. It is also known that (i) a new
administrator is appointed every period, (ii) no administrator knows the previous history of urns
or draws, and (iii) the only restriction on any given administrator is that at least one non-coin ball
of each colour be placed in the urn.

Ex ante, before any draws are observed, this environment looks the same as Scenario 2:
there is one coin ball, there is at least one black and one white non-coin ball, and there are two
non-coin balls about which there is no information. The new feature in Scenario 3 is that the non-
coin balls change over time in a way that is not well understood. What might an agent now try
to learn? Since the coin-ball is fixed across urns and underlies all signals, it still makes sense to
try to learn its colour. At the same time, learning about the changing sequence of non-coin balls
has become more difficult. Compared to Scenario 2, one would thus expect agents to perceive
more uncertainty about the overall proportion of black balls. We now argue that this should lead
to different behaviour in the two scenarios both in the short run and in the long run.

Begin again by considering betting behaviour in the short run, assuming that the coin tosses
in Scenarios 2 and 3 are independent. Before any sampling, one should be indifferent between
bets in Scenarios 2 and 3, since the two settings are a priori identical. However, suppose that
one black draw from each urn has been observed and consider bets on the next draw being
black. It is intuitive that the agent prefer to bet on black in the next draw in Scenario 2 rather
than on the next draw in Scenario 3. This is because the observed black draw in Scenario 2 is
stronger evidence for the next draw also being black than is the observed black draw in Scenario
3. In Scenario 3, the agent does not understand well the dynamics of the non-coin balls and
thus is plausibly concerned that the next urn may contain more white balls than did the first. Of
course, she thinks that the next urn may also contain more black balls, but as in the static Ellsberg
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choice problem, the more pessimistic possibility outweighs the optimistic one. Thus she would
rather bet in Scenario 2 where the number of black non-coin balls is perceived not to change
between urns.

Turn to behaviour in the long run. Scenarios 2 and 3 differ in what qualifies as a reasonable
a priori view about the convergence of empirical frequencies. Since the urn in Scenario 2 is
essentially fixed, one should be confident that the fraction of black balls drawn converges to
some limit. In contrast, nothing in the description of Scenario 3 indicates that such convergence
will occur. The sequence of administrators suggests only that the number of black non-coin balls
is independent across successive urns. Otherwise, the description of the environment is very
much consistent with perpetual change. It is thus reasonable to expect a priori that nothing can
be learnt about future non-coin balls from sampling. Given how little information is provided
about any single urn, the number of non-coin balls should be perceived as ambiguous at all dates.
In particular, even after long identical samples from the two scenarios, one would still prefer to
bet on the next draw being black from the urns in Scenario 2 rather than in Scenario 3.

2.4. Desirable properties of a learning model

To sum up, we would like a model that captures the following intuitive choices between bets
in Scenarios 1–3. First, bets on risky urns (Scenario 1) are preferred to bets on ambiguous urns
with fixed composition (Scenario 2) in the short run, but not in the long run. In other words,
with only ambiguous prior information, Ellsberg-type behaviour is observed in the short run, but
not in the long run. Second, bets on risky urns (Scenario 1) are preferred to bets on ambiguous
urns with changing composition (Scenario 3) in both the short and long runs. In other words,
in a complicated environment with changing urns, Ellsberg-type behaviour persists. It is clear
that the Bayesian model cannot generate these choices, since it never gives rise to Ellsberg-type
behaviour. Finally, bets on ambiguous urns with fixed composition (Scenario 2) should be pre-
ferred to bets on ambiguous urns with changing composition (Scenario 3). This third choice
emphasizes that the distinction between ambiguous prior information about a fixed urn and am-
biguity perceived about changing urns is behaviourally important.

3. A MODEL OF LEARNING

3.1. Recursive multiple priors

We work with a finite period state space St = S, identical for all times. One element st ∈ S is
observed every period. At time t , an agent’s information consists of the history st = (s1, . . . ,st ).
There is an infinite horizon, so S∞ is the full state space.5 The agent ranks consumption plans
c = (ct ), where ct is a function of the history st . At any date t = 0,1, . . ., given the history st , the
agent’s ordering is represented by a conditional utility function Ut , defined recursively by

Ut (c; st ) = min
p∈Pt (st )

E p [
u(ct )+βUt+1(c; st ,st+1)

]
, (2)

where β and u satisfy the usual properties. The set of probability measures Pt (st ) models beliefs
about the next observation st+1, given the history st . Such beliefs reflect ambiguity when Pt (st )
is a non-singleton. We refer to {Pt } as the process of conditional one-step-ahead beliefs. The

5. In what follows, measures on S∞ are understood to be defined on the product σ -algebra on S∞, and those
on any St are understood to be defined on the power set of St . While our formalism is expressed for S finite, it can be
justified also for suitable metric spaces S but we ignore the technical details needed to make the sequel rigorous more
generally.
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process of utility functions is determined by specification of {Pt }, u(·), and β, which constitute
the primitives of the functional form.

To clarify the connection to the Gilboa–Schmeidler model, it is helpful to rewrite utility
using discounted sums. In a Bayesian model, the process of all conditional-one-step-ahead prob-
ability measures uniquely determines a probability measure over the full state space. Similarly,
the process {Pt } determines a unique set of probability measures P on S∞ satisfying the regu-
larity conditions specified in Epstein and Schneider (2003a).6 Thus, one obtains the following
equivalent and explicit formula for utility:

Ut (c; st ) = min
p∈P

E p

[∑
s≥t

βs−t u(cs) | st

]
. (3)

This expression shows that each conditional ordering conforms to the multiple-priors model
in Gilboa and Schmeidler (1989), with the set of priors for time t determined by updating the set
P measure-by-measure via Bayes’ Rule.

Axiomatic foundations for recursive multiple-priors utility are provided in Epstein and
Schneider (2003). The essential axioms are that conditional orderings (i) satisfy the Gilboa–
Schmeidler axioms, (ii) are connected by dynamic consistency, and (iii) do not depend on un-
realized parts of the decision tree: utility given the history st depends only on consumption in
states of the world that can still occur. To ensure such dynamic behaviour in an application, it is
sufficient to specify beliefs directly via a process of one-step-ahead conditionals {Pt }. In the case
of learning, this approach has additional appeal: because {Pt } describes how an agent’s view of
the next state of the world depends on history, it is a natural vehicle for modelling learning dy-
namics. The analysis in Epstein and Schneider (2003) restricts {Pt } only by technical regularity
conditions. We now proceed to add further restrictions to capture how the agent responds to data.

3.2. Learning

Our model of learning applies to situations where a decision-maker holds the a priori view that
data are generated by the same memoryless mechanism every period. This a priori view also
motivates the Bayesian model of learning about an underlying parameter from conditionally i.i.d.
signals.

As in the Bayesian model outlined in the introduction, our starting point is again (a finite pe-
riod state space S and) a parameter space � that represents features of the data the decision-maker
tries to learn. To accommodate ambiguity in initial beliefs about parameters, represent those be-
liefs by a set M0 of probability measures on �. The size of M0 reflects the decision-maker’s
(lack of) confidence in the prior information on which initial beliefs are based. A technically
convenient assumption is thatM0 is weakly compact;7 this permits us to refer to minima, rather
than infima, overM0.

Finally, we adopt a set of likelihoods L—every parameter value θ ∈ � is associated with a
set of probability measures

L(· | θ) = {�(· | θ) : � ∈ L}.
Each � : � −→ �(S) is a likelihood function, so that θ �−→ �(A | θ) is assumed measurable

for every A ⊂ S. Another convenient technical condition is that L is compact when viewed as a

6. In the infinite horizon case, uniqueness obtains only if P is assumed also to be regular in a sense defined in
Epstein and Schneider (2003b), generalizing to sets of priors the standard notion of regularity for a single prior.

7. More precisely, measures in M0 are defined on the implicit and suppressed σ -algebra B associated with �.
Take the latter to be the power set when � is finite. The weak topology is that induced by bounded and B-measurable
real-valued functions on �.M0 is weakly compact iff it is weakly closed.

Journal compilation c© 2007 The Review of Economic Studies Limited. No claim to original US government works



1282 REVIEW OF ECONOMIC STUDIES

subset of (�(S))� (under the product topology). Finally, to avoid the problem of conditioning on
zero probability events, assume that each �(· | θ) has full support.

Turn to interpretation. The general idea is that the agent perceives the data-generating mech-
anism as having some unknown features represented by θ that are common across experiments.
Because these features are perceived as common across time or experiments, she can try to learn
about them. At the same time, she feels there are other factors underlying data, represented by
L, that are variable across experiments. It is known that the variable features are determined by a
memoryless mechanism—this is why the set L does not depend on history. It is also known that
the relative importance of the variable features is the same every period, as in the urn example
where there are always four non-coin balls and one coin ball. This is why the set L does not
depend on time. However, the factors modelled by the set L are variable across time in a way that
the agent does not understand beyond the limitation imposed by L. In particular, at any point in
time, any element of Lmight be relevant for generating the next observation. Accordingly, while
she can try to learn the true θ , she has decided that she will not try to (or is not able to) learn
more.

