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Theory of FM Laser  Oscillation 
s. E. HARRIS, MEMBER, IEEE, AND 0. P. MCDUFF, SENIOR MEMBER, IEEE 

Abstract-The paper presents a detailed  analysis of FM laser 
oscillation which includes  the effect of arbitrary atomic  lineshape, 
saturation,  and  mode pulling. Such oscillation is achieved by  means 
of an intracavity phase  perturbation,  and is a parametric oscillation 
wherein the  laser  modes oscillate  with FM phases  and nearly 
Bessel function amplitudes.  One principal idea is that of the com- 
petition between different FM oscillations. The effect of the  intra- 
cavity phase  perturbation is to  associate a set of sidebands with 
each of the previously free-running  laser  modes.  While  the  free- 
running  laser  modes experienced their  gain  from essentially  inde- 
pendent atomic populations, the competing FM oscillations to a 
large  extent  see  the  same atomic  population; and in cases of interest 
the  strongest of these oscillations is able  to quench the competing 
weaker oscillations and  establish  the  desired  steady  state condition. 
Results of the  analysis  include  the following: threshold  and power 
output, amplitudes  and  phases of all sidebands, frequency pulling 
of the  entire oscillation, time domain  behavior,  distortion,  super- 
mode conversion efficiency, and effect of mirror motion. Results 
of numerical application of the  theory  to a number of specific cases 
are given. 
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I. INTRODUCTION 
HE ATOMIC populations which support most 
optical maser oscillation are, in general, sufficiently 
inhomogeneously broadened t o  allow oscillation 

in  a large number of relatively independent axial modes. 
To  a large extent, the gain of these modes results 
from their independent interaction  with essentially 
different atomic populations. In gas masers, this is prima- 
rily the result of Doppler broadening [I], while in solid 
state masers it is often the result of what  may be termed 
a spatial broadening [2] wherein, due to their differing 
spatial  variation, the different optical modes interact  with 
different atoms. Modes of the optical resonator which 
are located sufficiently  close to  the center of the atomic 
fluorescence line such that their single pass gain is greater 
than their single pass loss  will oscillate. These modes 
are driven by spontaneous emission; they  saturate nearly 
independently; and  in most instances are, to a good 
approximation, uncoupled. The  output of such multi- 
mode masers is not nearly as coherent as is desired for 
many of the applications of communication and spec- 
troscopy. 

245 



246 IEEE  JOURh-AL OF QU.ANTL-M ELECTRONICS SEPTEMBER 

In this paper we present a theoretical description of 
FM laser oscillation. Such oscillation  was first demon- 
strated by  Harris  and Targ [3], and  is  a parametric 
oscillat'ion wherein the atomic population is made to 
support a single coherent FM oscillation. FM laser oscil- 
lation is depicted schematically in Fig. 1, and is achieved 
by means of an element which  allows the  path length of 
the optical resonator t o  be rapidly varied. Such an ele- 
ment, which we term an intracavity phase perturbation, 
is driven at  a frequency which is approximately, but  not 
exactly, the frequency of the axial mode interval. The 
resulting laser oscillation consists of a set of modes  which 
have nearly Bessel function amplitudes and FM phases, 
and which  is, in effect, swept over a major portion of 
the fluorescence line at  a sweep frequency which  is that 
of the drive frequency of the phase perturbation. 

v,cos vmt 

E-.{------& .____) 

MIRROR  LASER  TUBE  PHASE 
PERTURBATION 

r = MODULATION DEPTH 

LINE 1 LOS s 

-I.,!- y- 

Fig. 1. Schematic of FM laser oscillation. 

It will  be  seen that  in order to achieve FM laser oscil- 
lation it is necessary for the  intracavity phase pertur- 
bation to have  a  strength such that  the parametric gain 
experienced by the laser modes is large compared with 
their net  saturated atomic gains. From a physical point 
of view, the effect of the intracavity phase perturbation 
is  to associate a  set of FM sidebands with each of the 
previously free-running laser modes, i.e., to cause each 
of the previously free-running laser modes to become 
the center frequency or carrier of an  FM signal. The re- 
sulting multiple FM oscillations then compete for the 
atomic population in  the same sense as did the previously 
free-running modes.  However,  while the free-running 
modes  experience their gain from essentially independent 
atomic populations, the competing FBI oscillations, to a 
large extent, see the same atomic population. For instance, 
the first upper sideband of an  FM osciIlation  which is 
centered in  the atomic fluorescence line is in  the same 
homogeneous linewidth and therefore sees the same atomic 
population as does the center frequency of an 3'31 oscil- 
lation which  is centered one  mode above the center of the 
atomic fluorescence line. The competing FM oscillations 
are  thus much  more tightly coupled than were the previous 
free-running laser  modes. In  the cases of principal interest, 
the strongest of the  FM oscillations-usually the oscil- 
lation whose carrier is at  the center of the atomic line- 

will be able to completely quench the competing weaker 
oscillations. The result is that shown in  the lower part of 
Fig. 1, wherein the sidesbands of a single coherent oscil- 
lation deplete most of the inverted population of the 
atomic line. 

Many of the concept,s applicable to  free-running laser 
oscillation may be extended to apply to  FM laser oscil- 
lation.  The threshold of oscillation for a free-running 
laser mode  occurs  when gain exceeds  loss. For FM laser 
oscillation, the gain and loss of a  particular mode  lose 
their significance, and we consider instead the threshold 
of the entire oscillation. This threshold will depend on 
t'he modulation depth of the oscillation and on a combina- 
tion of the gains seen by all the 3" sidebands. Similarly, 
instead of considering the pulling of a single free laser 
mode, we  will consider the pulling of the entire FM 
oscillation. 

The paper is divided into two major parts. Sections I1 
through VI11  develop the more analytical aspects of the 
theory, while Sections I X  through XI1 give the results 
of numerical application of the theory to  a number of 
specific  cases and problems. 

11. DEVELOPMENT OF THE BASIC EQUATIONS 
We start with  a  set of equations derived by Lamb [4], 

termed as self-consistency equations, which describe the 
effect of an arbitrary optical polarization on the optical 
electric fields of a high-& nmltimode optical resonator. 
They  are as follows: 

and 

In the foregoing equations, E,(t), vn, and p,(t) are  the 
amplitude, frequency, and phase, respectively, of the 
nth mode; and C,(t) and &',(t) are  the in-phase and 
quadrature components of its driving polarization. That 
is, the  total cavity electromagnetic field  is  given by 

~ ( 2 ,  t )  = ~ n ( t )  COS [vnt + ( ~ n ( t ) ] u a ( 2 ) 7  (2) 
D 

where U,(x) = sin (no + n)az/L.l The polarization driving 
the  nth mode  is obtained from 

0 "L 

. ,  
= CAt) cos [ v d  + d t ) ]  + XAt) sin [vnt + d t > l ,  

where P(x, t )  is the  total cavity polarization, and L is 
the cavity  length.  The  addition of the integer no t o  the 
cavity eigenfunction Urn(%) is a  departure  from the no- 
tation of Lamb [4] but will lead to notational simpli- 
fication in  the following  work. The integer no is the 
number of spatial variations of some central mode,  which 

1 Except where noted, all sums will be from - 0) to + m .  
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we choose to be that mode  whose frequency is  closest to 
the center of the atomic fluorescence Line. The circular 
frequency of this  central mode is  then Oo = (n,?rc)/L. 
Other symbols are defined as follows: On = Oo + (n?rc)/L = 
frequency of the  nth cavity resonance; AQ = frequency 
interval between axial resonances ( A s  = ?rc/L); &, = & 
of the  nth mode; v = average optical frequency.’ 

The  total cavity polarization P(z,  t )  consists of a 
parametric contribution resulting from the intracavity 
time  varying phase perturbation,  and of an atomic con- 
tribution resulting from the presence of the inverted 
atomic media.  We assume the phase perturbation to  
have a time  varying susceptibility Ax’(x, t )  of the form 

Ax’(z, t )  = Ax’(z) COS v,t, (4) 

where v ,  is the driving frequency of the perturbation. 
The  parametric  contribution to  the  total polarization 
P(z,  t )  is then 

P(z, t )  = e0Ax’(z, t)E(z, t )  
(5) 

= eoAx’(z> COS v,tE(z, t ) .  

vn = Qo + nv,, 
and therefore 

v,+1 - vm = 51, + (n + l ) v ,  - 8, = v, 

v,-~ + Y, = 51, + (n - l)v, + v,  = v,. 
(10) 

We introduce the atomic contribution to  the polari- 
zation by means of nlacroscopic quadrature  and  in- 
phase components of susceptibility, denoted by x:’ and 
x:, respectively. Here x:’ and x: depend upon E, and 
therefore include the effects of atomic saturation, power 
dependent mode pulling and pushing, and nonlinear 
coupling  effects.  We  resolve P,(t) of (9) into in-phase 
and  quadrature components of the form of (3). Adding the 
atomic polarizability terms, C,(t) and X,,(t) then becomes 

Eo 6c Cn(t) = EOXLE~ + 7 CEn+l COS (an+, - a m )  

+ E,-1 cos ( n ,  - P,-JI (1la) 

