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A Proposed FM Phototube for Demodulating 
Microwave-Frequency-Modulated  Light  Signals* 

Summary-A microwave  phototube  for  demodulating  frequency- 
moddated fight signals is proposed.  The  demodulation is based 
upon  the  conversion of the  frequency-modulated  light  into  space- 
modulated  light  via an optical  dispersing element. This space-modu- 
lated  light is then  incident on a  photocathode  where it is the source 
of transverse  electron  beam waves. A complete  spectral analysis of 
the demodulation process is presented. It is shown  that a quasi- 
steady-state viewpoint, i. e., that of an  optical signal  with  slowly 
varying  frequency is permissible only if the optical resolution is 
suffciently low. Design parameters for a  phototube  based on the 
use of a Michelson  echelon are presented. A related scheme em- 
ploying a Fabry-Perot  etalon is also discussed. 

INTRODUCTION 

E XTREMELY BROADBAND optical communica- 
tions channels may become  possible,  using the 
light outputs  from coherent optical maser oscil- 

lators, if techniques can be developed for modulating 
and  demodulating light signals a t  high modulation fre- 
quencies. For the present, ‘‘high modulation frequencies” 
can be taken to mean  microwave frequencies. As con- 
tribution  towards solving the demodulation problem, we 
propose in this paper two related and novel  schemes for 
detecting and  demodulating optical signals  which are 
frequency modulated (or  phase modulated) at a micro- 
wave modulating frequency. 

The basic method proposed  involves converting the 
optical frequency modulation  into space modulation via 
an opticaI dispersing element, and  then converting the 
space modulation  into transverse electron  beam-wave 
excitation via a photocathode. A schematic of the de- 
modulating scheme is shown in Fig. l. If the nominally 
monochromatic light beam incident upon the prism from 
the upper  right in Fig. 1 is frequency modulated,  then 
the  ray angle of the light emerging from  the prism and 
the position of the light spot on the photocathode will 
be correspondingly modulated. The motion of the light 
spot on the photocathode will  produce an initial trans- 
verse  position modulation of the electron beam, Le.,  it 
will  excite transverse waves  on the beam at  the modulation 
frequency. In microwave-tube terminology, the so-called 
synchronous cyclotron waves are excited. This transverse 
wave excitation can then be amplified and detected in 
the  FM  phototube  by  a wide variety of means which are 
well  known in the microwave electron tube field. The 
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Fig. 1-Schematic of discriminator  phototube. 

Fig. 2-Fabry-Perot FM phototube. 

eventual result will be a microwave output from the 
FM phototube which duplicates the frequency modulation 
on the incident light signal. 

The preceding description is, in reality, a simplified 
and  not entirely correct description of how the demodula- 
t.ion  process operates. We give a more rigorous mathemati- 
cal description below.  Two types of dispersing elements 
commonly  used in interferometry which are suited for 
the demodulation process are  the Michelson  echelon, and 
the Fabry-Perot etalon. The Michelson  echelon will 
produce  a line of light on the photocathode and  this line 
will  move up  and down in a direction transverse to its 
length at  the modulating frequency. Fig. 2 illustrates the 
related scheme  which  is a circularly symmetric  variant 
of the fist scheme. In  this case, the dispersing  element 
is a  Fabry-Perot interferometer, which  produces a ring 
pattern on the photocathode. (For simplicity, a semi- 
transparent transmission type of photocathode  is shown 
in the drawing.) The ring or series of rings on the photo- 
cathode produces  one or a series of  hollow electron beams 
whose radii are  modulated in direct proportion to  the 
frequency modulation of the incident light. The  resultant 
scalloping or radius modulation of the hollow electron 
beam or beams can be  amplified and detected by ap- 
propriate circularly symmetric transverse field elements, 
e.g., coaxial  Cuccia  couplers  helix-on-rod  sIow-wave 
circuits, and  the like. 

This  paper first presents a spectral or Fourier analysis 
of the basic demodulation process,  since the  “instantane- 
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eous frequency” description just given  is not entirely 
correct. Some practical design formulas for this  type of 
FM phototube  are then presented, including design 
details appropriate  to  an initial experiment which  is  now 
in preparation by the authors. The design calculations 
indicate that there should not be any great difficulty in 
experimentally demonstrating this  type of FM light 
demodulation  with strong output signals and large 
signal-to-noise ratio. 