Conditional independence implies that past signals st affect beliefs about future signals
(such as st+1) only to the extent that they affect beliefs about the parameter. LetMt (st ), to be
described below, denote the set of posterior beliefs about θ given that the sample st has been
observed. The dynamics of learning can again be summarized by a process of one-step-ahead
conditional beliefs. However, in contrast to the Bayesian case (1), there is now a (typically non-
degenerate) set assigned to every history:

Pt (s
t ) =

⎧⎨⎩pt (·) =
∫
�

�(· | θ)dµt (θ) : µt ∈Mt (s
t ), � ∈ L

⎫⎬⎭ , (4)

or, in convenient notation,

Pt (s
t ) =

∫
�

L(· | θ)dMt (θ).

This process enters the specification of recursive multiple-priors preferences (2).8

3.2.1. Updating and reevaluation. To complete the description of the model, it remains
to describe the evolution of the posterior beliefsMt . Imagine a decision-maker at time t looking
back at the sample st . In general, she views both her prior information and the sequence of
signals as ambiguous. As a result, she will typically entertain a number of different theories about
how the sample was generated. A theory is a pair (µ0,�

t ), where µ0 is a prior belief on � and
�t = (�1, . . . ,�t ) ∈ Lt is a sequence of likelihoods. The decision-maker contemplates different
sequences �t because she is not confident that signals are identically distributed over time.

We allow for different attitude towards past and future signals. On the one hand, L is the
set of likelihoods possible in the future. Since the decision-maker has decided she cannot learn
the true sequence of likelihoods, it is natural that beliefs about the future be based on the whole
set L as in (4). On the other hand, the decision-maker may reevaluate, with hindsight, her views
about what sequence of likelihoods was relevant for generating data in the past. Such revision
is possible because the agent learns more about θ and this might make certain theories more or
less plausible. For example, some interpretation of the signals, reflected in a certain sequence

8. Given compactness ofM0 and L, one can show thatMt (st ) defined below is also compact and subsequently
that each Pt (st ) is compact. This justifies the use of minima in (2).
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�t = (�1, . . . ,�t ), or some prior experience, reflected in a certain prior µ0 ∈M0, might appear
not very relevant if it is part of a theory that does not explain the data well.

To formalize reevaluation, we need two preliminary steps. First, how well a theory (µ0,�
t )

explains the data is captured by the (unconditional) data density evaluated at st :∫ t∏
j=1

� j (s j | θ)dµ0(θ).

Here conditional independence implies that the conditional distribution given θ is simply
the product of the likelihoods � j . Prior information is taken into account by integrating out the
parameter using the prior µ0. The higher the data density, the better is the observed sample st

explained by the theory (µ0,�
t ). Second, let µt (· ; st ,µ0,�

t ) denote the posterior derived from
the theory (µ0,�

t ) by Bayes’ Rule given the data st . This posterior can be calculated recursively
by Bayes’ Rule, taking into account time variation in likelihoods:

dµt (· ; st ,µ0,�
t ) = �t (st | ·)∫

�

�t (st | θ ′)dµt−1(θ ′; st−1,µ0,�t−1)
dµt−1(· ; st−1,µ0,�

t−1). (5)

Reevaluation takes the form of a likelihood-ratio test. The decision-maker discards all the-
ories (µ0,�

t ) that do not pass a likelihood-ratio test against an alternative theory that puts max-
imum likelihood on the sample. Posteriors are formed only for theories that pass the test. Thus
posteriors are given by

Mα
t (st ) = {

µt (s
t ; µ0,�

t ) : µ0 ∈M, �t ∈ Lt , (6)∫ t∏
j=1

� j (s j | θ)dµ0(θ) ≥ α max
µ̃0∈M0
�̃t∈Lt

∫ t∏
j=1

�̃ j (s j | θ)dµ̃0
}
.

Here α is a parameter, 0 < α ≤ 1, that governs the extent to which the decision-maker is
willing to reevaluate her views about how past data were generated in the light of new sample
information. The likelihood-ratio test is more stringent and the set of posteriors smaller, the
greater is α. In the extreme case α = 1, only parameters that achieve the maximum likelihood are
permitted. If the maximum likelihood estimator is unique, ambiguity about parameters is resolved
as soon as the first signal is observed. More generally, we have that α > α′ impliesMα

t ⊂Mα′
t .

It is important that the test is done after every history. In particular, a theory that was disregarded
at time t might look more plausible at a later time and posteriors based on it may again be taken
into account.

In summary, our model of learning about an ambiguous memoryless mechanism is given
by the tuple (�,M0,L,α). As described, the latter induces, or represents, the process {Pt } of
one-step-ahead conditionals via

Pt (s
t ) =

∫
�

L(· | θ)dMα
t (θ),

whereMα
t is given by (6). The model reduces to the Bayesian model when both the set of priors

and the set of likelihoods have only a single element.
Another important special case occurs ifM0 consists of several Dirac measures on the pa-

rameter space, in which case there is a simple interpretation of the updating rule:Mα
t contains all

θ̃ ’s such that the hypothesis θ = θ̃ is not rejected by an asymptotic likelihood-ratio test performed
with the given sample, where the critical value of the χ2(1) distribution is −2log α. Since α > 0,
(Dirac) measures over parameter values are discarded or added to the set, and Pt varies over
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time. The Dirac priors specification is convenient for applications—it will be used in our port-
folio choice example below. Indeed, one may wonder whether there is a need for non-Dirac priors
at all. However, more general priors provide a useful way to incorporate objective probabilities,
as illustrated by the scenarios in Section 2.9

3.3. Scenarios revisited

We now describe how we would model the three scenarios of Section 2, and we show that our
set-up can accommodate the intuitive behaviour described there. The results here clarify the role
of multiple priors and multiple likelihoods, but are essentially independent of the revaluation
parameter α. We return to the role of α in Section 4, where we consider the evolution of beliefs
in the context of Scenario 3.

3.3.1. Scenarios 1 and 2. For both scenarios, specify S = {B,W } and � = { n
5 : n = 1,

2,3,4}. The state s corresponds to the colour of a drawn ball, and θ indicates the proportion of
black balls (coin or non-coin). For Scenario 1, assume that there is a single prior with µ0(θ) =
1
2 for θ = 2

5 or 3
5 and define the single likelihood by �(B | θ) = θ . For Scenario 2, specify a

representation (�,M0,L,α) by setting L={�} , fixing a revaluation parameter α and defining
the setM0 of priors on � as follows. Let P ⊂ �({1,2,3}) denote beliefs about the number of
black non-coin balls. Since the coin-ball and other colours are independent, each prior should
have the form

µ
p
0 (θ) = 1

2 p (5θ −1)+ 1
2 p(5θ), (7)

for some p ∈ P . Thus letM0 = {µp
0 : p ∈ P}.

This set-up captures Ellsberg-type behaviour in the short run. Because the set of one-step-
ahead probabilities for the next draw is non-degenerate in Scenario 2, a bet on black would be
evaluated under a prior that puts the lowest possible conditional probability on a black draw,
and similarly for white. As a result, either bet in Scenario 2 will be inferior to its counterpart in
Scenario 1. In addition, keeping the history of draws the same across scenarios, any difference in
utility would become smaller and smaller over time. With a single likelihood, it is easy to verify
that the posteriors derived from M0 become more similar over time and eventually become
concentrated on a single parameter value. Ambiguity is thus resolved in the long run.

3.3.2. Scenario 3. A natural parameter space here is � = {B,W }, corresponding to the
two possible colours of the coin-ball. There is a single prior µ0—the

(
1
2 , 1

2

)
prior on � corres-

ponding to the toss of the unbiased coin. Ambiguity perceived about the changing non-coin balls
is captured by a non-degenerate set of likelihoods, specified as follows. Let P ⊂ �({1,2,3})
denote beliefs about the number of black non-coin balls, where P is the same set used in Scenario
2. Since the first urns in the two scenarios are identical, it is natural to use the same set P to
describe beliefs about them. Moreover, though the urns differ along the sequence in Scenario 3,
successive urns are indistinguishable, which explains why P can be used also to describe the
second urn in the present scenario. Each p in P suggests one likelihood function via

�p(B | B) =
∑

λp(λ)+1

5
, �p(B | W ) =

∑
λ p(λ)

5
. (8)

9. Another example is in Epstein and Schneider (2007a), where a representation with a single prior, and α = 0 is
used to model the distinction between tangible (well-measured, probabilistic) and intangible (ambiguous) information.
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Finally, let10

L= {�p : p ∈ P}. (9)

Our model of Scenario 3 also leads to a non-degenerate set of one-step-ahead conditionals
in the short run. The difference from Scenario 2 is that ambiguity enters through beliefs about
signals, captured by multiple likelihoods, rather than through multiple priors on �. The multi-
plicity of likelihoods also implies directly that ambiguity never vanishes. Indeed, a bet on black
in Scenario 3 will always be evaluated under a likelihood that puts the lowest possible conditional
probability on a black draw, and similarly for white. Either bet in Scenario 3 will thus be inferior
to its counterpart in Scenario 1, even in the long run.