Xn( t )  = EOXA’E~ + 7 [-En+, sin (a*+, - an) eo 6c 

Substituting (5) and (2) into (3), we find the component + E,-l sin (a, - ~ , - ~ ) l .  Wb) 
of P(x, t )  which drives the  nth mode to be 

We  define the detuning Av to  be the frequency difference 
between the axial mode interval  and  the driving fre- 

As2 - vm. We then  have 

2E” cos v,t 
Pn(t> , = L ~ u ( t )  COS [vat + c~,(t)I 

D B r a m e t r l O  a quency of the internal phase perturbation, Le., Av = 

lL Ax’(x>Uu(4U,(z) dx. (6) Q,, - v, = nAv,  (12) 
We assume that  the driving frequency v,  is approximately 
equal to AQ, and  that  the cavity Q’s are sufficiently 
high that only the contributions of immediately adjacent 
modes  need  be retained. We thus keep only those terms 
of (6) for which q = n f 1. We  define 

(7) 

which is the coupling coefficient  between adjacent modes. 
The  spatial  variation of Ax’(z) will generally be very 
slow compared with that of the cavity eigenfunction 
U,(z); thus by expanding (7) it is  seen that 6 is  given by 

6 = 1” Ax’@) cos ?E dz. L 
Combining (6) and (7), we then  have 

where positive Av denotes a driving frequency less than 
the axial mode interval.  Substituting (11) and (12) 
into (la) and (lb), we obtain 

[@, - nAv + +vxA]E, = -- 2L [&+1 cos (a,+, - an) sc 

+ E,-l cos (n, - an-J (134 

- E,-1 sin (an - a m - 1 ) 1 ,  03b) 
which are  the fundamental equations of this  paper  and 
which, when solved,  yield the amplitude, frequency, 
and phase of the optical modes. Equations (13a) and (13b) 
are to some extent equivalent to equations that have 
been  given earlier by Gordon and Rigden [5],  and by 

Eo sc 
Pn(t) = - {En+l(t) COS [ ( ~ , + 1  - vm)t + am+l(t)l Yariv [6]. Except for notational changes, they  are also 

and McDuff [7]. 
parametric VL equivalent to  (sa)  and (5b) of an earlier paper by Harris 

+ E,-,(t) cos C(V,-l + v m ) t  + cp,-l(t)lI (9) 
We may  arbitrarily choose the frequency of the  nth 111. DISCUSSION OF PARAMETERS 
cavity mode v, to be any frequency in  the vicinity of st,. 
In  that v, appears  together  with the unknown &, any 
error in  its initial choice  will  be corrected in the solution 
by the appearance of a constant 4jn. We let 

For small signal conditions, the quadrature component 
of the atomic susceptibility x:’ is related to  the single pass 
power gain by the relation 

2 We adopt  the  convention  that  all symbols for frequencies  shall 
denote  circular  frequencies. 
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where g, is the unsaturated single pass power gain of the 
nth mode, and  the ,Rnm are saturat'ion  parameters which 
represent the effect of the mth mode  on the gain of the 
nth mode [4].3 Similarly, the in-phase component of the 
susceptibility may be  edxpressed as 

where un is the additional round trip phase retardation 
which  is  seen by the  nth mode as a result of power inde- 
pendent mode pulling, and  the rnn represent power  de- 
pendent pulling and pushing effects [4]. 

The Q of the  nth mode may be written 

where a, is the single pass power loss which  is  experienced 
by the  nth mode as a result of nonzero output coupling, 
scattering, diffraction, etc. We note that Q, is  not meant 
to  contain a contribution resulting from a parametric 
gain or loss; such contributions are accounted for by the 
right-hand side of (13b). 

In practice, the time  varying phase perturbation will 
often be achieved by means of a small perturbing ele- 
ment which has no significant spatial  variation in  the z 
direction, i.e., such that Ax'(x) may be taken  as inde- 
pendent of x over the length of the perturbing element. 
If we let 6, denote the peak single pass phase retarda- 
tion of such an element of length a, then it may readily 
be  shown that 

If such an elenlent is centered a distance zo from an end 
mirror of an optical cavity which has a total length L, 
then  the coupling  coefficient 6, as given  by (8), becomes 

which then yields 

ar 

If the length of the perturbing element is very smaIl 
compared with the  total length of the optical cavity 
( a / L  << l), then 6 6, cos (rxo)/L. It is, therefore, 
desirable for such a perhrbing element t o  be situated 
as closely as possible to  the end of the optical cavity. 
The coupling  coefficient 6 will then be very nearly the 
readily measurable peak single pass phase retardation of 
the perturbing element. It should be noted that if the 
perturbing element is  not small, then  its  spatial  variation 
may be of importance. As an extreme case, if the perturb- 
ing element  were spatially uniform and completely filled 
the optical cavity,  then 6 would  be  zero. 

dependent on the relative  phases of the various optical modes. We 
3 I n  writing (14) and (15), we have neglected terms which are 

also note  that  the  notation of this section  is not  meant  to correspond 
to  that of Lamb [4]. 

IV. STEADY  STATE SOLUTION OF THE LINEAR 
APPROXIMATION 

In  the present section we will neglect nonlinearities 
and  take x:' of all modes to be independent of E, and 
equaI to -l/Qn. That is, we assume an infinity of laser 
modes, all having a single pass gain equal t o  their single 
pass loss.  We also assume x: t o  be  zero, and look for 
solutions with E n  = 0 and (bn constant and independent 
of n. Equations (13a) and (13b) then become 

+ Ea-] COS (pn - pn-l)] (20a) 

0 = 2~ [ E n + l  sin (pn+l - pn) - &-I sin - ~n-l)]. @Ob) 

Noting the Bessel function identity 

6 C  

124 Jn(r> = Jn+l(r) + Jn-l(r), r (21) 

we see that (20)  is  satisfied by the set of solutions 

lj* = qdv 

p n + l  - ~n = 0 (22) 

E n ,  = J n - a ( r ) ,  

where q is an integer, and r is  given by 

r = - - 6 = - - 6 = -  G 1  1 AQ 1 axial  mode interval 
L Av  AV detuning frequency 

6. (23) 

We first consider the q = 0 solution, previously given by 
Harris  and hlcDuff [7], and  by Yariv [6], which  is a 
perfect FM oscillation with a modulation depth of r 
and  with  a center frequency at  the zeroth mode. From 
a  varying frequency point of view, the peak-to-peak 
frequency swing of the oscillation is  2rv,. The modula- 
tion  depth r is proportional to  the  strength of the time 
varying perturbation  and inversely proportional to  the 
detuning frequency Av. The frequency of the  nth cavity 
mode  was originally defined as Y,, = Qo + nv,. Thus  n = 0 
denotes the only mode of the q = 0 solution whose  oscil- 
lation frequency would, in  the absence of the parametric 
phase perturbation, be a  cavity resonance. A schematic 
of the p = 0 solution is shown in  the upper part of Fig. 2. 
Consider next those solutions with q # 0. (b = qAv de- 
notes a uniform shift of all frequencies from their assumed 
positions by qAv. For instance, if q = 1, all modes are 
shifted upward by Av, and,  as shown in  the lower part of 
Fig. 2, the n = 1 mode  is the only  mode  which  is exactly 
on a  cavity resonance. In this case the mode amplitudes 
are E, = J,-,(r); and  the n = 1 mode has amplitude 
J,(r) and  is the center frequency of the FM oscillation. 
In a linear theory, any of the previously free-running 
laser modes may become the carrier of an Ffi4 oscillation. 
The carrier frequency of the qth oscillation is a t  the qth 
mode, and is distinguished in that  its amplitude is J,(r) 
and  in  that it is the only sideband of that oscillation 
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E,= J,(rl 
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Fig. 2.  Schematic of q = 0 and q = 1 solutions. 

whose  oscillation frequency is that of an original axial 
mode. 

The  total cavity electromagnetic field E(z, t )  which 
corresponds to a particular FM solution is obtained by 
substituting  the solution of (22) into ( 2 ) .  Taking the 
case of q = 0, we have 

In the time domain, this solution corresponds to a 
behavior which consists of a repetitive series of pulses or 
spikes, with a pulsing frequency which is equal to  the 
driving frequency of the internal phase perturbation. Such 
pulsing of a laser was first observed by Hargrove, Fork, 
and Pollack, and was obtained by acoustic modulation 
of the intracavity loss [SI. Linear analyses of intra- 
cavity loss modulation have been given by DiDomenico 
[9], Yariv [6] and Crowell 

V. DYADIC EXPANSION OF STEADY STATE EQUATIONS 
In  the approximation of the previous section, non- 

linearities and mode pulling were neglected, and an 
infinity of laser modes, all with gain equal to loss,  were 
assumed. It was found that  the sidebands comprising 
any of the FM oscillations had exactly Bessel function 
anzplitudes and zero relative phases. That is, any FM 
oscillation was completely distortion free. When finite 
atomic linewidth, mode pulling, and atomic saturation 
are included, this is no longer the case. Relative ampli- 
tudes will  no  longer  be exactly Bessel function, and  the 
relative phases will  no longer be exactly zero. In this 
and  the following two sections, we develop an effective 
iterative procedure which  will  yield the amplitudes  and 

E(z, t )  = J n ( Q  cos [(a, + nv,)t] sin (no + n>Tz* phases of all sidebands of a particular oscillation, and 
7I L (24) also the center frequency, threshold, and power of the 

By the use of standard trigonometric and Bessel identities, 
E(z,  t )  may be put  into  the closed form 

- + sin Slot - - + r sin (u,t - $1, (25) [I "Zz 
which corresponds t o  a folward and a backward FM 
traveling vave. We may  further  write  this  in  standing 
wave form as 

Qot + r sin v,t cos - 

asin p~ + r cos v,t sin - . "i L 
It is of interest to note that  the  total cavity electro- 
magnetic field at a particular point of space is  in general 
not frequency modulated. In order to obtain a pure 
FM signal, it is necessary t o  couple to either, but  not to 
both, of the FA4 traveling waves. 