It may be noted that  the most promising types of 
microwave-frequency light modulators at  the present 
time use the  Kerr or  Pockels  effects,  in  which the indices 
of refraction of liquids or crystals along certain axes are 
modulated  by the application of strong electric fields. 
Properly oriented linear polarizers are generally  used 
together with  such  Kerr or Pockels  cells in order to  obtain 
amplitude  modulation of the light. The  Kerr or Pockels 
cell itself, however, is basically a  phase modulator: inci- 
dent light polarized  along certain principal axes  will  ex- 
perience pure  phase modulation. Thus,  pure  phase or 
frequency modulation of an optical signal a t  a micro- 
wave modulation frequency can readily be obtained. 

SPECTRAL ANALYSIS 

Fig. 3 is another sketch of the essential elements of 
the demodulation process as seen from the instantaneous 
frequency point of view. By this, we mean that  the 
instantaneous frequency of the light is taken  to be varying 
a t  the modulation rate, so that  the  ray angle of the 
dispersed light and  the position of the beam spot sweep 
back and  forth at  the modulation  rate.  This produces a 
transversely-modulated electron beam from the semi- 
transparent photocathode, as illustrated in the figure. 
This description of the demodulation process must be 
valid a t  least in the quasi-steady-state case,  where the 
exact interpretation  to be  given the  term “quasi-steady 
state” will  emerge from the following analysis. 

A frequency-modulated signal  is  more accurately 
described from  a Fourier or spectral viewpoint as con- 
sisting of a carrier and  a  number of sidebands spaced away 
from the carrier by the modulation frequency. If the 
demodulation process is  approached from this viewpoint, 
it then  appears  that Fig. 3 should  be  replaced by  a sketch 
such as Fig. 4. In Fig. 4, each different sideband or spectral 
component is  dispersed by  the prism to  a different angle, 
each  producing an individual spot of light on the photo- 
cathode, and hence an individual steady  beamlet of 
electrons. Each light ray corresponds to  an optical fre- 
quency differing by  the modulation frequency from the 
optical frequency of adjacent rays. Moreover, each spectral 
component, and hence the  current in each electron beam- 
let, should have  constant  intensity in time, since the 
cathode does not follow variations at  optical frequencies. 
From  this spectral viewpoint, therefore, it may at  first 
appear that  the  emitted electron beam or beams  do 

Fig. 3-Variable frequency  viewpoint. 

Fig. 4Spect ra l  viewpoint. 

not move transversely at  all, and  the demodulation  process 
will not work. 

This  apparent  paradox is  resolved,  however, as  the 
following analysis will  show in detail, by noting that all 
of the light rays or light spots will always overlap on the 
photocathode surface to a t  least some extent, because 
of the h i t e  resolving  power of the dispersing  element. 
(Fig. 4 has been drawn, however, as if this overlap were 
very small.) As a result of the inevitable overlap, there 
will  be  some  photomixing or beating between all the 
spectral components a t  all points on the photocathode. 
As %L result of this,  the electron emission at  each point on 
the photocathode will contain at least some  component 
a t  the modulation frequency and also at harmonics of 
this frequency. The  total  effect of this, as  the following 
analysis will  show,  is simply that  the center of gravity of 
all the beamlets, i.e., of the  total photoemitted current, 
moves  back and  forth transversely at  the modulation 
frequency  rate.  This  is all that is required to make the 
modulation scheme  work,  since the  subsequent transverse- 
microwave-tube elements respond essentially to  the 
center-of-gravity motion of the  total electron stream. 

Moreover, the following analysis will  show that  the 
transverse deviation of the center of gravity is  given  in 
general by  the peak deviation which  would  be predicted 
by  the instantaneous-frequency viewpoint, reduced by  a 
factor of the  form sinc x(= sin x/.) which depends only 
on the  amount of overlap of adjacent spectral components. 
Therefore, no matter how  low the modulation frequency 
may be, it is still possible (at least in principle) to make the 
optical resolution so high, Le., to make the individual 
light spots so sharp  (at fixed dispersion), that  the  amount 



324 IRE TRANSACTIONS ON ELECTRON DEVICES July 

of overlap, the center-of-gravity motion, and hence the 
demodulation effect, all disappear. To say  this in another 
way, the modulation  frequency is "low"  enough for the 
quasi-steady state or instantaneous-frequency viewpoint 
to be correct only  when the individual sidebands are  not 
resolvable by the optical dispersing element  employed. 