Focus now on the other choice described above—given that one black ball has been drawn,
would you rather bet on the next draw being black in Scenario 2 or in Scenario 3? This question
highlights one difference between learning in simple settings (Scenario 2) as opposed to complex
ones (Scenario 3), and thus demonstrates the key role played by multiple likelihoods. We argued
above that it is intuitive that one prefer to bet in Scenario 2—the black draw is stronger evidence
there for the next draw also being black. The appendix shows that our model predicts these
intuitive choices. In particular, it demonstrates that the minimal predictive probability for a black
ball conditional on observing a black ball,

min
p
P1(B) = min

�∈L,µ1∈Mα
1 (B)

∫
�

�(B | θ)dµ1(θ),

is smaller under Scenario 3 than under Scenario 2. An ambiguity-averse agent who ranks bets
according to the smallest probability of winning will thus prefer to bet on the urn from Scenario 2.

3.4. Discussion

Two further remarks are in order about the structure of our model and its relationship to the
Bayesian model. Consider first the question of foundations. Though recursive multiple priors is
an axiomatic model, we do not have axiomatic foundations for the specialization described here.
For the Bayesian model, the de Finetti Theorem shows that the representation (1) is possible if
and only if the prior p on S∞ is exchangeable. We are missing a counterpart of the de Finetti
Theorem for our setting. Nevertheless, without discounting the importance of this missing ele-
ment, we would argue that our model can be justified on the less formal grounds of cognitive
plausibility.

Begin with a perspective on the de Finetti Theorem. While de Finetti starts from a prior p
on S∞ and the assumption of exchangeability, the usefulness of his theorem stems in large part
from the reverse perspective: it describes a cognitively plausible procedure for a decision-maker
to arrive at a prior p and to determine thereby if, indeed, exchangeability is acceptable (see, for
example, Kreps 1988, pp. 155–156). In some settings, there is a natural pair (�,�) and, when

10. Given the symmetry of the environment, a natural candidate for P is

Pε =
{

p ∈ �({1,2,3}) :
∑

λp(λ) ∈ [2− ε,2+ ε]
}

,

where ε is a parameter, 0 ≤ ε ≤ 1. In the special case where ε = 1, the agent attaches equal weight to all logically
possible urn compositions λ = 1, 2, or 3. More generally, Pε incorporates a subjective element into the specification.
Just as subjective expected utility theory does not impose connections between the Bayesian prior and objective features
of the environment, so too the set of likelihoods is subjective (varies with the agent) and is not uniquely determined by
the facts. For example, for ε < 1, the agent attaches more weight to the “focal” likelihood corresponding to λ = 2 as
opposed to the more extreme scenarios λ = 1,3.
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� is simple, forming a prior µ0 over � is easier than forming one directly over S∞. Thus the
representation (1) can be viewed as providing a procedure for the decision-maker to arrive at the
measure p on S∞ to use for decision-making. Moreover, to the extent that (�,�) is simple and
natural given the environment, the procedure is cognitively plausible.

In fact, cognitive plausibility is essential to support the typical application of the Bayesian
model. After all, a Bayesian modeller must assume a particular parametric specification for
(�,µ0,�). This amounts, via (1), to assuming a particular prior p for which there is no axiomatic
justification. Instead, cognitive plausibility is the only supporting argument. However, outside of
contrived settings, where the data-generating mechanism is simple and transparent, the existence
of a cognitively plausible specification of (�,µ0,�) is problematic. In particular, the Bayesian
model presumes a degree of confidence on the part of the agent that seems non-intuitive in com-
plicated environments. We view enhanced cognitive plausibility as a justification for our model.
As illustrated by the examples and the way in which we model them, greater cognitive plausibil-
ity is afforded if we allow the decision-maker to have multiple priors on the parameter space �
and, more importantly, multiple likelihoods.

A second feature of our model—and one that it shares with the Bayesian approach—is that
the decomposition between learnable and unlearnable features of the environment is exogenous.
Indeed, the learnable parameters � and the unlearnable features embodied by a non-singleton
L are given at the outset. We thus do not explain features that the agent tries to learn in any
given setting. The same is true in the Bayesian case, where the decomposition is extreme—L is a
singleton and the agent tries to identify an i.i.d. process. Thus, while we leave important aspects
unmodelled, we do extend the Bayesian model in the direction of permitting more plausible ambi-
tions about what can be learnt in complex settings. The Ellsberg-style examples and the portfolio
choice application illustrate that natural decompositions may be suggested by descriptions of the
environment.

4. BELIEF DYNAMICS

In this section we illustrate further properties of learning under ambiguity. We first examine the
dynamics of beliefs and confidence in the short term, using the example of Scenario 3. We then
provide a general result on convergence of the learning process in the long run.

4.1. Inference from small samples

As in Section 3.3, take � = {B,W }, µ0 =
(

1
2 , 1

2

)
, and assume further that the agent weighs

equally all the logically possible combinations of non-coin balls, that is, L is given by (8) with

P =
{

p ∈ �({1,2,3}) :
∑

λp(λ) ∈ [1,3]
}
.

The evolution of the posterior setMα
t in (6) shows how signals tend to induce ambiguity

about parameters even where there is no ambiguity ex ante (singletonMα
0 ). This happens when

the agent views some aspects of the data-generating mechanism as too difficult to try to learn,
as modelled by a non-singleton set of likelihoods. More generally, Mα

t can expand or shrink
depending on the signal realization.

Posterior beliefs can be represented by the intervals[
min

µt∈Mα
t

µt (B), max
µt∈Mα

t

µt (B)

]
.

Figure 2 depicts the evolution of beliefs about the coin-ball being black as more balls are
drawn. The top panel shows the evolution of the posterior interval for a sequence of draws such
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FIGURE 2

The posterior interval is the range of the posterior probability µt (B) that the coin ball is black. In the top panel, the sample
is selected to keep the fraction of black balls constant. In the bottom panel, vertical lines indicate black balls drawn

that the number of black balls is 3t
5 , for t = 5,10, . . . . Intervals are shown for α = 0·1 and α =

0·001, as well as for α = 0, to illustrate what would happen without revaluation. In addition,
a single line is drawn for the case α = 1, where the interval is degenerate. For example, after
the first five signals, with three black balls drawn, the agent with α = 0·1 assigns a posterior
probability between 0·4 and 0·8 to the coin ball being black.

What happens if the same sample is observed again? Our model captures two effects. First, a
larger batch of signals permits more possible interpretations of past signals. For example, having
seen 10 draws, the agent may believe that all six black draws came about although each time
there were the “most adverse” conditions, that is, all but one non-coin ball was white. This
interpretation strongly suggests that the coin ball itself is black. The argument also becomes
stronger the more data are available—after only five draws, the appearance of three black balls
under “adverse” conditions is not as remarkable.

Second, even though it is not possible to learn about future non-coin balls, past draws are
informative about past non-coin balls, not just about the parameter. To illustrate, suppose 50
draws have been observed and that 30 of them have been black. Given a theory about the non-
coin balls, these observations suggest that the coin ball is more likely to be black than white.
At the same time, given a value of the parameter, the observations suggest that more than half
of the past urns contained three black non-coin balls. Sensible updating takes the latter feature
into account. In our model, this is accommodated by revaluation. The evolution of confidence,
measured by the size of the posterior interval, then depends on how much agents reevaluate their
views. For an agent with α = 0·001, the posterior interval expands between t = 5 and t = 20. In
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this sense, a sample of 10 or 20 signals induces more ambiguity than a sample of five. However,
reevaluation implies that large enough batches of signals induce less ambiguity than smaller ones.

The lower panel of Figure 2 tracks the evolution of posterior intervals along one particular
sample. Black balls were drawn at dates indicated by vertical lines, while white balls were drawn
at the other dates. Taking the width of the interval as a measure, the extent of ambiguity is seen to
respond to data. In particular, a phase of many black draws (periods 5–11, for example) shrinks
the posterior interval, while an “outlier” (the white ball drawn in period 12) makes it expand
again. This behaviour is reminiscent of the evolution of the Bayesian posterior variance, which
is also maximal if the fraction of black balls is half.

4.2. Beliefs in the long run

Turn now to behaviour after a large number of draws. As discussed above, our model describes
agents who are not sure whether empirical frequencies will converge. Nevertheless, it is useful
to derive limiting beliefs for the case when such convergence occurs: the limiting beliefs also
approximately describe behaviour after a large, but finite, number of draws. Therefore, they char-
acterize behaviour in the long run. The limiting result below holds with probability 1 under a true
data-generating process, described by a probability P∗ on S∞. For this process, we require only
that the empirical frequencies of each of the finite number of states s ∈ S converge, almost surely
under P∗. In what follows, these limiting frequencies are described by a measure φ on S.

By analogy with the Bayesian case, the natural candidate parameter value on which post-
eriors might become concentrated maximizes the data density of an infinite sample. With multiple
likelihoods, any data density depends on the sequence of likelihoods that is used. In what follows,
it is sufficient to focus on sequences such that the same likelihood is used whenever state s is
realized. A likelihood sequence can then be represented by a collection (�s)s∈S . Accordingly,
define the log data density after maximization over the likelihood sequence by11

H(θ) := max
(�s )s∈S

∑
s∈S

φ(s) log�s(s | θ). (10)

The following result (proved in the appendix) summarizes the behaviour of the posterior set
in the long run.