When AV = 0, r, as defined by (23), is infinite, and 
the solutions considered thus far are indeterminant. In 
this case, (20a) and (20b) have the solution 

En = E,,, 

V,+t - V n  = Pa (27) 

oscillation, 
Implicit in  the work of this section and of Section VI1 

is the assumption that a stable,  steady state solution 
of (13a) and (13b)  exists. As will  be  seen in Section VIII, 
this will not always be the case. The general situation is 
that of a competition between  different FM oscillations 
which are centered at  different axial modes and which 
in  the previous section were denoted by the integer q. 

In particular, we  will consider the q = 0 oscillation, 
i.e., that FR/I oscillation whose carrier frequency is closest 
to  the center of the atomic line. In  latter sections it will 
be  seen that,  in most  cases of interest, it is this oscillation 
which  will  be dominant. Though the formulas will  be 
given  explicitly for the g = 0 oscillation, their extension 
to other oscillations  will  be apparent. 

We  seek a steady  state solution to (13a) and (13b), 
and  thus  set E n  equal to zero and & constant and inde- 
pendent of n. We  define the quantities 'k, and pn as follows: 

Equations (13a) and (13b) may then be written 

E, = -%+I, pn+l - 'pn = p7& = 0. However, during  the course 
When Av = 0, (20a) and (20b) also have solutions of the form 

of the  numerical analyses which will be described in  later sections, 
solutions of this  type were not observed. where p is an integer. 
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--EE, = [En+, sin (Vn+l - cp,) - En-1 sin (40, - 40~-1)1, Pn 

6 

which are a  set of simultaneous nonlinear difference 
equations. The  quantity P, is the additional round trip 
phase retardation which is seen by the  nth mode as  a 
result of the real part of the atomic susceptibility and is 
described in (15). The  quantity pn, described in (14) 
and (16), is the net  saturated single pass power gain of 
t,he nth mode. In a free-running laser, all modes oscillate 
at a power level such that single pass gain equals single 
pass loss, and therefore pn is  zero for all oscillating modes. 
In  the presence of the parametric phase perturbation, this 
is  no  longer the case. For those modes  which  oscillate at  a 
level  which  is greater than their free-running counterparts, 
pn is positive; while for those modes  which oscillate at  
a level ~vhich is  less than their free-running counter- 
parts, pn is negative. 

We first consider (29b). We treat  the E, and pn as 
knowns, and solve for the relative phase angles (9, - P,-~). 
When  considered in  this way,  (29b)  is a linear, first-order, 
inhomogeneous  difference equation  with nonconstant 
coefficients (the E,). We  proceed by construction of a 
Green's dyadic G,, , such that 

(29b) 

En+,Gn+l,a - En-1Grt3q = 6,,", (30) 
where 6n,a is the Kronecker delta [11]. The relative phase 
angles are  then obtained from the relation 

If we arbitrarily introduce the boundary condition that 
Gn,* = 0 at  n = - 03 , we  find the Green's dyadic satis- 
fying (30), and  this boundary condition is to  be 

E ,  
G n 3 a  = E n >  

(32) 
= o  n 5 q .  

The relative phase angles are  then given  by - n-I 

sin (40, - = - - 1 1  c P , G  (33) EnE,-l 6 4 = - m  

Alt'ernately, we could introduce the boundary condit'ion 
Gn,, = 0 at  n = + m . In this case the appropriate Green's 
dyadic is 

(34) 
= o  n > 4 ,  

and  the relat'ive phase angles are obtained from 

Though the reIative phase angles which are predicted 
by (33) and (35)  at first appear to be different, it mill 
be  seen that, due to a conservation condition t o  be proven 
in  the following section, they  are  in  fact identical. 

We next consider the first of the  steady  state equations, 
i.e., (29a). We define a difference operator d: such that 

2n CE, = E,-I - r E, + En+* (36) 

and  a  perturbation p,, given by 

~n = En+,[I - COS (qn+, - 40n)l 

+ En-l[l - cos (qn - p,-l)] - [? + (p 13,. (37) 
2L 1 

In terms of these definitions, (29a) may be written 
CE, = p,. (38) 

By means of the Bessel function identity of (21) and the 
orthogonality relation 

+ m  

C J n - q ( r ) J n - v ( r )  = 6o.n,  (39) 
n=-m 

which  is a form of Neumann's addition theorein for 
Bessel funct'ions [12], it is  seen that a complete and 
orthonormal set of eigenvectors ]up), with corresponding 
eigenvalues x, of the operator 2, are given by 

2 x, = q - '  r 
Proceeding by spectral expansion [ll],  the operator which 
is inverse to d: may then be written 

a#O 

The solution to (29a), or equivalently (38), is then 
given by 

E, = kJn(r) + 3 t: - Jn-,(r)Jm-dr)Pm. (42) 
r 1 

as0 
p m 4  

The first term on the right side of this equation is 
the homogeneous solution of (38), and  has an amplitude 
constant k which is to be determined. The second term 
is a particular solution which results from the pertur- 
bation pn. 

It is to  be noted that (33) or, equivalently, (35) ,  and 
(42) are all exact, and that no approximations have 
been  made. These equations form the basis of the itera- 
tive procedure to be  given in Section VII. 

VI. CONSERVATION COIYDITIONS 
We next derive two conservation conditions which are 

also necessary for the  iterative procedure. We return 
to (13b), multiply through by E,, and  sum  both sides 
over n from - 03 t o  + 03. WTe then have 

= 2~ [EnEn+, sin (40,+, - 40,) - E,En-, sin (Pn - 40~-~)1. 
(43) 

6C 

n 
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By the change of variable n = n’ + 1, the second term 
on the right-hand side of this equation is equal to  the 
first. We thus obtain 

+ m  

E,En + [$ + x:’ E: = 0. 
==-m 1 (44) 

Noting that EnEn = (d/dt)(E:/2),  it is seen that  the 
foregoing equation  is a statement of power conservation. 
That is, the  rate of change of total stored energy, plus 
the  net power dissipated or absorbed in all modes, is 
zero. Though  in the absence of the parametric phase per- 
turbat,ion power is conserved by  all modes individually,6 
in  its presence, power must be  conserved jointly. It is 
noted that the phase  perturbation itself  does not contri- 
bute or absorb  any power from the system. 

In the steady  state,  all E n  = 0, and (44)  becomes 

P n E  = 0, 
R 

where the pn are  the  net  saturated single pass power gains 
and  are defined in (28b). Equation (45) establishes the 
equivalence of (33) and (35) of the previous section. 

We apply a similar procedure to (13a). Multiplying 
through by E, and summing over n from - co to + m, 

we obtain 

which  is a reactive conservation condition and which, 
when the relative  steady state amplitudes and phases 
are known,  will determine the frequency of oscillation. 

VI1 STEADY STATE AMPLITUDES, PHASES, 
FREQUENCY, AND POWER 

As a result of nonzero net  saturated gains, and due to 
the in-phase component of the atomic susceptibility x& 
actual mode amplitudes and phases T.vill not be exactly 
those of the ideal FM solution of Section IV. In this 
section we describe an iterative procedure which  allows 
the calculation to  any desired order of the relative mode 
amplitudes  and phases, as well as  the center frequency 
and power of an FM oscillation. The results of the first 
iteration will reveal the mechanisnl of the distortion  and, 
are themselves useful for certain applications. The  plan 
of the  iterative procedure is to first assume the modes 
to have Bessel function relative amplitudes. By applica- 
tion of the power conservation condition of (4.9, the 
amplitude of the oscillation is determined. Net  saturated 
gains are  then obtained, and (33) or, equivalently, (35) 
is  used to find the first-order relative phases. With rela- 
tive phases known, the contribution to  the amplitude 
perturbation pn [(37)], which  is a result of the nonzero 
net  saturated gains, may be found. The frequency pulling 
or pushing of the oscillation (2, is then obtained from the 

This  statement is strictly  true  only  in  the  limit of completely 
inhomogeneous broadening. 

reactive conservation condition of (46). With p, now 
determined, second-order amplitudes  may be obtained 
from (42), and  a second iteration  may be begun. 