We  now present the detailed analysis of this effect, 
using the spectral viewpoint. Suppose that  the amplitude, 
e.g., the electric field strength, of the  modulated light 
signal incident on the dispersing element  is  given  by 

e ( t )  = exp [j(w,t + 6 sin w,t)] 

- - e?"'t 2 Jn(6)ei""mt (1) 
1Ls-m 

where w, is the optical carrier frequency, W, is the modu- 
lating frequency, wd is the maximum  frequency deviation, 
and 6 = ad/@,. Note  that since the instantaneous phase 
of the light is +(t) = w,t + 6 sin w,t, an instantaneous 
frequency  can be  defined as w ( t )  = d+(t)/dt = wc + 
6w, cos w,t = w, + od cos w,t. We may also note that 
J,( - 6 )  = (- 1)"J,(6). We next assume that  the ampli- 
tude of the light spot on the photocathode surface due 
to a monochromatic light signal incident upon the dis- 
persing element has  the general form or line shape in the 
x direction 

U(x) = (N/T)~'' sinc  N(x - xo) (2)  

where x. is the center of the spot. The parameter N is 
characteristic of the optical dispersing element  used. 
For a  grating or similar dispersing element, N is pro- 
portional to the number of lines or steps in  the grating. 
This expression for U ( x )  is actually a large-N approxi- 
mation to a more exact form, but  the approximation is 
generally valid for most common dispersing elements. 
The normalization is chosen so that J U z ( x )  dx over - a 
to is unity. 

The spot center position x. is to a good first approxi- 
mation linearly related to  the optical frequency w of the 
incident monochromatic signal. We  will  choose our co- 
ordinate  system such that x. = 0 for the optical-carrier 
frequency w = LO,, and we will suppose that  the optical 
dispersion of the dispersing element is such that  the spot 
center moves by  an  amount Ax, = a for an optical-fre- 
quency shift Aw = w,, the modulating frequency. With 
these assumptions, the  total optical  amplitude on the 
photocathode  due  to the modulated light  input of (1) 
can be written 

m 

e($,  t) = J,(~)u(x: - na)ei'wc+""m)t. (3) 

Now, the emitted  current  density from the photocathode 
as a function of position and time will  be proportional to 
the square of the above optical amplitude, with the optical- 
frequency  variations removed. Therefore, we can write 
the current  density j(x, t )  as 

ll=--m 

j(x, t)  = +e(%, t)e*(x, t ) .  (4) 

From the arguments, given earlier, we are  interested in 
particular  in  the motion of the  center of gravity of this 
resulting current density, where this motion  is given by 

s_I, xAx7 t )  dx 

/", j ( x ,  t)  dx 
Ax,,(t) = , --  m(4 

i(t> 
- (5)  

with m(t) being the first moment of the current-density 
distribution. 

The expression j(x, t )  = +e(x, @*(x, t )  contains  products 
of all the optical-frequency terms  with each other.  This 
leads to  an infinite set of dc terms arising from each 
optical component beating with itself;  an infinite set of 
modulation frequency or LO, terms which arise from- each 
optical component beating with its  adjacent neighbors; 
an infinite set of 2w,, terms which arise from each optical 
component beating  with  optical components  two away; 
an infinite set of 3w, components; and SO on. In these prod- 
ucts, two integrals occur repeatedly. These are 

s_-; V(Z - a)U(z - b) dx = (N/7r) 

.J-: sinc ~ ( x  - a) -sine ~ ( x  - b) dx 

= sinc N(a - b) (6) 

l: xU(z - a) U(x - b) d z  = (N/T) 

-1; x sine ~ ( x  - a) .sine ~ ( x  - b) dx 

= [sinc N(a - b)](a + b)/2 (7) 

as may readily be  verified by contour integration. 
A very useful general result  may be obtained from these 

two integrals: if there is one optical component of ampli- 
tude A centered at  x = a and another of amplitude B 
centered at x = b, then the complete  effect of their 
product, or of the beating between them, so far  as  both 
current and first moment are concerned, is completely 
accounted for by  a  delta function or impulse of current 
density of magnitude 2 Re [AB*] sinc N(a  - b) located 
at x = (a  + b) /2 .  Consider, for example, the two over- 
lapping optical components J3(6)  sinc N ( x  - 3a) 
exp [j(w,+3wm)tl and J4(6) sinc N(x-4a)  exp [j(wC+4w,)t]. 
The product of these two  components  produces a  trans- 
verse distribution of ac  current  density at  the modula- 
tion frequency w,, with current  amplitude and instan- 
taneous  center of gravity given by: 

Current  contribution 

= 2 J d W 4 ( 6 )  CQS cJd. (8) 
sin Nu 
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The same  current  and first-moment contributions would 
be obtained from a current-density impulse of amplitude 
2J,(6)J4(6) sinc Na cos w,t, located at  x = 7~12.  