Theorem 1. Suppose that � is finite and

(i) for each state s ∈ S, the empirical frequency converges almost surely under P∗;
(ii) θ∗ is the unique maximizer of H(θ), defined in (10);

(iii) µ0(θ
∗) > 0 for some µ0 ∈M0;

(iv) there exists κ > 0 such that for every µ0 ∈M0.

either µ0(θ
∗) = 0 or µ0(θ

∗) ≥ κ .

Then every sequence of posteriors fromMα
t converges to the Dirac measure δθ∗ , almost surely

under the true probability P∗, and the convergence is uniform, that is, there is a set � ⊂ S∞ with
P∗(�) = 1 such that for every s∞ ∈ �,

µt (θ
∗) → 1,

uniformly over all sequences of posteriors {µt } satisfying µt ∈Mα
t for all t .

11. Our assumptions on L—its compactness and that each �(· | θ) has full support as well as finiteness of S and �,
ensure that H is well defined.
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Condition (ii) is an identification condition: it says that there is at least one sequence of
likelihoods (i.e. the maximum likelihood sequence), such that the sample with empirical
frequency measure φ can be used to distinguish θ∗ from any other parameter value. Condition
(iv) is satisfied if every prior in M0 assigns positive probability to θ∗ (because M0 is weakly
compact). The weaker condition stated accommodates also the case where all priors are Dirac
measures (including specifically the Dirac measure concentrated at θ∗), as well as the case of a
single prior containing θ∗ in its support. (In Scenario 3, (iv) is satisfied for any set of priors where
the probability of a black coin ball is bounded away from 0.)

Under conditions (ii) and (iv), and if � is finite, then in the long run only the maximum
likelihood sequence is permissible, and the set of posteriors converges to a singleton. The agent
thus resolves any ambiguity about factors that affect all signals, captured by θ . At the same time,
ambiguity about future realizations st does not vanish. Instead, beliefs in the long run become
close to L(· | θ∗). The learning process settles down in a state of time-invariant ambiguity.

The asserted uniform convergence is important in order that convergence of beliefs translate
into long-run properties of preference. Thus it implies that for the process of one-step-ahead
conditionals {Pt } given by (4),

Pt (s
t ) =

∫
�

L(· | θ)dMα
t (θ),

we have, almost surely under P∗,

min
pt∈Pt

∫
f (st+1)dpt = min

µt∈Mα
t

min
�∈L

∫
�

⎡⎢⎣ ∫
St+1

f (st+1)d�(st+1 | θ)

⎤⎥⎦ dµt (θ)

→ min
�∈L

∫
St+1

f (st+1)d�(st+1 | θ∗),

for any f : St+1 →R
1 describing a one-step-ahead prospect (in utility units).12 In particular, this

translates directly into the utility of consumption processes for which all uncertainty is resolved
next period.

As a concrete example, consider long-run beliefs about the urns in Scenario 3. Let φ∞ de-
note the limiting frequency of black balls. Suppose also that beliefs are given by (9). Maximizing
the data density with respect to the likelihood sequence yields

H(θ) = φ∞ max
λB

log
1{θ=B} +λB

5
+ (1−φ∞)max

λW
log

5−1{θ=B} −λW

5

= φ∞ log
1{θ=B} +3

5
+ (1−φ∞) log

4−1{θ=B}
5

.

The first term captures all observed black balls and is therefore maximized by assuming
λB = 3 black non-coin balls. Similarly, the likelihood of white draws is maximized by setting
λW = 1. It follows that the identification condition is satisfied except in the knife-edge case
φ∞ = 1

2 . Moreover, θ∗ = B if and only if φ∞ > 1
2 . Thus the theorem implies that an agent who

12. The function F(�,µ) = ∫
�

[∫
St+1

f (st+1)d�(st+1 | θ)
]

dµ(θ) is jointly continuous on the compact set
L×�(�). Therefore, by the Maximum Theorem, min�∈L F(�,µ) is (uniformly) continuous in µ. Finally, apply the (uni-
form overMα

t ’s) convergence of posteriors to δθ∗ proved in the theorem.
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observes a large number of draws with a fraction of black balls above half believes it very likely
that the colour of the coin ball is black. The role of α is only to regulate the speed of convergence
to this limit. This dependence is also apparent from the dynamics of the posterior intervals in
Figure 2.

The example also illustrates the role of the likelihood-ratio test (6) in ensuring learnability
of the representation. Suppose that φ∞ = 3

5 . The limiting frequency of 3
5 black draws could be

realized either because there is a black coin ball and on average half of the non-coin balls were
black, or because the coin ball is white and all of the urns contained three black non-coin balls. If
α were equal to 0, both possibilities would be taken equally seriously and the limiting posterior
set would contain Dirac measures that place probability 1 on either θ = B or θ = W. This pattern
is apparent from Figure 2. In contrast, with α > 0, reevaluation eliminates the sequence where
all urns contain three black non-coin balls as unlikely.

The set of “true” processes P∗ for which the theorem holds is large. Like a Bayesian who
is sure the data are exchangeable, the agent described by the theorem is convinced that the data-
generating process is memoryless. As a result, learning is driven only by the empirical frequen-
cies of the one-dimensional events, or subsets of S. Given any process for which those frequencies
converge to a given limit, the agent will behave in the same way. Of course, in applications one
would typically consider a “truth” that is memoryless. Like the exchangeable Bayesian model,
our model is best applied to situations where the agent is correct in his a priori judgement that the
data-generating process is memoryless. Importantly, a memoryless process for which empirical
frequencies converge need not be i.i.d. There exists a large class of serially independent, but non-
stationary, processes for which empirical frequencies converge.13 In fact, there is a large class of
such processes that cannot be distinguished from an i.i.d. process with distribution φ on the basis
of any finite sample. Thus even if they are convinced that the empirical frequencies converge, a
concern with ongoing change may lead agents to never be confident that they have identified a
“true” i.i.d. data-generating process with distribution φ.14

Incomplete learning can occur also in a Bayesian model. For example, if the true data-
generating measure is not absolutely continuous with respect to an agent’s belief, violating the
Blackwell and Dubins (1962) conditions, then beliefs may not converge to the truth.15 However,
even then the Bayesian agent believes, and behaves as if, they will. In contrast, agents in our
model are aware of the presence of hard-to-describe factors that prevent learning and their actions
reflect the residual uncertainty.

Incomplete learning occurs also in models with persistent hidden state variables, such as
regime switching models. Here learning about the state variable never ceases because agents
are sure that the state variable is forever changing. The distribution of these regime changes
is known a priori. Agents thus track a known data-generating process that is not memoryless.
In contrast, our model applies to memoryless mechanisms and learning is about a fixed true
parameter. Nevertheless, because of ambiguity, the agent reaches a state where no further learning
is possible although the data-generating mechanism is not yet understood completely.

5. DYNAMIC PORTFOLIO CHOICE

Stock returns provide a natural economic example of an ambiguous memoryless mechanism. The
assumption of i.i.d. stock returns is common in empirical work, since there is only weak evidence

13. See Nielsen (1996) for a broad class of examples.
14. As discussed earlier, they may also reach this view because they are not sure whether the empirical frequencies

converge in the first place.
15. As a simple example, if the parameter governing a memoryless mechanism were outside the support of the

agent’s prior, the agent could obviously never learn the true parameter.
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of return predictability. At the same time, the distribution of stock returns has proven hard to pin
down; in particular, uncertainty about the size of the equity premium remains large. In this sec-
tion, we solve the inter-temporal portfolio choice problem of an ambiguity-averse investor who
learns about the equity premium and contrast it with that of a Bayesian investor. As emphasized
above, the Bayesian model is extreme in that it does not allow for confidence in probability as-
sessments; in particular, Bayesian learning cannot capture changes in confidence. In a portfolio
choice context, this leads to counterintuitive predictions for optimal investment strategies.

Suppose an investor believes that the equity premium is fixed, but unknown, so that it must
be estimated from past returns. Intuitively, one would expect the investor to become more confi-
dent in his estimate as more returns are observed. As a result, a given estimate should lead to a
higher portfolio weight on stocks, the more data was used to form the estimate. Bayesian analysis
has tried to capture the above intuition by incorporating estimation risk into portfolio problems.
One might expect the weight on stocks to increase as the posterior variance of the equity premium
declines through Bayesian learning. However, the effects of estimation risk on portfolio choice
tend to be quantitatively small or even 0 (see, for example, the survey by Brandt, forthcoming).
In fact, in a classic continuous time version of the problem, where an investor with log utility
learns about the drift in stock prices, there is no trend in stock investment whatsoever: portfolio
weights depend only on the posterior mean, not on the variance (Feldman, 1992). The Bayesian
investor thus behaves exactly as if the estimate were known to be correct.

Below we revisit the classic log investor problem. We argue that the Bayesian model gener-
ates a counterintuitive result because a declining posterior variance does not adequately capture
changes in confidence. In contrast, when returns are perceived to be ambiguous, an increase in
investor confidence—captured in our model by a shrinking set of posterior beliefs—naturally
induces a trend towards stock ownership. We show that this trend is quantitatively significant at
plausible parameter values.