In  order to effectively illustrate  this procedure, it is 
convenient to assume a specific form for the  saturation 
of the atomic gain.6  We  choose completely inhomogeneous 
saturation, such that  the single pass gain of the  nth mode 
is given by -gm(l - DE:); i.e., in (14) we take Pnn = pS,, 
where /3 is  a  saturation  parameter which is the same €or 
all  modes. The  net  saturated gain of the  nth mode, as 
defined by (28b), then becomes 

pn = en - gn(1 - (47) 

where a, is the single pass power  loss as given by (16). 
We let En = kJ,’(I?), and  substitute from (47) into  the 
power conservation condition of (45).  We then  have 

{% - ~,[1 - p ~ ~ ~ ~ n Z ( r ) l ) k ~ ~ : ( r )  = 0.  (48) 
n 

Solving for the oscillation  level k2,  we obtain 

With the amplitude of all modes determined to first order, 
the  net  saturated gains are  obtained from (47) with 
EZ, = 7c2J:(I’). First-order relative phase angles are  then 
obtained from (33) or (35). Using (33), we have 

For the case of a symmetrical line shape wherein pn is 
an even function of n, the evaluation of (50)  is  simplified 
by means of the relation 

i? p4J:(r) = $poJ;(r), (51) 
q=-m 

which  is obtained from the conservation condition (45). 
Two points concerning the relative phase angles may 

be noted. First, nonzero relative phase angles result 
from an accumulation of nonzero net  saturated gains. 
In general, an FM laser operated at  a I’ such that  the 
relative mode a~pl i tudes to at  least, some extent approxi- 
mate those of a free-running laser will, at a given 6, 
have less phase distortion than will an FM laser whose 
mode anzplitudes depart  sharply from those of the free- 
running case. In particular,  distortion will be increased 
when operating at  a J? such that  the amplitude of some 
mode  is driven close to  zero; or alternately, when operat- 
ing at  a large r, such that a number of modes have ampli- 
tudes which are considerably larger than the correspond- 
ing free-running modes, for instance when r is such 
that  the equivalent frequency swing  is considerably 
larger than  the spectral  width of the free-running laser. 
In  the first case,  some particular pn will  become large 

and  that  the  iterative procedure is valid,  irrespective of the  atomic 
6 We note  that  this  assumption is illustrative  and  not  restrictive; 

lineshape and  the hype of saturation which IS assumed. 
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and negative; in  the second  case, an  accundation of 
positive pn's will result. 

The second and  very  important point is that phase 
distortion may be made arbitrarily small by making the 
perturbation  strength 6 increasingly large. It is therefore 
desirable to obtain  a given I' by working with the largest 
available 6, and  thus from (22) with a correspondingly 
large detuning. 

With relative phases determined, we next find the 
first-order correction to  the center frequency of Dhe FM 
oscillation. We substitute E, = kJ , (T)  into  the reactive 
conservation condition of (46), and  note that in  the 
steady  state (p is constant  and independent of n. Using 
the definition of \k, of (28a), we then have 

(I, = -- x q%J:(r) c 
2L 7% 

- - J,(r)J,+dr) COS - PJ, (52) 
C6 

L %  
where we have used the relation c,+2,, Ji(r) = 1. 
The oscillation frequency of the  nth axial mode is  then 
Oo + nv, + (p, and  the center frequency of the oscilla- 
tion  is  thus Oo + +. Equation (52) describes to  first order 
the frequency pulling or pushing of the entire FR/I oscil- 
lation. The first tern1 on the right-hand side gives the 
contribution to  the pushing or pulling which results from 
the presence of the atomic media, and is in fact simply 
the weighted average of the pushing or pulling which is 
associated with each of the laser  modes. The second term 
is  a parametric pushing or pulling term.  By  noting the 
Bessel identity zlt_-, Jn(r)J,+l(r) = 0, it is seen that 
for  an ideal FM signal having relative phase angles which 
are all zero, the parametric  term would  be  zero. This 
situation will  be approached as 6 becomes increasingly 
large. If Oo is a t  the center of an exactly symmetrical 
atomic line, both the atomic and  the parametric terms 
are zero, and  the center frequency of the Ii" oscillation 
will  be Qo. 

The  amplitude  perturbation  is now  completely  de- 
termined and given  by 

Pn = J,+,(r)[l - cos (%+I - d l  

+ Jn-l(r)[l - cos (p7% - p7%-~)1 - J7%(r)k + %+I. 
(53) 

Substitution of pn into (42) yields a  set of second-order 
amplitudes, and  the first iteration  is complete. The 
distortion which results from the nonzero net  saturated 
gains is, t o  first order, phase distortion. At sufficiently 
large 6, the cosine of the relative phase angles approaches 
unity,  and  their contribution to pn nearly vanishes. The 
contribution to p, resulting from mode pulling also 
varies inversely as 6, and  thus at  large 6 the p, approach 
zero; and from (40) the E, approach kJ,(r) .  

As 6 becomes  increasingly large, (49) becomes an 
increasingly exact expression for the level of the  FM 
oscillation. We note that  the  total power output of the 

FM oscillation is proportional to  the  total stored energy 
E:, which for E, = rlcJ,(r) equals k2. From (49), we 
see that  to first order the threshold for FM laser oscilla- 
tion  is given by 

C (gn - aX(r) > 0.  (54) 
7% 

Equation (54) is the condition for positive power output 
in an FM laser, and is  analogous t o  the condition gn > a, 
for threshold of a free-running laser. Typically, the 
cavity loss a, will  be the same for all modes, and (54) 
becomes 

c q , J m  > a, (55) 
n 

where a is the single pass power loss of all modes.  An 
FM laser will  be above threshold if t,he sum of the 
weighted, unsaturated single pass gains  is greater than 
the single pass loss. Note that  in  an FM laser this thresh- 
old condition depends on r, which in  turn depends on 
both 6 and on the detuning Av. An FM laser may  thus be 
extinguished by varying either 6 or the driving frequency 
of the perturbation. 

Application of the iterative procedure to  particular 
cases, as well as discussion of its convergence,  will  be  given 
later  in  the paper. 

VIII. COMPETITION AND QUENCHING OF 
FM OSCILLATIONS 

In the previous section we examined the details of a 
single steady state  FM oscillation, with the implicit as- 
sumption that such a  stable  steady state condition exists. 
The more  general situation is that of a number of com- 
peting Fb" oscillations, with each previously free-running 
laser mode acting as the center frequency or carrier for 
a  particular oscillation.  While the free-running modes 
were very weakly  coupled, the competing FM oscilla- 
tions, to a large extent, see t'he same atomic popuIation 
and  are closely  coupled. In many cases, the strongest of 
t'hese oscillations  is able to quench the weaker  oscilla- 
tions  and  thereby establish the desired steady state 
condition. 

The purpose of this sect'ion is to  develop a simplified 
set of equations which, t o  a good approximation, will 
describe the competition between the FA4 oscillat'ions. 
The details of any  particular oscillation  will not be  con- 
sidered. That is, it will be assumed that 6 is  sufficiently 
large that  the sidebands which  comprise any of the  FM 
oscillations have Bessel funct'ion amplitudes and FM 
phases. 

The plan is to  first show that a solution consisting of a 
sum of independent FM oscillations, each with arbitrary 
amplitude and  arbitrary phase, satisfies (13a) and (13b) 
for an ideal system wherein  gain equals loss for all modes. 
It will, in effect,  be  shown that  the FM oscillations are 
the normal modes of the lossless system. The competition 
between oscillations will then be introduced by means of 
a  statement of power conservation. The procedure could 
perhaps be  considered analogous t o  that used in micro- 
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wave systems wherein the field configuration of the 
lossless system is  used to  take  into account small losses. 

In the multioscillation situation, each cavity mode 
contains sidebands from each of the FM oscillations. 
The variables E, and pn are envelop quantities  and be- 
come increasingly conzplicated as  the number of FM 
oscillations is increased. It is, therefore, convenient to 
change to  the new variables X ,  and Y,  which are  the 
in-phase and  quadrature components, respectively, of a 
particular mode, as opposed to  its amplitude  and phase. 
We let 

X ,  = E, COS pn 

Yn = E, sin p,, 
(56) 

and thus 

E,  = (X: + Y:)”” 
(57) 

tan pn = s. Xn 
Taking  appropriate  partial derivatives of E, and pn 
and  substituting  into (13a) and (13b), after some algebra 
we obtain the completely equivalent equations 

XnYn  - YnXn + (-nAv + frvxA)(X: + Y:) 

and 
r -I 

It may be shown that, for the ideal lossless  case  wherein 
&, = -x;’ and x: = 0 for all n, the X,(t) and Y,(t) 
of (61) identically satisfy (Ma)  and (58b). This is true 
regardless of the amplitude a, or the phase 8, of the 
respective E” oscilIations. If nonlinearities are neglected, 
an  FM laser is  no better than a free-running laser. As 
opposed to a set of uncoupled free-running modes,  we 
find a set of uncoupled FM oscillations. These oscilla- 
tions  may be independently excited and might be  con- 
sidered as  the normal modes of the lossless system. In  
the  actual  situation wherein net  saturated gains and x:, 
are not zero, X ,  and Y,, will not  satisfy (58a) and (5Sb). 
That is, the sidebands which  comprise  each of the FM 
oscillations will not have exactly Bessel function ampli- 
tudes  and zero relative phases. However, as 6 is increased 
it is expected that  the above solution should become 
increasingly exact. 