As a result of this, the doubly infinite set of terms 
implicit in j (z,  t )  from (3) and (4), and hence  also in i ( t )  
and m(t) from (5), can be represented by  appropriate 
sets of impulse functions. The  utility of this representation 
lies in the ease with which various important results can be 
obtained, as will shortly become apparent. As a first step, 
from (3), e(z, t)  may  be represented schematically by  a 
singly infinite set of optical components of magnitude 
J,(6) and frequency (0, + nw,), located at  x = nu, as 
shown schematically in Fig. 5(a).  The lines run  upward 
or downward in accordance with the positive or negative 
sign of the corresponding component. 

JtJ2I JoJ3 JIJ, 

I 

I 
(2sinc3No)cos3wmi 

JIL J!J3 I I J L  

Fig.  5-(a) Optical frequency  schematic. (b) Equivalent de beat 
picture. ( e )  Equivalent  1st harmonic beat  picture. (d) Equivalent 
2nd harmonic beat  picture. (e) Equivalent  3rd harmonic beat 
picture. 

We can then  obtain first the  dc components of j(x, t )  
by  taking all the de  products or beats between the optical 
components of Fig. 5(a), i.e., the product of each optical 
component in Fig. 5(a) with itself.  According to our 
rules, this is equivalent to  a  set of current-density im- 
pulses  of magnitude Ji(6) ,  located at  x = nu, as shown 
in Pig. 5(b). 

We can  next obtain the  fundamental or cos w,t com- 
ponent of j(z, t )  by considering the beating between  each 

optical component in Fig. 5(a) and  its  adjacent neighbors. 
According to  our rules, this yields an injinite set of current- 
density impulses of value 2Jn(6)J,+,(6) sinc Nu, located at  
IC = (n + 1/2)a,  as shown in Fig. 5(c). 

By following the same approach, the f2w,, f3w,, 
and all higher harmonic  components of j (z ,  t )  can  be 
represented by infinite sets of impulse functions, as 
illustrated for the 2w,, and 3w, cases in Fig. 5(d)  and 
5(e).  The  total  current density j (z, t )  is then represented 
by  the doubly infinite set of delta functions contained in 
Fig.  5(b)-(e) and on  through  all higher  harmonics. 

The  instantaneous  current i( t)  can be written  as  a 
Fourier series, in which only cosine terms occur due to 
the original  choice of the form of the FM signal. 

m 

i ( t )  = 1- cos w,t. (10) 
n=--m 

It is apparent that each  component I,, in the Fourier 
series  is just  the summation of all the terms in the corre- 
sponding  line of Fig. 5. Thus, 

I,, = [ J i  + 2J; + 2J i  + . . .] (1 1) 

I ,  = I ,  = all odd terms = 0 (by symmetry) 

I2 = 2sinc N2aL-J; + 2J,J2 + 2J,.J, + 
and so on. The summations in this expansion can be 
compared with the  identity 

sin rnT - -- Jm(6)J-,(6) + 2 x Jn+,(6)J,,-,(6). (12) 
m 

rnT n=1 

Inserting integral values of m makes it apparent  that all 
of the  ac terms in the  current- expansion are zero, and 
the  total instantaneous current is  given by i ( t )  = Io  = 1. 
We have thus arrived at  the perhaps obvious result that 
the  total current is constant  with  time;  the beating be- 
tween different components introduces no amplitude 
modulation of the  total  current. This checks with our 
intuition in the quasi-steady state, in  which the beam 
swings back and  forth  with no variation in amplitude. 

We may next express the center-of-gravity motion  in a 
similar Fourier series by writing 

01 

Axc.,(t) = m(t) = M ,  COS w,t (13) 
n=-m 

and  the various frequency components  can again be 
written down very rapidly by inspection of the corre- 
sponding line in Fig. (5). Thus,  the  quantity of major 
interest,  namely,  the  fundamental frequency component 
of Ax,,(t), is  given by  the summation of a series of couples 
of arm Iength a, 3a, 5a, and so on, from Fig. 5(c). The 
full expression  is 

Ill, = 2sinc Na[aJo(6)J,(G) + 3aJ,(6)J2(6) + - 
= 2asinc Nu (2m + l)J,(6)J,+1(6) 

= a 6 sinc Nu (14) 

m 

,=O 
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where the h a 1  step follows from a closed form for the 
Bessel function series  given in  the Appendix. 