5.1. Investor problem

The standard binomial tree model of stock returns maps naturally into the finite state framework
of Section 3.2. For calibration purposes, it is convenient to measure time in months. We assume
that there are k trading dates in a month. Below, we will obtain simple formulae for optimal
portfolio choice by taking the limit k → ∞, which describes optimal choices when frequent
portfolio rebalancing is possible. The state space is S = {hi, lo}. The return on stocks R(st ) =
er(st ) realized at date t is either high or low: we fix (log) return realizations r(hi) = σ/

√
k and

r(lo) = −σ/
√

k. In addition to stocks, the investor also has access to a riskless asset with constant
per period interest rate R f = er f /k , where r f < σ .

We compute the optimal fraction of wealth invested in stocks for investors who plan for T
months starting in month t and who care about terminal wealth according to the utility function
VT (Wt+T ) = log Wt+T . Investors may rebalance their portfolio at all k(T − t) trading dates be-
tween t and T . At time t, they know that rebalancing may be optimal in the future—for example,
if learning changes beliefs and confidence—and thus take the prospect of future learning and
rebalancing into account when choosing a portfolio at t . In general, the optimal portfolio weight
on stocks chosen at date t , denoted ω∗

t,T,k, will depend on calendar time t , the investment horizon
T and on the number of trading dates per month k. In addition, it depends on the history of states
that the investor has observed up to date t . Below we will isolate the effect of learning on port-
folio choice by comparing optimal choices across agents choosing at different dates t and after
different histories, holding fixed T and k.

Consider the investor’s problem when beliefs are given by a general process of one-step-
ahead conditionals {Pτ (sτ )}. Beliefs and the value function are defined for every trading date.
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The history sτ of state realizations up to trading date τ = t + j/k—the j-th trading date in month
t +1—can be summarized by the fraction φτ of high states observed up to τ . The value function
of the log investor takes the form Vτ (Wτ ,sτ ) = hτ (φτ ) + log Wτ . The process {hτ } satisfies
ht+T = 0 and

hτ (φτ ) = max
ωτ

min
pτ ∈Pτ (sτ )

E pτ [log(R f + (R(sτ+1/k)− R f )ωτ )+hτ+1/k(φτ+1/k)]

= min
pτ ∈Pτ (sτ )

max
ωτ

E pτ [log(R f + (R(sτ+1/k)− R f )ωτ )+ht+1/k(φτ+1/k)], (11)

where we have used the minimax theorem to reverse the order of optimization.
For our numerical examples, we capture investors’ information set by a monthly sample

of log real U.S. stock returns {rτ }t
τ=1.16 Agents in the model observe not only monthly returns,

but binary returns R(sτ ) at every trading date. To model an agent’s history up to date t , we
thus construct a sample of tk realizations of R(sτ ) such that the implied empirical distribution
of monthly log returns is the same as that in the data. Let σ = 1√

12
19·0%, the sample standard

deviation of monthly log returns from 1926 to 2004. The sample of binary returns up to some
integer date τ is summarized by the fraction of high returns, defined by

φτ = φ̂k(r̄τ ) := 1

2
+ 1

2

r̄τ

σ
√

k
(12)

where r̄τ := 1
τ

∑τ
j=1 r j is the mean of the monthly return sample. For given k, the sequence {φτ }

pins down a sequence of monthly log returns
{∑k

j=1 log R(sτ+ j/k)
}

that is identical to the data
sample {rτ }. We also we assume a constant riskless rate of 2% per year.

5.2. Bayesian benchmark

As a Bayesian benchmark, we assume that the investor has an improper beta prior over the prob-
ability p of the high state, so that the posterior mean of p after t months (or tk state realizations)
is equal to φτ , the maximum likelihood estimator of p. The Bayesian’s probability of a high
state next period is then also given by φτ . The optimal portfolio follows from solving (11) when
Pτ (sτ ) is a singleton set containing only the measure that puts probability φτ on the high state. In
what follows, we focus on beliefs and portfolios in integer periods t and use (12) to write beliefs
directly as a function of k and the monthly sample mean r̄t .

The objective function on the R.H.S. of (11) now reduces to the sum of two terms: the
expected pay-off of a myopic investor plus expected continuation utility. The first term depends
on the portfolio weight ωτ , but not on the investment horizon T , while the converse is true for the
second term. As a result, the optimal portfolio weight is independent of the investment horizon.
It is given by

ω∗
t,k,T (r̄t ) = er f /k(φ̂k(r̄τ )(eσ/

√
k − er f /k)+ (1− φ̂k(r̄τ ))(e−σ/

√
k − er f/k))

(eσ/
√

k − er f /k)(er f /k − e−σ/
√

k)
. (13)

As usual in binomial tree set-ups, simple formulae are obtained when taking the limit as
k tends to infinity. For the Bayesian case, the supplementary appendix (Epstein and Schneider,
2007b) shows that, for all T ,

lim
k→∞ω∗

t,k,T (r̄t ) = r̄t + 1
2σ 2 − r f

σ 2
:= ω

bay
t . (14)

16. We use the monthly NYSE-AMEX return from CRSP, net of monthly CPI inflation for all urban consumers,
for 1926:1 to 2004:12.

Journal compilation c© 2007 The Review of Economic Studies Limited. No claim to original US government works



EPSTEIN & SCHNEIDER LEARNING UNDER AMBIGUITY 1293

Here the numerator is the (monthly) equity premium expected by the investor at his cur-
rent estimate of mean log returns r̄t . This form of the optimal weight—the equity premium di-
vided by the conditional variance of returns—is standard in continuous time models of portfolio
choice with or without learning. In particular, suppose that cumulative stock returns V follow
dV (t)/V (t) = θdt +σd B(t), where B is a standard Brownian motion. Feldman (1992) shows
that the weight (14) is optimal for an investor with log utility who knows the volatility σ and who
learns about the constant drift θ starting from an improper normal prior.

The benchmark clarifies the limitation of the Bayesian model in capturing confidence. In
the binomial tree, the optimal portfolio weight of the log investor depends only on the estimate
φτ , regardless of how many observations it is based on. Similarly, in the continuous time model
considered by Feldman, the optimal portfolio weight depends only on the sample mean r̄t . This
happens despite the fact that estimation risk is gradually reduced as the posterior variance—here
σ 2/t—shrinks. Intuitively, estimation risk perceived by a Bayesian is second order relative to the
risk in unexpected returns. In the continuous time limit, estimation risk vanishes altogether.17

Trends in stock investment can occur in the Bayesian case if the investment horizon T is long
and the coefficient of relative risk aversion is different from 1.18 However, the effect of calendar
time on the portfolio weight is then due to intertemporal hedging of future news, as emphasized
by Brennan (1998). It does not occur because the resolution of risk makes risk averse agents more
confident. Indeed, Brennan’s results show that if the coefficient of relative risk aversion is less
than 1, learning induces a decreasing trend in the optimal portfolio weight, although the investor
is risk averse. Moreover, while high risk aversion can generate an increasing trend, the effect is
quantitatively small in our setting, as we show below.

5.3. Beliefs under ambiguity

Beliefs under ambiguity are given by a representation (�,M0,Lk,α). We make explicit the
dependence of the set of likelihoods on k because, as in the Bayesian case, simple expressions
for the portfolio weight can be obtained by taking the limit for k → ∞. The ambiguity-averse
investor perceives the mean monthly log return as θ +λt , where θ ∈ � := R is fixed and can be
learned, while λt is driven by many poorly understood factors affecting returns and can never be
learnt. The set Lk consists of all �(· | θ) such that

�k(hi | θ) = 1

2
+ 1

2

θ +λ

σ
√

k
, for some λ with |λ| < λ̄. (15)

If λ > 0, returns are ambiguous even conditional on the parameter θ , and λt parametrizes
the likelihood �k

t .
The set of priorsM0 on � consists of Dirac measures. For simplicity, we write θ ∈M0 if

the Dirac measure on θ is included in the set of priors, and we define

M0 = {θ : | θ | ≤ λ̄+1/σ }.
17. In discrete time, estimation risk would induce a small trend effect. Maintaining a diffuse prior and normality,

the one-period-ahead conditional variance of log returns at date t would be σ 2 +σ 2/t . With a period length of one month,
the effect of estimation risk becomes a small fraction of the overall perceived variance after only a couple of years.

18. In continuous time, it follows from results in Rogers (2001) that the optimal weight on stocks for a Bayesian
investor with power utility and coefficient of relative risk aversion γ > 1 is given by

ωt = r̄t + 1
2 σ 2 − r

γ σ 2

γ t

γ t + (γ −1)T
.

The first fraction is the “myopic demand” that obtains for T = 0; it depends only on the posterior mean. For
T > 0, the second fraction captures inter-temporal hedging. For positive equity premia, the weight increases relative to
the myopic demand with calendar time t .
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The condition ensures that the probability (15) remains between 0 and 1 for all k ≥ 1. Stan-
dard results imply that if the state is i.i.d. with fixed θ and λ, then the cumulative stock return
process for large k approximates a diffusion with volatility σ and drift θ +λ.