We  now make use of power conservation t o  introduce 
the effects of atomic saturation. To start,  the  total average 
stored energy E of all modes  is  given by 

G = fr E:@) 

which in  terms of the a, and ea of (61)  becomes 

XnTn + ynyn + where we have used the trigonometric identity for the 
cosine of a difference of angles.  We sum over n, and make 

The expected multioscillation solution has mode ampli- a ? )  

tudes E, and mode phases p, such that and  thus 

En(Q COS [vnt + ~n( t ) l  E = fr e a : .  
a 

= aJn-Q(r )  COS [vnt + qAvt + e,], (59) 
+m 

a=-- 

where a, and 8, are  the amplitude and phase, respec- 
tively, of the component FM oscillations, and  are assumed 
to  be independent of time. As in Section IV, the integer 
q denotes that mode mrhich is the center frequency of a 
particular FM oscillation. Expanding (59), we have 

En COS pn COS v,t - E, sin p, sin v,t 

We next calculate the  total power 6 which is absorbed 
or dissipated by  all modes. From the conservation con- 
dition (44), 6 is  given by 

6 = (c + 1 
2 n  n 

We assume small signal saturation of the fornz of (14). 
Using (16), we have 

6 = & I: C ( a n  - gn)E: + g n P n m E E 1  - (67) 
n n  

- aQJn-Q(r)  sin (qAvt + 0,) sin v,t. (60) In terms of the X ,  and Y,, 6 is given by 
a 

By  separately  equating in-phase and  quadrature com- 
ponents, we see that  the expected solution is given by + g,P,m(X:XZ, + XZ,Y: + X : Y i  + YiY:>I. (68) 

xn(t)  = aQJn-Q(r) ‘Os (qAvt + e,) n m  

a (61) Consider first the  term XZX:. For brevity, we let 

a ta = qAvt + ea. (69) 
yn(t)  = apJn-.(r) sin (qavt + e,). 
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Substituting from (61), we have 

e ~ m - , ( r ) ~ n - , ( r ) . ~ ~ ~  E,.COS lZ.cos (,.COS t r .  (70) 

The product of four cosines  may  be  expanded t'o yield 

gccos (5, + 5 2  - - L )  + cos (4-, - E, + 5 3  - E T )  

+ cos (5, - E 2  - 5.9 + 4-71 + cos (5, + 5 1  + E. + 4-11 
+ cos + 5 1  + E ,  - L )  + cos (4-s + Ez - 5 s  + 4-71 

+ cos (5, - E2 + E 8  + 4-71 + cos (4-c - 5 2  - 5 s  - E ? ) ] .  
In summing (70), we  will  keep  only those terms which 

are  independent of the ti, and thereby neglect the effects 
of a possible  phase locking of FM oscillations. Summing 
over r and s, we find that for p # 1 the first of the above 
cosine terms  contributes the phase  independent term 

2 a~a~Jn-,(r)Jn-,(r>Jn-,(r>J,-2(r> 
a 2  

Q f 2  

to  the  sum of (YO), while for q = 1, it contributes 

g x Q:-q(r)J:-a(r). 
s 

Proceeding similarly, me find contributions from the 
second and  third of the foregoing  cosine  ternzs.  Examina- 
tion of each of the  last five of those cosine terms shows 
that, since their  arguments  do  not  contain an equal 
number of plus and minus signs, these  terms  do  not 
contribute any t'erms which are  independent of the 5;. 
Adding all contributions, we  find the phase independent 
portion of X;X: to be 

x:x$ = + a~aT~,-,(r>Jn-z(r)Jn-,(r)~m-z(r) 
P l  

(7la) 

We next  evaluate the contribution of the other  terms of 
(68). Proceeding as before,  we  find their phase inde- 
pendent  contribution to be 

YkYi  = x:x: (7 1b) 

and 

x:Y: = x: Y: (Tild) 

and 

x: + Y: = a:Z-,(r). (71 e) 
s 

Combining the contributions of (71a)-(71e), we  find the 
total phase independent power  which  is dissipated or 
absorbed  by all modes to be given by 

n m s  

We  may alternately write this  as 

(73) 
P 

where,  by conlparison with (72), a, is given by 

n m 2  

(74) 
n n  

The power  which is absorbed  by all modes  may  now 
be equated to  the  rate of change of total stored energy. 
From (63) and (73), we then have 

- (A) + a,a: = 0.  d a2 
, dt  2 

Since the us are  normal modes of the lossless system, it is 
expected that  they should independently sat.isfy (75). 
From  a more physical point of view,  we note that  the 
time varying  perturbat'ion couples t,ogether only the side 
bands of a  particular FM oscillation; thus each oscillation 
should independently conserve  power.  We therefore find 
the set of equations 

% + aaaa = 0 ,  

where a, is given by (74), and which at  sufficiently 
large 6 should approxinlately describe the steady state 
competition among the FM oscillations. We  will refer 
to (76) as  the a Equat'ions. 

In effect, as is the gain constant of the  qth oscillation. 
In a  steady  st'ate condition such that only the zeroth 
oscillation is above threshold, its oscillation level  may 
be  determined  from the condition a. = 0. In  the more 
general situation, more than one oscillation is above 
threshold, and  the effective gain of any oscillation is 
dependent  on the amplitude of all  other oscillations. 
We note that  the a Equations  are  not expected to cor- 
rectly describe the transient condition, and instead should 
be  looked at  as a  stability test for the  steady  stat,e solu- 
tions of the q simultaneous equations a,a, = 0. Equation 
(74) indicates a  very close coupling of the FM oscillations. 
In typical  situations,  a number of FNI oscillations may 
exist a t  small r. However, as r is increased, a point is 
reached above which the strongest of these oscillations 
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is able to quench all  others  and establish the desired 
steady  state. 

For the special case of completely inhomogeneous satu- 
ration, such that  the gain of the  nth mode  is -gn(l - BE:), 
i.e., when Prim = S,,p, aq becomes 

n Z  

(77) 

It is of interest to note that in an  attempt to  determine 
aa for  the inhonlogeneous  case of (77)  by inspection we 
probably would have  written 

where, neglecting terms which are phase dependent, 

(79) 

Though the 0 1 ~  of (78)  is very much like that of (77), it 
differs by  a factor of two in describing the  saturation of 
one FM oscillation by another.  For the correct aq of (77), 
the st'atement might be made that any  FM oscillation 
saturates  another oscillation twice as hard as it saturates 
itself. This perhaps unexpected factor of two arises due to 
the power dissipation in  the beats of the competing 
oscillations. It has also  been found in simpler problems, 
such as that of two resonant circuits which are coupled 
through  a nonlinear negative resistance [13]. 

Ix. VARIABLE 84ODULATION FREQUENCY AT CONSTANT 6 
In previous sections of the paper, we have primarily 

developed the theory for what  may be termed the  FM 
region of operation of an  FM laser. However, if either 
6 or Av is  sufficiently decreased, the behavior predicted 
by (13a) and (13b)  becomes considerably more  complex. 
In particular, for small detuning, there  is  a region  where 
the modes have nearly equal amplitudes and is such that 
the behavior in  the time domain consists of a series of 
spikes or pulses. This type of solution was indicated by 
(27) of the linear approximation of Section IV, and  has 
been termed  as  a phase locked solution. 

In  the numerical analyses of this  and  the following 
sections, we assume a Doppler broadened Gaussian 
at,onlic line with  a homogeneous or natural linewidth 
which  is very small compared with  both the axial mode 
interval  and the half-power Doppler width. We include 
the effects of power independent, but not power dependent 
mode  pulling.  Following the notation of Section 111, 
we take 

and 

where go is the unsaturated gain at  line center, and Z ,  
and 2; are  the real and imaginary parts of the plasma 
dispersion function and  are described by Lamb [4]. In 
the limit of vanishingly small homogeneous linewidth, 
the functions of  (8Oa) and (Sob) are  the normalized 
Gaussian and Hilbert transform of the Gaussian, re- 
spectively. In these expressions w is the frequency of 
the atomic line center and the parameter Ku is a measure 
of the Doppler broacening; Ku has  units of angular 
frequency and equals 0.6 times the 3 dB Doppler line- 
width. It will  be convenient to  specify the axial mode 
interval in units of Ku, and thus make use of the tables 
of Fried and Conte [14]. For the numerical analyses 
of this section, we take go = 0.075, a, = 0.070, and 
assume an axial mode interval of 0.1 Ku, correspond- 
ing to  a  ratio of Doppler width to  mode spacing of 16.67. 
These conditions correspond to  five free-running laser 
modes above threshold. This  situation is somewhat 
similar to  that of some of the experimental work of 
Ammann, McMurtry,  and Oshnlan [15], and  the re- 
sults of this section may be  compared with  their work. 
Mode amplitudes, phases, and frequencies were obtained 
by digital computer solution of  (13a) and (13b). Solution 
was  accomplished by means of a  fourth-order Runge- 
Kutta method. The  equations were programed for 
twenty-one modes (n = - 10 to n ,= +lo) and were 
run  until  a  steady state solution to three decimal  places 
was reached. Unless otherwise noted in  the following, 
the n = 0 mode  was taken at  line center and  thus has a 
frequency vo = Qo = w. 