It is apparent  from  symmetry considerations that all 
of the even-integer M,, terms  are zero. The higher odd- 
integer Mn terms can be  written  in general as 

where the more general form of the Bessel function sum 
is proven in  the Appendix.  We might add  that we  were 
first led to these  identities  from the physical considerations 
of this problem. 

We may  note that if an optical-frequency shift Aw = w, 
shifts the position of a component by Ax = a, then an 
optical-frequency shift of Aw = wd should shift the spot 
position by Ax = (wd/w,)a = 6a. Therefore, the peak 
motion of the light  spot  from the quasi-steady-state 
instantaneous-frequency viewpoint would be Ax::) = 
6a cos w,t. It is apparent  from  our analysis that  the motion 
sf the center of gravity of all the beamlets is given by 

Ax,,(t) = [sa sine Na] cos o,t 

= (sine Na) Ax,,(t). (16) 

In  short, as  stated earlier, the center-of-gravity motion 
predicted by  the rigorous spectral analysis just  equals 
the motion predicted by  the simplified instantaneous- 
frequency viewpoint, reduced by  the  factor sine Na. 
The reduction factor sine Na is a measure only of the 
amount of overlap of adjacent  spectral components. The 
reduction  factor approaches unity  for large overlap, i .e.,  
low optical resolution and/or low w,, but becomes  small 
as soon as the modulating frequency w, exceeds the 
smallest optical-frequency increment resolvable by  the 
dispersing element employed. 

It may be  instructive to consider in  particular the 
small-6  case, i .e.,  maximum instantaneous-frequency 
deviation wd small  compared to  the modulation-frequency 
w,. In this case, only the carrier and  the first sideband on 
each side of it are of sizable amplitude.  Then, if the 
resolution of the optical  system is high enough to resolve 
these components, there will  be three  distinct  light  spots 
on the photocathode. There will be  three corresponding 
distinct electron beamlets, and  the demodulation effect 
will be eliminated or a t  least  greatly reduced. If, however, 
the optical resolution is not  this good, then  the  three spots 
will overlap to a substantial degree, and merge into a 
single total spot. The demodulation effect  will then  ap- 
proach its full strength.  The center of gravity of the spot, 
in  this case,  need  move only a small distance compared to  
the size of the spot to give the full demodulation effect, 
since wd << w,. 

July 
DISCUSSION 

The previous analysis has been in some  ways highly 
simplified, e.g., it assumes completely coherent and 
parallel plane-wave light incident upon the dispersing 
element (although this assumption should be quite valid 
in  practical  situations making proper use of optical 
maser sources). Ideal dispersing elements are also as- 
sumed. The resolution referred to in the discussion is 
then  the  ultimate theoretical resolution of the optical 
system employed. Of course, in practice, the  actual optical 
resolution in  an experiment may be much  poorer than  the 
ultimate theoretical resolution, for a variety of practical 
reasons. In general the resolution is deteriorated because 
of effects  which  cause a spread in  the values of the center 
position x. of any given  monochromatic light component. 
This effectively broadens the spot size and deteriorates 
the resolution.  We  will  refer to such spot broadening 
effects as system broadening, in  contrast to  the  ultimate 
theoretical broadening due only to diffraction  effects. 

Now,  we argue that so long as  any system broadening 
effects act equally on all spectral components (e.g., on all 
sidebands of a modulated wave), then  the resolution 
parameter or broadening parameter of importance so 
far  as  the demodulation effect is concerned is the ultimate 
or theoretical resolution, rather  than  the  actual resolution. 
This appears to  us  to be true because the demodulation 
effect  comes from mixing or beating between coherently 
related sidebands. System broadening effects  which simply 
smear out each sideband in the  same fashion should not 
affect this mixing or beating. 

In addition, we argue that if a nonmonochromatic light 
signal is modulated by a phase modulator which modulates 
equally all the spectral components, then such light will 
still be demodulated by  the proposed  device. This is be- 
cause each spectral component in  the polychromatic 
wave  will  be  given modulation sidebands. The demodulator 
will  cause these sidebands to  beat together in the fashion 
described above, and  the resulting demodulation effects 
a t  the modulation frequency will add together coherently. 
There will, of course,  be in  addition numerous overlaps 
and mixings  between all the polychromatic components 
a t  all frequencies, producing beats a t  all lower  frequencies. 
Providing, however, that there  are  not coherent relation- 
ships among the polychromatic spectral components, 
the result of this process  will be only a noise spectrum or 
a background noise. To first order, this noise spectrum 
will  be accounted for by  the noise formula given later  in 
this  paper, using the  actual  width of the light spot  created 
by  the polychromatic light input. 