Beliefs depend on history only via the fraction of high returns φt = φ̂k(r̄t ). We focus again
on integer periods t and write beliefs and optimal portfolios directly as functions of k and r̄t . In
particular, we write θ ∈Mα

t,k(r̄t ) if the Dirac measure on θ is included in the posterior set at the
end of month t after history φ̂k(r̄t ). The supplementary appendix shows that the posterior set is
an intervalMα

t,k(r̄t ) := [θk(r̄t ), θ̄k(r̄t )], with both bounds strictly increasing in r̄t , and that[
lim

k→∞θk(r̄t ), lim
k→∞ θ̄k(r̄t )

]
=

[
r̄t − t−(1/2)σbα, r̄t + t−(1/2)σbα

]
, (16)

where bα = √−2logα. The limiting posterior set is thus an interval centred around the sample
mean r̄t that is wider the larger is the standard error t−(1/2)σ and the smaller is the parameter α;
in the Bayesian case, α = 1 and bα = 0.

The set of one-step-ahead beliefs Pt,k(r̄t )—defined as in (4)—contains all likelihoods of
the type (15) for some θ ∈Mα

t,k(r̄t ) and |λ| < λ̄. It can thus be summarized by an interval of
probabilities for the high state next period, with bounds that are strictly increasing in r̄t because
of (16). Consider now the lowest and highest conditional mean log returns per month. In the limit
as k → ∞,[

lim
k→∞(θk(r̄t )− λ̄), lim

k→∞(θ̄k(r̄t )+ λ̄)

]
=

[
r̄t − λ̄− t−(1/2)σbα, r̄t + λ̄+ t−(1/2)σbα

]
. (17)

In the long run as t becomes large, this interval shrinks towards [r̄t − λ̄, r̄t + λ̄] so that the
equity premium is eventually perceived to lie in an interval of width 2λ̄.

The explicit form of the posterior set and limiting beliefs suggests an intuitive way to select
parameters λ̄ and α for our numerical examples. The parameter λ̄ determines what the investor
expects to learn in the long run. The case λ̄ = 0 describes an investor who is sure today that she
will eventually know what the equity premium is. More generally, the investor might believe that
even far in the future there will be poorly understood factors that preclude full confidence in any
estimate of the equity premium. Her lack of confidence can be quantified by the range of possible
equity premia in the long run, which has width 2λ̄. In the calculations below, we consider both
λ̄ = 0 and λ̄ = 0·001; the latter corresponds to a 2·4% range for the (annualized) expected equity
premium.

Second, the parameter α that determines the investor’s speed of updating can be interpreted
in terms of classical statistics. The posterior set (16) contains all parameters θ∗ such that the
hypothesis θ = θ∗ is not rejected by an asymptotic likelihood-ratio test where the critical value
of the χ2(1) distribution is b2

α = −2logα. Every value of α thus corresponds to a significance
level at which a theory must be rejected by the likelihood-ratio test in order to be excluded
from the belief set. We consider significance levels of 5% and 2·5%, which leads to α = 0·15
or (bα = 1·96) and α = 0·08 (or bα = 2·23), respectively. The lower the significance level, the
fewer theories are rejected for any given sample; in other words, confidence in understanding the
environment is lower. If α = 1 and λ̄ = 0, the posterior set contains only r̄t and Pt (st ) contains
only the Bayesian benchmark belief.

5.4. Optimal portfolios

Learning under ambiguity affects portfolio choice in two ways. The first is a direct effect of be-
liefs and confidence on the optimal weight, which is relevant at any investment horizon. Consider
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a myopic investor (T = 1/k). The supplementary appendix shows that the limit of her optimal
weight on stocks as k becomes large, limk→∞ ω∗

t,k,1/k(r̄t ), is given by

σ−2 max
{
r̄t + 1

2σ 2 − r f − (
λ̄+ t−(1/2)σbα

)
,0

}
+σ−2 min

{
r̄t + 1

2σ 2 − r f + λ̄+ t−(1/2)σbα,0
}

,
or

lim
k→∞ω∗

t,k,1/k(r̄t ) = max
{
ω

bay
t −σ−2

(
λ̄+ t−(1/2)σbα

)
,0

}
(18)

+min
{
ω

bay
t +σ−2

(
λ̄+ t−(1/2)σbα

)
,0

}
.

A myopic ambiguity-averse investor goes long in stocks only if the equity premium is unam-
biguously positive. The optimal position is then given by the first term in (18). Comparison with
(14) shows that an ambiguity-averse investor who goes long behaves as if he were a Bayesian
whose perceives the lowest conditional mean log return in (17). The optimal weight depends on
the sample through the Bayesian position ω

bay
t : conditional on participation, the optimal response

to news is therefore the same in the two models.
However, ambiguity also introduces a trend component: conditional on participation, the

optimal position increases as confidence grows and the standard error t− 1
2 σ falls. While it moves

closer to the Bayesian position ω
bay
t in the long run, the optimal position remains forever smaller

when there are multiple likelihoods (λ̄ > 0). The second term in (18) reflects short selling when
the equity premium is unambiguously negative. Non-participation is optimal if the maximum
likelihood (ML) estimate of the equity premium is small in absolute value so that both terms are
0, that is, if |r̄t + 1

2σ 2 −r f | < λ̄+ t−(1/2)σbα . In particular, an investor who is not confident that
the equity premium can be learnt (λ̄ > 0) need not be “in the market” even after having seen a
large amount of data.

The second effect of learning under ambiguity is a new inter-temporal hedging motive that
induces more participation as the investment horizon becomes longer. Figure 3 compares myopic
and long horizon investors by plotting optimal positions against the maximum likelihood esti-
mate of the (annualized) equity premium (r̄t + 1

2σ 2 − r f )×12.19 We consider two long horizon
investors, both with an investment horizon of T = 10 years: the dashed line is for an investor who
has seen t = 35 years of data, while the dotted line is for an investor who has seen t = 5 years of
data. Thick grey lines indicate optimal myopic positions, which are zero whenever they do not
coincide with the long horizon optimal position. The solid line shows a Bayesian log investor,
whose position depends neither on experience nor on the investment horizon.

For multiple-priors investors, the myopic and long horizon positions coincide if the equity
premium is either high or low enough so that the myopic investor participates. However, for
intermediate estimates of the premium, the myopic investor stays out of the stock market, while
the long horizon investor takes “contrarian” positions: she goes short in stocks for positive equity
premia, but long for negative premia. For the relatively experienced investor (dashed line), who
has seen 35 years of data, horizon effects are small. However, for an inexperienced investor
(dotted line), who has a wide non-participation region if she is myopic, there can be sizeable
differences between the optimal myopic and the optimal long horizon weights. For example, if
the first five years of data deliver a very bad sample equity premium of −15%, the long horizon
investor does not stay out, but instead invests close to 30% of wealth in stocks.

Intuitively, contrarian behaviour can be optimal for long horizon investors because it pro-
vides a hedge against adverse outcomes of future learning under ambiguity. To see this, consider

19. Closed form solutions for optimal weights are not available with ambiguity aversion if the investor is not
myopic. However, it is straightforward to compute the solution numerically using backward induction on (11). All calcu-
lations reported below assume k = 30.
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FIGURE 3

Optimal weight on stocks for log investors as a function of ML estimate of equity premium. Dashed black line: investor
with α = 0·15 , λ̄ = 0, sample size t = 5 years and horizon T = 10 years. Dotted black line: investor with the same belief
and horizon, but sample size t = 35 years. Thick grey lines indicate the corresponding myopic positions (T = 1/k), which
are 0 when they do not coincide with the positions for T = 10 years. Solid black line: Bayesian investor (α = 1, λ̄ = 0).

All numerical calculations are for k = 30

first how returns affect the continuation utility of myopic and long horizon investors differently.
To a myopic investor, stock returns over the next trading period matter only because they affect
future wealth. In contrast, a learning non-myopic investor perceives returns also as a signal about
the long-run equity premium. For example, high returns suggest that the long-run equity premium
is higher than previously expected. The Bellman equation (11) illustrates how returns matter to a
non-myopic investor in part because they affect future learning: continuation utility depends on
φt+1/k .

In particular, our numerical results show that continuation utility is U-shaped in φ, or, equiv-
alently, in the sample equity premium: multiple-priors investors are better off, the further away
the sample equity premium is from zero. This is because they believe that they can make a profit
in the stock market only if the equity premium is unambiguously different from zero, either on
the positive or on the negative side. Suppose now that the ML estimate of the equity premium
is negative. A myopic investor will not take a long position, since the worst case mean return is
negative. While this is also of concern to the non-myopic investor, the latter benefits in addition
from the fact that the long position pays off precisely when continuation utility is low. Indeed,
a long position pays off more when returns are high and thus when the estimate of the long-run
equity premium moves closer to zero (from its initial negative value). In other words, the position
provides “insurance against bad investment opportunities”. If the mean equity premium is not too
negative, this hedging motive dominates and leads to contrarian investment, as in Figure 3.

The inter-temporal hedging motive derived here is reminiscent of hedging demand under
risk stressed by Merton (1971), and, in the context of Bayesian learning, by Brennan (1998).

Journal compilation c© 2007 The Review of Economic Studies Limited. No claim to original US government works



EPSTEIN & SCHNEIDER LEARNING UNDER AMBIGUITY 1297

Nevertheless, it is unique to the case of ambiguity. Indeed, hedging demand under risk is zero
for a log investor: separability of the objective in (11) implies that the optimal portfolio does not
depend on the continuation value hτ+1/k . In contrast, with multiple conditionals, the minimizing
probability p∗

t (φt ) will in general depend on hτ+1/k and hence on the investment horizon. The
presence of ambiguity thus breaks the separability and generates hedging demand.