In Fig. 3, we  show laser mode intensit'ies (+E:) vs. 
optical frequency-such as would  be  observed  on a 
scanning Fabry-Perot interferometer. Figure 3(a) shows 
the intensities of the modes  of the free-running laser, 
i.e., with 6 = 0. In Fig. 3(b), 6 is set equal to  0.015, and 
the frequency of the parametric drive is adjusted such 
that it is exactly equal to  the axial mode interval (Av = 0). 
A widening of the optical spectrum  and some tendency 
toward equalization of the mode intensities is observed. 
Relative phases are found to have values between  zero 
and fifty degrees. Of most interest,  a uniform, angular 
frequency shift of all modes from  their free-running 
positions of + = 0.94 6 AQ/T is obtained. The direction 
of this shift is dependent on initial conditions, and is too 
small to show on the scale of Fig. 3. This solution corre- 
sponds t o  that of the phase locked solution of (27) of the 
linear approximation of Section IV. 

In Figs. 3(c) through  3(f), 6 is left constant a t  0.015, and 
the detuning Av is  increased in steps. At the small de- 
tuning of Fig. 3(c) (Av = 0.00035 An), we observe an 
interesting shift of the envelope  of t'he modes of about 
2 AQ. In addition, there is a uniform angular frequency 
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shift of (p = 0.91 6 AB/T such as  that discussed in con- 
nection with Fig. 3(b). Associated with the gross  envelope 
shift  is  a decrease in laser power as peak relative ampli- 
tudes  are moved further from the center of the Doppler 
line. As the detuning is  further increased, the envelope 
shift  and decrease in laser power continues, until, as 
shown in Fig. 3(d),  the laser is extinguished. 

Figure 3(d) might be  considered the beginning of the 
steady  state FM region  wherein there is a single FM 
oscillation with  its center frequency at  the center of the 
atomic line, and with a modulation depth I' which  is 
approximately given by (23). For the detuning of Fig. 3(d), 
r is approximately six, with the result that (55) is not 
satisfied, and  the oscillation is below threshold. In Figs. 
3(e) and  3(f), the detuning is further increased, with the 
result that r decreases, relative amplitudes are con- 
centrated closer to  the center of the atomic line, and 
output power increases. In  the steady state FM region 
there  is no uniform frequency shift, i.e., (Pn = 0 for all 
modes. If the detuning is  increased past that of Fig. 3(f), 
we enter the region of nlultiple FM oscillation that was 
considered in Section VIII.  In this region more than one 
mode may act  as a carrier for an FA4 oscillation, and a 
steady  state solution in  the sense of zero E a  does not 
exist. 

Figure 4 shows the time domain behavior which  cor- 
responds to  the spectrum of Figs. 3(b)  and 3(f). If the out- 
put signal of the laser is written 

E(t) = En COS [(no + nvm)t + %I, (8 1) 

then  the low  passed portion (or envelope) of E2(t), such 
as would  be obtained if the signal were incident on a 
photodetector, is  given by 

n 

W ( t )  = 3 E n E n + ,  COS (mmt + pn+s - pn). (82) 
8 %  

The  data for Fig. 4 were obtained by evaluation of (82) 
for the E,, andp,, corresponding to  Figs. 3(b)  and 3(f). Out- 
put intensities are normalized to  the  total average in- 
tensity ($ En E:) of the free-running laser. We note that 
the pulsing of the phase locked solution is a t  the driving 
frequency of the internal phase perturbation and has 
peak intensities which are approximately six times the 
average intensity of the free-running laser. By  contrast, 
the envelope  which  corresponds t o  the  FM spectrum of 
Fig. 3(f) is more nearly constant and independent of time. 
The ripple is entirely even harmonic, and is a result of 
the distortion of amplitudes and phases from those of 
an ideal FM signal. As will  be  seen in  the following  sec- 
tion,  this ripple can be made arbitrarily small, if 6 is 
made sufficiently large. As opposed to  the periodic  be- 
havior of both the phase locked and FM solutions, we 
note that  the time domain behavior of the envelope of a 
free-running laser consists of an erratic fluctuation, with 
peak intensities almost as great as those obtained in  the 
phase locked  region. 

In Fig. 5 we show output power (4 cn E:) as a function 
of the normalized detuning. Output power is normalized 

8=0 6=0.015 

8=0.015 

= 0.0020 

8=0.015 

%=0.00035 

8 =0.015 

$+0.0008 

A 
f t 
(e) (f) 

Fig. 3. Laser mode intensities a t  constant 6 and  variable  detuning: 
go = 0.075; an = 0.070; A 0  = 0.1 Xu.  (Five modes free  running.) 
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Fig. 4. Output  intensity  vs.  time for phase-locked and FM opera- 

tion: go = 0.075; an = 0.070; AQ = 0.1 Ku. (Five modes free 
running.) 
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Fig. 5.  Output power vs. detuning: go = 0.075; a,, = 0.070; 

AQ = 0.1 Ku. (Five modes free running.) 
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to  that of the free-running laser, and  the conditions are 
again those of Figs. 3 and 4. At zero detuning, output 
power is  about 0.95 that of the free-running laser. As 
detuning is increased, the mode envelope shifts away from 
the center of the Doppler line and  output power  de- 
creases to zero. The oscillation remains below threshold 
until a detuning corresponding to a r of - 4. For a 
further increase of detuning, I’ decreases and  the  output 
power rapidly rises.  We note that for the case  con- 
sidered, either phase-locked or FM operation may be 
obtained a t  nearly full power of the free-running laser. 

In Figs. 3 and 4 we considered only positive detunings; 
that is, we assumed the modulation frequency to  be  less 
than  the axial mode interval. For negative detunings we 
obtain  very similar results, the one difference  being a 
small asymmetry in frequency. This  asymmetry  is seen 
in  the power curve of Fig. 5, and was first observed in 
the experiments of Ammann, McMurtry,  and O ~ h m a n . ~  
It is seen from Fig. 5 that  the asymmetry  appears in 
both  the phase-locked and FX regions. Peak power in 
the phase-locked region occurs at  a detuning of 
Av = -0.0004 AQ rather than zero. For positive detuning, 
threshold for the  FM region  occurs a t  0.0012 AQ, while 
for negative detuning it occurs at -0.0013 AQ. It is 
found that I”s obtained with a positive detuning are 
slightly smaller than those predicted by (23),  while T’s 
obtained with a negative detuning  are slightly larger than 
those of (23). 

These asymmetries may be  explained in terms of 
nonlinear but power independent mode pulling. That is, 
they  are a result of the portion of the plasma dispersion 
function 2, which depends nonlinearly upon frequency. 
Qualitatively, we note  that, for an inverted  atomic 
media, the effect of the nonlinear terms in  the series  ex- 
pansion of 2, is to decrease the index of refraction of 
modes above the center of the atomic line and to increase 
the index of refraction of modes  below the center of the 
atomic line. These terms  thus act  to push all modes 
further from the center of the atomic line than  they 
would otherwise be. The result is that, for negative 
detuning (modulation frequency greater than  the axial 
mode interval), the average separation between the 
modulation sidebands and axial modes  is somewhat smaller 
than it would otherwise be; thus, some sort of averaged 
detuning  is somewhat smaller than  that’ which  would  be 
obtained in  the absence of this nonlinear part of xi. For 
positive detuning, the opposite situation holds, and an 
averaged detuning  is somewhat larger than  that obtained 
in  the absence of mode pulling. This asymmetrical be- 
havior is a distortion and,  as predicted by the form of 
pn of (53) ,  will  become increasingly small if, at  constant 
I?, 6 becomes increasingly large. From an alternate  point 

VM LASER OSCILLATION 257 

of view, if the same I? is obtained at  an increased 6, then 
AV must be increased, and  the nonlinear mode pulling is 
more effectively swamped out. 

The behavior in  the phase locked  region is a t  first 
somewhat puzzling; that is, it is physically hard  to see 
how pulsing should result from a time  varying phase 
perturbation. A qualitative explanation is indicated by 
Fig. 6, which  is a plot of ~ / A v  vs. I’ (or equivalently 
Av) at constant 6. Since 4 is a uniform shift of all modes 
from their assumed positions of (lo), the closest integer 
to +/A. indicates that mode  which is closest to  an un- 
perturbed  cavity resonance. The curve in Fig. 6 begins 
at  I’ large enough such that  the single FM oscillation 
having its center frequency at  the center of the atomic 
line is already below threshold. As detuning is decreased 
and thus r is increased, a point  is reached such that  an 
oscillation with  its carrier, i.e., its on-resonance frequency 
component, at  approximately the +12 mode,  comes 
above threshold. However, a t  the given 6 the distortion 
of this oscillation is so large that it bears no resemblance 
to  an  FM signal. As Av is further decreased, we find that 
(p is approximately 6AQ/a [the value predicted by (27)], 
and  thus +/Av - I?. For large F, J,(I’) has  its peak 
amplitude at approximately n = I?. It thus appears 
that what  is happening is that  the oscillation which, if 
undistorted, would have its peak relative amplitude at 
approximately the center of the atomic line is the one 
which  oscillates-though with a distortion which  elimi- 
nates most of the FM spectrum. 

The foregoing explanation of the phase-locked  region 
leads to  the prediction that if 6 were increased to  the 
point where the signal were better able to maintain its 
outer sidebands, its power should decrease; and a t  a 
sufficiently large 6, it should fall below threshold. This 
is indeed the case as is  shown in Fig. 7 .  Here 6 is increased 
over Figs. 3 through 6 by a factor of five, and normalized 
power  vs. normalized detuning  is again plotted. We  find 
that  the phase-locked solution is completely eliminated. 
We  also note that, due to  the larger 6, the asymmetry 
of Fig. 5 is significantly reduced. 