Therefore, we argue that  the proposed demodulator 
does not require either a monochromatic light input or an 
ideal optical  system, but should function properly with 
much  less ideal conditions. However, a more complete 
and detailed analysis is obviously required rigorously to 
verify these intuitive  arguments. 
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OPTICAL DESIGN CONSIDERATIONS 
From  the previous analysis, it is  clear that one wants 

to make the distance a on the cathode between adjacent 
sideband spectral components as large as possible; but 
it is also clear that  the individual spectral components 
should  considerably overlap each other. In  optical termi- 
nology, an  instrument giving high dispersion and low 
resolution is required. As mentioned earlier, two instru- 
ments which appear to  be convenient are  the Michelson 
echelon and  the  Fabry-Perot interferometer. 

The Michelson transmission echelon  consists of a stack 
or staircase of staggered glass plates, as shown in Fig. 6, 
such that light rays passing through different plates  inter- 
fere in a  very high-order m. The dispersion is  determined 
by  the  step height b, and  the  plate thickness t ,  together 
with the index of refraction n of the plates, and  the resolu- 
tion is determined  by the number of plates. The light 
intensity  pattern created by  this  instrument when operated 
such that only a single order is present consists of a line 
pattern parallel t o  the staircase treads  with  the  variation 
transverse to each individual line  following t,he U ( x )  distri- 
bution of (2). The over-all line pattern lies under  a  broader 
over-all intensity distribution of the same general form. 

A 

/\ 
Fig. 6-(a) Michelson  echelon., (b) A typical interference pattern. 

As illustrated for a typical case in Pig. 6, a  monochromatic 
input produces a series of regularly spaced lines repre- 
senting interference in successively  higher orders. How- 
ever, as Fig. 6 illustrates, most of the light intensity goes 
into one or two orders lying within the  central maximum. 
We  will  assume for simplicity t,hat these orders are  far 
enough separated compared to the sideband spacing 
( c f .  below) so that  the modulation sidebands cluster about 
each order without overlap and interference between 
sidebands from different orders. We  will  also assume that 
only the strongest central order lies  on the photocathode, 
although  this is by no means necessary  since, if several 
orders are present on the photocathode, their effects  will 
simply  add. 

A Fabry-Perot interferometer consists of two flat and 
parallel, partially reflecting plates which produce an 
interference pattern consisting of a  set of rings. The 

radial variation of this  set of rings is generally  similar to  
the transverse or x variation of the echelon interference 
pattern,  and hence the circularly symmetric type of de- 
modulation shown in Fig. 2 becomes  possible. This  type 
of operation may offer  some advantages in the design of 
the demodulator tube,  but also appears to have some 
disadvantages such as light losses in the  Fabry-Perot 
reflecting  surfaces.  Since the general  principles are  the 
same as in the echelon  case, and since an echelon system 
has been  selected for the initial experiments, we  will not 
consider the Fabry-Perot  system in any  further detail here. 

It is convenient to express optical wavelengths or 
frequencies in terms of the corresponding  wave numbers 
y = X-’. The linear dispersion of a Michelson  echelon, 
i.e., the line  position shift dx, on the cathode  produce 
by a wave-number  change dy, is then given  by’ 

where f is the focal length, and  the interference order of 
the central line  is  given by M = (no - 1)yt. Table I 
shows the design parameters for a proposed experiment 
now  in preparation, using a commercially available 
Miehelson  echelon. The coherent light source will  be a 
ruby laser, modulated  by a KDP modulator’ at  the 
modulation frequency f m  = 3000 Mc/s. The nominal 
phase  modulation  parameter 6 = 1 has been obtained in 
this modulator  with a few hundred watts of modulating 
power. Note that for these experimental parameters, the 
wave-number  spacing  between modulation sidebands is 
Aym = 0.1 cm-’ and hence the spacing a between  side- 
bands on the cathode is 

= [350 microns/cm-l][O.l  cm-l] 

= 35 microns. (1 8) 

TABLE I 
TYPICAL DESIGN PARAMETERS 

Optical Wavelength, X = 6943 A (y = X-’ = 14,330 cm-1) 

Phase modulation parameter, 6 = w ~ / w ,  = 1 
Modulation frequency, .fm = 3000  Mc/s (Ay, = 0.1 cm-I) 