5.5. Confidence and participation over time

To illustrate the quantitative relevance of changes in confidence, Figure 4 compares optimal stock
weights for myopic investors over the period 1960–2004. The top panel shows the position of the
Bayesian log investor (grey, left scale). This position is highly levered and fluctuates around the
sample mean of 176%. There is no upward trend—the Bayesian model actually predicts higher
stock investment in the 1960’s than at the peak of the 1990’s boom. The black line in the top panel
is the ambiguity-averse investor with λ̄ = 0 and α = 0·15, which corresponds to a 5% significance
level of the likelihood ratio test. Since this position is considerably smaller on average, a second
(shifted) scale is marked on the right hand axis. While the fluctuations in the optimal weight are
similar in magnitude to the Bayesian case—as predicted by (18)—the ambiguity-averse position
trends up over time. In particular, it is higher in the 1990’s than in the 1960’s.

FIGURE 4

Optimal stock positions, 1960–2004, for investors who learn from monthly real NYSE stock returns since 1926. Top
panel: log investor with α = 1 (solid grey; left scale), and log investor with α = 0·15 (dotted black; right scale). Bottom
panel: broken lines are for Bayesian investors with coefficient of relative risk aversion (CRRA) = 5; T = 1/k (dash-dot
grey) and T = 30 years (dotted grey); solid lines are for ambiguity-averse log investors; α = 0·15, λ̄ = 0 (top solid black

line), α = 0·08, λ̄ = 0 (solid grey line) and α = 0·15, λ̄ = 0·001 (bottom solid black line)
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The bottom panel of Figure 4 shows what happens as investors become more risk averse or
more ambiguity averse. The upper black line replicates the case λ̄ = 0 and α = 0·15 of the upper
panel. The grey line corresponds to λ̄ = 0 and α = 0·08 (a significance level of 2·5%), an investor
whose confidence is not only lower, but also growing more slowly. The latter feature explains
why the difference between the two lines is narrower in the 1990’s than in the 1960’s. In contrast,
introducing multiple likelihoods shifts down the position in a parallel fashion: an example is the
lower black line (α = 0·15, λ̄ = 0·001). The latter two investors also go through lengthy peri-
ods of optimal non-participation. For comparison, the lower panel also reports optimal positions
for Bayesian investors with a coefficient of relative risk aversion of 5. The solid grey line is the
myopic Bayesian, while the dashed grey line assumes a horizon of T = 30 years. The point here is
that once risk aversion is high enough for the Bayesian model to generate sensible portfolio allo-
cations, these positions do not vary much over time. Moreover, even with a very long investment
horizon, the trend in the position induced by inter-temporal hedging is small.

It is interesting to ask whether the positions of a multiple-priors investor could be replicated
by a Bayesian with an informative prior. For any two points in the figure, this is always pos-
sible: we can reverse engineer a mean and variance for the prior normal distribution to match the
posterior mean, and hence the optimal positions in equation (18), at any two calendar dates. For
example, consider the investor with α = 0·15 and λ̄ = 0, whose optimal weight on stocks grows
from ωt = 5·8% in December 1976 to ωt = 59·3% in December 2004. A Bayesian with normal
prior who chooses the same positions must start in 1926 from a prior mean of −6·41% p.a. and a
prior standard deviation of 0·88%. In other words, she must have been essentially convinced that
the equity premium is always negative. Since such extreme and dogmatic pessimism is needed to
match the multiple-priors investor in 1976 and 2004, the optimal position is negative in all years
before 1963. This is in sharp contrast to the multiple-priors investor, who invests more than 20%
in stocks in the early 1960’s.

APPENDIX

Comparison of predictive probabilities from Section 3.3.

We want to show that the minimal predictive probability for a black ball conditional on observing a black ball,

min
p
P1(B) = min

�∈L,µ1∈Mα
1 (B)

∫
�

�(B | θ)dµ1(θ), (A.1)

is smaller under Scenario 3 than under Scenario 2.
Consider first Scenario 2. The set Mα

1 of posteriors (after having observed one black draw) is constructed by
updating only those priors µ

p
0 according to which the black draw was sufficiently likely ex ante in the sense of the

likelihood-ratio criterion in (6). The ex ante probability of a black draw under the prior µ
p
0 is (using (7))∫

�

θ dµ
p
0 = 1

10

⎡⎣2
3∑

λ=1

λp(λ)+1

⎤⎦ . (A.2)

It follows that the agent retains only those priors µ
p
0 corresponding to some p in Pα ⊂ P , where

Pα =
{

p ∈ P :
∑

λp(λ)+ 1
2 (1−α) ≥ α max

p′∈P

∑
λp′(λ)

}
.

(Because all measures in P have support in {1,2,3}, it is easily seen that Pα = P for all α ≤ 3
4 . At the other extreme,

if α = 1, then Pα consists only of those measures in P that maximize
∑

λp(λ), the expected number of black non-coin
balls.) ThusMα

1 consists of all measures µ
p
1 , where for some p ∈ Pα ,

µ
p
1 (θ) = θ∫

� θ ′ dµ0
µ

p
0 (θ) =

θ
(

1
2 p(5θ −1)+ 1

2 p(5θ)
)

1
10

[
2

∑
λp(λ)+1

] .
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The set of predictive probabilities of a black ball on the next draw after having observed one black draw is given by

P1(B) =
⎧⎨⎩
∫
�

θ dµ
p
1 : p ∈ Pα

⎫⎬⎭ .

Compute that

∫
�

θ dµ
p
1 =

∑
θ

[
θ2

(
1
2 p(5θ −1)+ 1

2 p(5θ)
)]

1
10

[
2

∑
λp(λ)+1

]
= 1

5
2
∑

λ2 p(λ)+2
∑

λp(λ)+1

2
∑

λp(λ)+1
≥ 1

5
2
(∑

λp(λ)
)2 +2

∑
λp(λ)+1

2
∑

λp(λ)+1

= 1
5

∑
λ p(λ) + 1

2
∑

λ p(λ) + 1
+ 1

5

∑
λ p(λ),

that is, ∫
�

θ dµ
p
1 ≥ 1

5

∑
λ p(λ) + 1

2
∑

λ p(λ) + 1
+ 1

5

∑
λ p(λ), for every p in Pα .

Therefore, the minimum predictive probability satisfies

min

⎧⎨⎩
∫
�

θ dµ
p
1 : p ∈ Pα

⎫⎬⎭ ≥ 1
5

[
min

p∈Pα

∑
λ p (λ) + 1

2
∑

λ p (λ) + 1
+ min

p∈Pα

∑
λ p (λ)

]
. (A.3)

This inequality is used below to draw comparisons with Scenario 3.
Turn now to Scenario 3. Note that

�p(B | B)−�(B | W ) = 1

5
for every �p .

After seeing one black draw, the agent reevaluates which likelihoods in L could have been operative in the first
draw. He does this by computing the ex ante probability of a black draw associated with each �p (and the fixed µ0)—that
probability is given by ∫

θ∈{B,W }
�p(B | θ) dµ0 = 1

2

(
�p (B | B)+�p (B | W )

)

= 1
10

(
2

∑
λ p(λ) + 1

)
,

which is identical to the ex ante probability computed in Scenario 2 (see (A.2)). It follows that the likelihood-ratio
criterion leads to retention of only those likelihoods �p where p lies in Pα , the same set defined in the discussion of
Scenario 2.

The setMα
1 of posteriors (after having observed one black) consists of the measures

µ
p
1 (θ) = �p(B | θ)

�p(B | B)+�p(B | W )
, θ ∈ {B,W }, for some p in Pα .

In particular,

µ
p
1 (B) = �p(B | B)

�p(B | B)+�p(B | W )
=

∑
λ p(λ) + 1

2
∑

λ p(λ) + 1
.

Finally, the setP1(B) of predictive probabilities of a black on the next draw, after having observed one black draw, is

P1(B) =

⎧⎪⎨⎪⎩
∫

θ∈{B,W }
�(B | θ) dµ

p
1 : � ∈ L, p ∈ Pα

⎫⎪⎬⎪⎭ .
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Therefore the minimum predictive probability equals

min
p∈Pα, �∈L

{
µ

p
1 (B) [�(B | B)−�(B | W )]+�(B | W )

}
= min

p∈Pα, �∈L
{
µ

p
1 (B) 1

5 +�(B | W )
}

= 1
5 min

p∈Pα
µ

p
1 (B)+ min

�∈L�(B | W ) = 1
5 min

p∈Pα
µ

p
1 (B)+ min

p′∈P

∑3
1 λ p′(λ)

5

≤ 1
5 min

p∈Pα
µ

p
1 (B)+ min

p′∈Pα

∑3
1 λ p′(λ)

5
(replacing P by its subset Pα)

= 1
5 min

p∈Pα

∑
λ p(λ) + 1

2
∑

λ p(λ) + 1
+ min

p′∈Pα

∑
λ p′(λ)

5
,

which is no larger than the minimum predictive probability computed for Scenario 2 (see (A.3)). This proves that betting
in Scenario 2 is preferable.