The behavior vs. detuning that has been  seen in Figs. 3 
through 7 has been somewhat simpler than it would have 
been had 6 not been  chosen  sufficiently large. At low 6, 
the region over which the laser is extinguished becomes 
an unquenched region wherein E,, # 0 and a number of 
highly distorted FM oscillations are above threshold. 
(Alternately, this region might be  considered as one 
consisting of multiple phase-locked solutions.) At still 
lower 6 this unquenched region extends into  what was 
previously the  steady  state  FM region. Finally, for very 
low 6, i.e., 6 considerably smaller than  the excess  gain,’ 
the  FM solution entirely disappears. There remains a 
steady  state phase-locked solution for very small Av, 

7 In  their mmer entitled  “Detailed ExDeriments on Helium-Neon and for all other Av the situation  is unauenched. If 
FM Lasers,”-Ammann, McMurtry,  and  Oshman  have defined their 
detuning oppositely from  that of this paper. That is, their detuning spontaneous emission is then ” approaches 
is positive when the modulation  frequency is greater  than  the axial zero, the 6 which is necessary to obtain a phase-locked 
mode interval. Allowing for this difference in definition, the direc- 
tion of our  asymmetry is still opposite to theirs. This is perhaps  due 8 We define the excess gain as the difference between the unsat- 
to  a difference in definition of An. urated single pass gain a t  line center  and  the single pass loss. 
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Fig. 7. Output power vs.  detuning for larger 6: go = 0.0'75; 

solution also  approaches  zero. In  such small 6 cases, the 
final st'eady state mode amplitudes are approximately 
those of the free-running laser, and  the principal effect of 
the  perturbation  is to  cause a locking of the phases of the 
respective modes. The effect  on t,he phase-locked solu- 
tion of increasing 6 is to cause the mode amplitudes to 
become  more nearly equal  and to extend over a larger 
spectral  width than did the modes of the free-running 
laser. The result is  a  sharpening of the time domain 
pulsing and  a decrease in  output power. The  time do- 
main pulses may  be  made increasingly sharp  until  the 
laser is extinguished. 

X. DISTORTION AND SEPER-MODE COK~ERSION 
In this section we apply the  iterative procedure of 

Sections V through  VI1 and  study some  effects of dis- 
tortion of the ideal Fib1 solution. We  assume a sonze- 
what higher gain than  in  the previous sectiorl and  take 
go = 0.085, and a, = 0.070.  Inhomogeneous saturation, 
i.e., Pnm = PS,, and  a  ratio of Doppler width to mode 
spacing of 16.67 are  again assumed.  These conditions 
correspond to nine free-running modes in  the unperturbed 
laser. 

In Tables I and I1 we consider  mode amplitudes and 
mode phases, respectively, for a case where 6 = 0.06, 
and  the  detuning is such that r = 4.5.' Column 1 of 
Table I shows the ideal Bessel function amplitudes which 
miould exist if all  net  saturated gains were  zero and mode 
pulling  were neglected. Column 2 gives the results of 
digital computer solution of (13a) and (13b). Columns 
3, 4, and 5 give the results of the first, second, and 
third it'erat'ions of the procedure of Section VII.  In  Table 
11, similar results are given for the relative phase angles. 
It is  noted that these phase angles differ considerably 
more  from their ideal values than do the amplitudes of 
Table I. 

In cases  where the distortion is larger than  that of the 
previous exanlple, for instance when 6 is considerably 
lower or r is considerably larger, the convergence rate 
of the  iterative procedure will  be  slower. If the constants 
of this example are left unchanged, except for reducing 
both 6 and Av by a  factor of two, i t  is  found that 
about five iterat'ions  are required to reach a conzparable 
steady state. However,  even a t  five iterations,  t'he  itera- 
tive procedure requires only about 1/20 of the computer 
time as does solut,ion of (13a) and (13b) t o  comparable 
accuracy. During the course of the nunlerical work, a 
few  cases  were  found  where the numerical procedure 
failed to converge.  These  were  cases of high distortion 
and occurred particularly a t  large I?. 

One manifestation of distortion is the existence of 
beats when the  output of an FM laser is incident on a 
photodetector. Proceeding  from (82) it is seen that  the 
amplitude R, and phase va of the yth beat between the 
laser modes is given  by 

where 

M, = 3 EA,, cos (pn+, - p,) 

For the ideal situation where E,=Jn(I') and p,-(0,-~=0, 
by noting (39) me see t'hat all  beats for p # 0 are zero. 

Even  in t'he  actual case  wherein net  saturated gains 
and mode pulling are  not zero, it may  be  shown  from the 

mode interval  and complicates t,he medication of the detunine 
The presence of a linear term in x', in effect changes t,he axial 

which will lead to  a given r. The fun&ion k,  of (80b) may be ex: 
panded  in a power series as follows [14]: 

..... . ~ 

2r' 4r4 8r6 Z,@) = f2.r 1 - -+ - - -+  * * e  . [ 3 15 10a 1 
If account,ed for as  part of the detining, the linear term of this 

of neglecting t,his term  in q, of (%a), and instead will include its 
series does not lead to distortion. We will thus  adopt  the procedure 

effect in the specification of the detuning. We  note  that experi- 
mentally this problem does not arise  in that  the linear portion of the 
mode pulling is  antomatically  included in the measurement of the 
axial mode interval. 
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TABLE I 
COMPARISOS OF M O D E  AMPLITUDES (En) 

yo = 0.085 
an = 0.070 
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- - 

n 

0 

2 
1 

4 
3 

5 
6 
7 
8 

10 
9 

- 

_. 

Mode  Spacing 
9 Modes Free  Running 

6 = 0.06 
r = 4.5 

(Bessel 
Ideal 

Functions) 

-0.320 
-0.231 

0.218 
0.425 
0,348 
0.195 
0.084 
0,030 
0,009 

0.001 
0.002 

-0.279 
-0.251 

0.180 
0.410 
0,367 

0.107 
0.223 

0.015 
0.043 

0.005 
0.001 

-0,282 
-0,254 

0.180 
0.413 
0,368 
0,222 
0.104 

0.014 
0.043 

0.004 
0.001 

-0.280 
-0.252 

0.180 
0,412 
0.369 
0.224 
0,107 
0,042 
0.014 

0.001 
0.004 

3rd 
Iteration 

-0.280 
-0.252 

0.180 
0.412 
0.369 
0.225 
0.107 
0.043 
0.015 
0.005 
0.001 

TABLE I1 
COMPARISON OF PHASE ANGLES ('pn - q,-,) 

go = 0.085 
an = 0.070 

Doppler  Width 
Mode Spacing = 16.67 

9 Modes Free  Running 
6 = 0.06 
r = 4.5 

Iterative Procedure 

2nd 3rd 
Iteration Iteration 

2  0" 
5.194"  5.242" 

-21.178O  -22.158O -18.583"  -22.181" 
3 0" 17.611" 14.311" 

4.899" 6.298' 0" 4 
17,622" 17.645' 

4.763'  0" 5 
6.219"  6.352" 

3.730" 4.590' 4.746" 

1 5.183' 5.223" 1 0" 

8 0" 8.598" 
1: 1: :' 1 1  9.395' 1 :  8.020" 1 8.919' 1 9.363" 

7.290'  8.139"  8,496" 

8.977'  8.480"  8.951"  9.310" 

. . .. . . 

formulas of Section VI1 that, if the center frequency of 
the  FM oscillation is at  the center of a symmetrical 
atomic line, then  all odd harmonic beats will  be identically 
zero. 

Figure 8 shows the amplitude of the second beat vs. 6 
at  constant I'. That is, both 6 and Av are varied such that 
I' as given by (23) remains constant. Beat amplitudes 
are normalized to  the  total intensity of the FM laser at  
the given I'. For reference, the beat which  is obtained 
from (83) by  taking the E, as those of the free-running 
laser, and assuming that relative phases are zero,  is noted 
in Fig. 8. These conditions are comparable to what has 

been termed a selflocked beat and which  is often observed 
in practice [lo], [15]. Beat amplitudes are shown for 
I' = 4.5 and for I' = 3.0. We note that distortion  is 
somewhat larger at the larger I', and for either I', de- 
creases as 6 is increased. 

Figure 9 shows the time domain behavior corresponding 
to certain of the points of Fig. 8. Data for this figure 
were obtained by evaluation of (82) using E, and pn 
obtained by five iterations of the procedure of Section VII. 
It is  seen that  the ripple may be made increasingly small 
if 6 is made sufficiently large. 

As another figure of merit for an FM signal, we consider 
its supermode conversion  efficiency. The super-mode 
technique is shown schematically in Fig. 10, and was 
suggested by Massey and  demonstrated by Massey, 
Oshman, and  Tar$ [16]. In this technique the  output 
signal from an FM laser is  passed through an external 
phase modulator which  is driven such that  its single 
pass phase retardation is exactly equal to  the r a t  which 
the FM laser is running. By properly adjusting the phase 
of the external modulator with respect to  that of the 
internal phase perturbation, the resultant light signal 
can be made to have a nzodulation depth anywhere be- 
tween  zero and 2 r .  In particular, when the resultant 
modulation depth is adjusted to  zero, then  in principal, 
all of the energy that was previously dhtributed between 
all of the sidebands of the  FM signal should appear as a 
single monochromatic optical signal-or  "super-mode," 
as it has been termed by Targ. 