Echelon step height, b = 1 mm 
Echelon plate thickness, t = 10 mm 

Focal length, f = 1 meter 
Order of interference, m = 7165 

For a Michelson  echelon, the parameter N in U(z) ,  Eq. (2), 
is given by N = 7rN‘by where N‘ is the number of echelon 
steps within the incident light beam. For the proposed 

Inc., New York, N. Y.; 1959. 
M. Born and E. Wolf, “Principles of Optics,”  Pergamon  Press, 

effect  in KHzP04,” Phys. Rev.  Lett., vol.  6, pp. 528-530; May 15, 
2 I. P. Kaminow,  “Microwave  modulation of the electro-optic 

1961. 
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experiment using N’ = 4 plates, this gives N = 180/cm, 
Nu = 0.6 radians, and  a reduction factor sinc Na = 0.94. 
The  modulation effect is thus only very slightly resolved 
out,  but would  be rapidly attenuated if a larger light 
beam diameter and hence  more plates were  used. 

The spacing  between adjacent orders m and m -I- 1 
for an echelon  is 

Az,(m, m 3. 1) = - = 690 microns. 

For  the experimental parameters of Table I, this yields 
Ax, = 20a, so that  the requirement of no overlap be- 
tween sidebands from adjacent orders is  satisfied. 

Xf 
b (1 9) 

WAVE EXCITATION AND SIGNAL-TO-NOISE RATIO 
From (16) the rms transverse motion of the electron 

beam center of gravity is given by 

AX:, = 
6‘a2 sinc2 Na 

2 

A transverse motion of the beam’s initial position in the x 
direction corresponds to equal initial excitation of the 
positive- and negative-energy synchronous transverse 
waves, with each  wave carrying signal  power (+ or -) 
given by 

P, = 
ww,I0 AX:, 

16n 

where q = eim, and w ,  = the cyclotron freq~ency.~ 
The values in Table I together with W, = 3 kMc and  an 
assured beam current I ,  = 100 pa give a signal  power 
P ,  = 15 pw on  each  synchronous wave. This should be 
readily detectible. Note that  a beam current I ,  = 100 pa 
presumes an incident light power of -100 pw with  a 
perfect photosurface, and correspondingly  more with 
a real photosurface. The initial experiment is planned to 
use a  very poor photosurface, but  the light power avail- 
able from the  ruby Iaser  will, or course, greatly exceed 
100  pw. 

The synchronous transverse beam  waves are generally 
considered relatively noisy  waves,  since they have  a large 
initial noise excitation arising from the finite size of the 
initial beam spot.  There is also an initial noise excitation 
arising from the  initial transverse velocity distribution of 
the electrons. We  will  neglect the  latter in this discussion, 
in part because the finite size contribution is more im- 
portant except for very small beam spots, and  in  part 
because the initial transverse velocity distribution will 
depend on a  number of factors which we  do not wish to 
explore in detail here. If it is assumed for simplicity 
that  the electron emission  occurs randomly in time  and 
uniformly in space within a strip of width D in the x 

transverse-field  slow-wave  circuit,” J .  A p p l .  Phy-s., vol. 31, pp. 17- 
8 A. E. Siegman, ‘“Waves on a filamentary electron beam in a 

26; January, 1960. 

direction, then the power spectral density of the noise 
fluctuations in the beam’s initial position  is 

and  the corresponding  noise  power  on  each synchronous 
wave  is 

P, = 
eww, D2B 

9611 

The  actual x distribution of the emitted current is, of 
course, not  a  uniform rectangular distribution, and  the 
width of the initial beam spot will  depend upon such 
factors as  the  amount of system  broadening in the optical 
system. If we  choose as  an example the relatively large 
spot width D = 1 mm, together with f = f c  = 3000 Mc/s 
and  a bandwidth B = 2 Mc/s, the noise  power  is Pn-1O-l1 
watts (corresponding to an equivalent temperature of 
240,000° K). Therefore, the  SNR in the proposed  experi- 
ment should  be at  least 60 db. 