It is not difficult to see that there is indifference between the two scenarios iff there exists λ∗ ∈ {1,2,3} such that
P = {δλ∗ }, that is, there is certainty that there are λ∗ black non-coin balls. In that case, the set of likelihoods proposed
for Scenario 3 collapses to a singleton. ‖

Proof of Theorem 1. For any sequence s∞ = (s1,s2, . . .), denote by φt the empirical measure on S corresponding
to the first t observations. We focus on the set � of sequences for which φt → φ; this set has measure 1 under the truth.
Fix a sequence s∞ ∈ �.

As in the text, use the notation (�s )s∈S for likelihood sequences (�t ) such that � j = �k if s j = sk . Suppose that the
relative frequencies of the states in a (finite or infinite) sample are represented by a probability measure λ on S—below we
will take λ to be φt or φ. Given a likelihood sequence (�s )s∈S , the likelihood of the sample conditional on the parameter
value θ is then

H̃(λ,(�s ),θ) =
∑
s∈S

λ(s) log�s (s | θ).

We want to show that, for every sequence of posteriors {µt } with µt ∈Mα
t for all t , the posterior probability of the

parameter value θ∗ converges (uniformly) to 1. By the definition ofMα
t , for every posterior µt there exists an admissible

theory (µ
(t)
0 ,�t,(t)), that is, a theory satisfying the conditions in (6), such that µt is the Bayesian update of µ

(t)
0 along

the sequence of likelihoods �t,(t) = (�
(t)
1 ,�

(t)
2 , . . . ,�

(t)
t ). Here the t ′s in brackets indicate the place of the posterior in the

given sequence of posteriors {µt }—they are needed to account for the fact that not all µt in the sequence {µt } need to be
updates of the same initial prior µ0, or be updated along the same likelihood sequence. (As well, the sequence of updates
of a given µ0 along a given sequence of likelihoods need not be admissible at all dates.) Thus our objective is to show
that

lim
t→∞µt (θ

∗ | st ,µ
(t)
0 ,�t,(t)) = 1, (A.4)

uniformly in the sequences of admissible theories (µ
(t)
0 ,�t,(t)).

Given any likelihood tuple �t and any parameter value θ , define

ηt (θ,�t ) := 1

t

t∑
j=1

log�t
j (s j | θ)−max

�s
H̃(φt , (�s ),θ

∗).

Here ηt is the log likelihood ratio between the likelihood of the sample under �t at the parameter value θ and the
likelihood of the sample under the sequence (�s ) that maximizes the likelihood of the sample given the parameter θ∗. A
posterior µt derived from a theory (µ

(t)
0 ,�t,(t)) can be written as

µt (θ
∗ | st ,µ

(t)
0 ,�t,(t)) =

µ
(t)
0 (θ∗)

∏t
j=1 �

(t)
j (s j | θ∗)∑

θ∈� µ
(t)
0 (θ)

∏t
j=1 �

(t)
j (s j | θ)

= µ
(t)
0 (θ∗)etηt (θ

∗,�t,(t))∑
θ∈� µ

(t)
0 (θ)etηt (θ,�t,(t))

= µ
(t)
0 (θ∗)

⎛⎝µ
(t)
0 (θ∗)+

∑
θ 
=θ∗

µ
(t)
0 (θ)et (ηt (θ,�t,(t))−ηt (θ

∗,�t,(t)))

⎞⎠−1

.

Claim 1. For every ε > 0 there exists T such that ηt (θ,�t,(t)) ≤ −ε, for all t > T (ε), θ 
= θ∗ and for all sequences of
likelihood tuples (�t,(t)).
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Claim 2. ηt (θ
∗,�t,(t)) → 0 uniformly in admissible theories (µ

(t)
0 ,�t,(t)).

Claim 3. There exists T such that µ
(t)
0 (θ∗) > 0 for all t > T and all admissible theories (µ

(t)
0 ,�t,(t)).

Claims 1 and 2 together imply that∑
θ 
=θ∗

µ
(t)
0 (θ)et (ηt (θ,�t,(t))−ηt (θ

∗,�t,(t))) → 0

uniformly. Claim 3 and hypothesis (iv) imply that µ
(t)
0 (θ∗) > κ for large enough t , and (A.4) follows.

Proof of Claim 1. If �t is to be chosen to maximize 1
t
∑t

j=1 log� j (s j | θ), it is wlog to focus on sequences such

that � j = �k if s j = sk . Therefore, any likelihood tuple �t,(t) in the sequence satisfies

1

t

t∑
j=1

log�
(t)
j (s j | θ) ≤ max

(�s )
H̃(φt , (�s ),θ). (A.5)

By definition of H and the identification hypothesis (ii), there exists ε > 0 such that

max
(�s )

H̃(φ,(�s ),θ) ≤ H(θ∗) −2ε, for all θ 
= θ∗.

Thus the Maximum Theorem implies that, for some sufficiently large T ,

max
(�s )

H̃(φt , (�s ),θ) ≤ max
(�s )

H̃(φt , (�s ),θ
∗) − ε, (A.6)

for all θ 
= θ∗ and t > T . The claim now follows from (A.5).

Proof of Claim 2. By definition,

ηt (θ
∗,�t ) = 1

t

t∑
j=1

log�t
j (s j | θ∗)−max

(�s )

∑
s∈S

φt (s) log�s (s | θ∗).

By the definition ofMα
t , every element of a sequence of admissible theories

(µ
(t)
0 ,�t,(t)) satisfies

(
max
µ̂0,�̂t

Pr(st ; µ̂0, �̂
t
)

)1/t

≥
(

Pr(st ; µ(t)
0 ,�t,(t))

)1/t ≥ α1/t

(
max
µ̂0,�̂t

Pr(st ; µ̂0, �̂t )

)1/t

, (A.7)

where Pr(st ; µ(t)
0 ,�t,(t)) = ∫ ∏t

j=1 �
(t)
j (s j | θ)dµ

(t)
0 (θ); Pr(st ; µ̂0, �̂t ) is defined similarly. Consider the long-run

behaviour of maxµ̂0,�̂t Pr(st ; µ̂0, �̂
t
), the data density under the maximum likelihood theory. We claim that

[
maxµ̂0,�̂t Pr(st ; µ̂0, �̂t )

et max(�s ) H̃(φt ,(�s ),θ∗)

]1/t

−→ 1, (A.8)

or equivalently, ⎡⎣max
µ̂0,�̂t

∑
θ∈�

µ̂0(θ)etηt (θ,�̂t )

⎤⎦1/t

−→ 1. (A.9)

Claim 1 implies that (for all t > T )

max
µ̂0,�̂t

µ̂0(θ∗)etηt (θ
∗,�̂t )
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≤ max
µ̂0,�̂t

∑
θ∈�

µ̂0(θ)etηt (θ,�̂t )

≤ max
µ̂0,�̂t

µ̂0(θ∗)etηt (θ
∗,�̂t ) + (1− µ̂0(θ∗))e−εt .

Hypothesis (iii) says that there is a prior µ0 such that µ0(θ∗) > 0. Verify that

ηt (θ
∗, �̂

t
) ≤ 0 and max

�̂t
ηt (θ

∗, �̂t ) = 0. (A.10)

Then, by hypothesis (iv),

κ1/t = κ1/t max
�̂t

e
ηt

(
θ∗,�̂t

)
≤

[
max
µ̂0,�̂t

µ̂0(θ∗)etηt (θ
∗,�̂t )

]1/t

≤
[

max
µ̂0

µ̂0(θ∗)

]1/t

≤ 1,

which implies that

[
max
µ̂0,�̂t

µ̂0(θ∗)etηt (θ
∗,�̂t )

]1/t

−→ 1,

and hence also (A.9).
Combining (A.8) and (A.7), it now follows that, for any sequence of admissible theories

(µ
(t)
0 ,�t,(t)), ⎛⎝∑

θ∈�

µ
(t)
0 (θ)etηt (θ,�t,(t))

⎞⎠1/t

=
[

Pr(st ; µ(t)
0 ,�t,(t))

et max(�s ) H̃(φt ,(�s ),θ∗)

]1/t

−→ 1, (A.11)

and that the convergence is uniform.
Finally, ηt (θ

∗,�t,(t)) ≤ 0 by construction—see (A.10). Suppose that ηt (θ
∗,�t,(t)) < −δ for some positive δ and

infinitely many t . Then Claim 1 (with ε = δ) implies that

[
Pr(st ; µ(t)

0 ,�t,(t))

et max(�s ) H̃(φt ,(�s ),θ∗)

]1/t

=
⎛⎝∑

θ∈�

µ
(t)
0 (θ)e

tηt

(
θ,�t,(t)

)⎞⎠1/t

≤ e−δ < 1,

for infinitely many t , contradicting (A.11). This proves Claim 2.

Proof of Claim 3. Suppose that for infinitely many t there exists an admissible theory (µ
(t)
0 ,�t,(t)) such that

µ
(t)
0 (θ∗) = 0. Claim 1 (with ε = δ) now implies that, for infinitely many t ,

[
Pr(st ; µ(t)

0 ,�t,(t))

et max(�s ) H̃(φt ,(�s ),θ∗)

] 1
t

=
⎛⎝ ∑

θ 
=θ∗
µ

(t)
0 (θ)etηt (θ,�t,(t))

⎞⎠1/t

≤ e−δ < 1,

which contradicts (A.11). ‖
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