With transverse velocity noise omitted, the  SNR can 
be  expressed in general as 

It should, in general,  be  possible to make sinc Na 4 1. 
Moreover, if 6 5 1 so that only the first sideband on  each 
side  is important,  and if system broadening  effects are  not 
large, then the  spot width will  be  given by D M 3a. With 
these assumptions, the  SNR becomes 

In other words, for this ideal case, the signal current  can 
be  considered as -61a, and  the noise can be  considered 
as simply full shot noise. For 6 = 1 and  any reasonable 
beam current,  this SNR is extremely large, and hence 
very weak light fluxes  should in principle  be detectible 
with  a good photosurface in  this fashion. The SNR, of 
course, deteriorates for  a larger spot width D > 3a as 
noted above. In  addition, as  a practical matter,  the design 
of the succeeding transverse-wave tube elements be- 
comes very difficult if the beam current is very low. Beam 
currents much  smaller than 100 pa require either a  very 
long interaction region or a very-high-impedance trans- 
verse coupler to extract  the signal from the synchronous 
waves. Our proposed experiment calls for a flattened helix 
transverse coupler with  a center conductor, the helix 
being a few  cm  long. It should  aIso  be  possible, if needed, 
to provide synchronous-wave  amplification directly within 
the demodulator tube  by  a  variety of methods well 
known in the microwave tube field, e.g., via a  dc  quad- 
rupole  section. An alternative would  be first to convert 
the synchronous waves into  true cyclotron waves. after 
which the  latter could  be  amplified and/or detected by 
well-known methods. 
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APPENDIX 

The following  proof  is due to I. C. Chang of Stanford 

Proof of 
Electronic Laboratories: 

where amO = Kionecker  delta symbol. 

Starting with 

X cos 0 cos (2m + l ) e  d e  = - am0. X 
2 

Introducing  the  Gegenbauer  Identity 
m 

X COS e = (2n + 1)~,, , , (2~ COS e). 
n=O 

Then 

-COS (am + 1)s dB = 5 L o .  
X 

Using the integral form for products of Bessel functions 

and interchanging the summation  and integration im- 
mediately gives the desired result. 
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Subharmonic Pumping of Parametric Amplifiers* 
KENNETH E. MORTENSON?, SENIOR MEMBER, IRE 

Summary-The purpose of this paper  is  to  present  in  some detail 
the operation of a  parametric amplifier  pumped subharmonically as 
compared  to  being  directly  pumped. As considered  here,  subhar- 
monic  pumping does  not involve harmonic pump  power generation 
(external to  the varactor)  but the utilization of higher-order  time- 
dependent  capacitances to yield  parametric amplification  by  employ- 
ing, basically, only a  three-frequency  system. 

The  analysis given here  is  based on an evaluation of the Fourier 
series  representation of the time-dependent  capacitance  resulting 
from  large-signal  (“hard”) pumping of varactors. This evaluation 
indicates that significant values of higher-order  time-dependent 
capacitances  suitable  for  parametric amplification are obtained with 
relative pump swings in excess of about 90 per cent. Utilizing 
these  higher-order  time-dependent  capacitances, the amplifier 
operation  for  various  orders of subharmonic pumping is treated, 
including  such  factors as pump  power requirements, gain, and 
noise figure. It is shown  that,  under  certain  conditions, less pump 
power is required  to  generate the  same negative  conductance  than 
with  direct  fundamental pumping. Furthermore,  for the  same pump 
power and  fundamental pump frequency,  it is determined that 
significant improvements  in  amplifier  noise  figure are achieved by 
employing subharmonic pumping,  provided varactor  losses are 
small. 

From the  results  obtained by both  analysis  and  experiment, it is 
concluded that subharmonic pumping, even  without  harmonic 
power generation, is not only feasible  but  can be very useful up  to 
C-band signal  frequencies with existing  varactors. 
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I. INTRODUCTION 

0 OBTAIN low-noise parametric amplifier  opera- 
tion, the idle frequency must be  chosen to be 
several times the signal frequency of the amplifier 

provided  amplifier  cooling  is ndt employed. This condi- 
tion of high required idle frequency in turn generally 
necessitates the use of a still higher pump frequency 
c f s  + f i  = f,). In many instances, because of the  type, 
size, and power delivery vs frequency characteristics of 
pump sources available, it would  be very convenient to 
use  lower frequency pumping (i.e., actual  pumping at  a 
fraction of the frequency of the effective pumping). In 
particular, the desire to  employ present, compact, solid- 
state pump sources such as transistors or tunnel diodes, 
which are capable of providing adequate  pump power 
in the UHF and I,-band  regions,  suggests the considera- 
tion of  some form of lower frequency pumping for low- 
noise  amplifiers  whose  signal  frequencies  lie in the same 
frequency regions or possibly  even  higher. 

Lower frequency  pumping, which has been described 
by Bloom and  Chang,‘” is,  in  general, a four-frequency 

low frequency  pumping,” J .  A p p l .  Phys., vol.  29,  p. 594; March, 
S. Bloom and K. K. N. Chang, “Parametric  amplification using 

1958. 
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