We take  the light signal emerging from the  FM 
laser to be of the form of (81), and. assume the 
single pass phase retardation of the external modulator 
to be -I' sin v,t. Each sideband of the FM signal is 
thus modulated, and aft,er passage through the external 
modulator, we have 

By using various trigonometric and Bessel identities it 
may be  shown that Eo(t) may be written 

where F ,  and H ,  are given by 

The power in  the desired super-mode is then Fi  + Hi.  
We define the super-mode conversion  efficiency to  be 
the ratio of power in  the super-mode to  the  total power 
of the incident FM signal, giving 

Figure 11 shows super-mode conversion  efficiency vs. 6 
a t  constant I' for the case of nine free-running modes. 
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Fig. 10. Schematic of super-mode  technique. 
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Fig. 8. Amplitude of second beat vs. 6: go = 0.085; an = 0.070; 
A s  = 0.1 Ku.  (Nine modes free  running.) 
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Output  intensity vs. time at different 6: go = 0.085; 
= 0.070; An = 0.1 Ku.  (Nine modes free running.) 

At a r '= 3.0, a 6 approximately equal to five times the 
excess gain yields a conversion  efficiency of almost 100 
percent. At r = 4.5, a somewhat larger 6 is required. 
In obtaining these conversion  efficiencies from (88) we 
have used the r as given  by  (23) and have properly 
taken  into account the linear part of x:. It has been 
previously noted, however, that because of the non- 
linearity of mode pulling vs. frequency, this r is not the 
closest approximation to  the existing FM signal. It is 
thus likely that  the efficiencies of Fig. 11 could  be  some- 
what increased by  a more optimum choice of the con- 
verting F. 

Examination of the time domain behavior of the con- 
verted signal shows Ohat the super-mode process leaves 
the AM ripple unchanged. At 6 = .06, Fig. 9 shows the 
FM signal t o  have  about  a 30 percent AM ripple, while 
Fig. 11 shows the super-mode conversion  efficiency t o  be 
about 98 percent. Though a t  first surprising, the con- 
verted signal is found to  have a time domain behavior 
which is identical to  that of Fig. 9. 

0 0.05 0.10 0.15 0.20 0.25 0.30 
PEAK SINGLE PASS PHASE  RETARDATION 18) 

Fig. 11. Super-mode conversion efficiency vs. 6: = 0.085; 
an = 0.070; An = 0.1 Ku.  (Nine modes free running.) 

XI. APPLICATION AND VALIDITY OF THE a EQUATIONS 
In the derivation of the a Equations of Section VIII, 

two approximations were made. First, it was  assumed 
that 6 was sufficiently large that  the competing oscilla- 
tions could  be  considered t o  have exactly Bessel function 
amplitudes. Second, and more important, it was assumed, 
or perhaps hoped, that phase-locking  between  different 
FM oscillations  could  be  neglected without affecting the 
range of r over  which only a single steady state FM oscil- 
lation would exist. Unfortunately, in certain cases, this 
second assumpt'ion does not  appear to be valid. 

The  thin curve of Fig. 12 shows the application of the 
a Equations to  the case of nine free-running modes of 
the previous section. Inhomogeneous saturation of all 
modes is again assumed, and amplitudes of all oscillations 
are normalized to  the  total power of the free-running 
laser. When r = 0, the FIJI oscillations are identical to 
the free-running modes. As r is slightly increased, the 
oscillations remain very weakly coupled, and  all nine FM 
oscillations exist simultaneously. For a somewhat largar 
r, certain of these oscillations are quenched, but  a con- 
dition of multiple oscillation persists. When I' = 2.3 or 
larger, quenching is  complete and only the zeroth oscil- 
lation remains. Output power first rises as  a result of 
more effective atomic saturation.  The slight dip at  I' - 3.8 
is attribut'able to  a decrease in amplitude of the one 
mode,  i.e., J,(3.832) = 0. For larger r power  decreases 
as relative amplitudes which are  further from the center 
of the Doppler line are increased; and for I? = 6.7 the 
oscillation is below threshold. 
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The  thick curve in Fig. 12 shows  normalized output 
power as obtained from (13a) and (13b),  where a 6 of 0.06 
has been assumed. In  regions  where this  thick line is 
absent, (13a) and (13b) predict a condition of multiple 
FM oscillation. Thus, at  points where there is only a 
single thin line and no thick line, (13a) and (13b) are  in 
disagreement with the a Equations." 

At I"s where the a Equations predict multiple FM 
oscillations, (13a) and (13b) are  in agreement. For  certain 
of these cases, the time  variation of the nonsteady state 
E, which resulted from the digital comput'er solution of 
(13a) and (13b)  were  examined. At r = 2.16,  where the a 
Equations predict that  the a, and  the a,, oscillations 
should  exist simultaneously, that all the E,, were  periodic 
functions of time  and  had  a  fundamental frequency. 
variation of Av and  a higher harmonic variation of 2Av. 
At I- = 1.35, where the a Equations predict that only 
the a,, oscillations  should exist, all the E,, had  a perfectly 
sinusoidal time variation a t  a frequency of 4Av. These 
results  are consistent with  the transformation of (61). 

Examination of the time domain behavior of the E, 
at I' = 2.5,  i.e.,  one of the points of disagreement, showed 
the zero and also the f l  oscillations to exist sinlul- 
taneously. It was also determined that irrespective of 
initial conditions, these oscillations existed with a phase 
relation which, if each  were perfect FM, results in partial 
cancellation of the factor of two which is involved in  the 
cross saturation of FM oscillations, and which  was  dis- 
cussed at  the end of Section VIII. 

It thus appears that  the a Equations are over opti- 
mistic, and predict a  steady  state FM oscillation, when 
perhaps a phase-locked multiple oscillation situation 
would exist. We note, however, that we have assumed a 
perfectly symmetrical atomic line with one FM oscil- 
lation exactly a t  its center. This condition is favorable to 
a phase-locking  process, and whether such locking  will 
occur under typical experimental conditions remains to 
be  determined." 

As another application of the a Equations, we con- 
sidered the case  of a very narrow high  gain line such that 
only one free-running mode  was above threshold. An 
axial mode interval  equal to 1.2 times the Doppler width 
was assumed, and go and a were taken  as 0.56 and 0.056, 
respectively. The results are shown in Fig.  13,  where 
two interesting effects are observed. First, we find that 

takes  the  form of a damped or growing beat a t  harmonics of Av, 
10 Since in all cases the modes display a transient which generally 

it is necessary to  make  an  arbitrary decision as to  what is to  be 

percent variation of the E, after 100 microseconds was considered 
considered as a steady  state condition. For  the  present case, a 10 

time of between  15 and 30 minutes on  an IBM 7090, for each  data 
as satisfactory. At a proper iteration  interval  this represents a run 

point. 

running modes above  threshold,  Ammann, RiIcMurtry, and Oshman, 
11 I n  their experiments  on  a 6328A He-Ye laser with nine free- 

[15], have found that a steady  state F M  oscillation does exist a t  
certain  points, e.g., r = 3.9, where for a running  time of 100 ps,  
(13a) and  (13b)  predict multiple oscillation. However, this does not 
resolve the question,  in that completely inhomogeneous saturation 
is not a  proper  approximation for He-hTe. We  have found that if a 
single pass gain of the  form gn(l - @Enz - 0.4 pEn+12 - 0.4 pEn-12) 
is assumed, and all other  constants  are left  unchanged, that (13a) 
and (13b) will then also predict a steady  state oscillation a t  r = 3.9. 
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Fig. 12. [u,J2 vs. r: go = 0.085; c ~ n  = 0.070; Afi = 0.1 Ku.  (Nine 
modes free  running.) 
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Fig. 13. lup12 vs. r for  high  gain  line: go = 0.56; an = 0.056; 
As2 = 2.0 Ku. (One  mode  free running.) 

the  FM power may exceed that of the free-running laser 
by a  factor of -3. Second, we find that,  for higher I-, 
steady  state FM oscillations which have  their carrier 
frequency either above or below the center of the atomic 
line may exist. In such cases, whether the plus or minus 
oscillation exists is determined by  initial conditions. 

For the case of the high gain line, as well as another 
case  which  was  considered  wherein only two FM oscilla- 
tions were above threshold, it was found that  the results 
of the a Equations were in complete agreement with 
those of (13a) and (13b). The agreement in these cases 
is  attributed  to  the  fact that a phase-locking of oscilla- 
tions requires at  least three oscillations-two of which 
drive the  third. It is planned that a further  study of 
phase-locking of FM oscillations will  be undertaken. 

XII. EFFECT OF MIRROR MOTION 
In previous sections we have always assumed that 

the center frequency of the q = 0 oscillation was at  the 
center of a symmetrical atomic line. Under typical operat- 
ing conditions, this will seldom be the case. As a  result 
of mirror motion, the center frequencies of all the  FM 
oscillations  will drift  with respect to  the center of the 
atomic line. It is expected that if the  drift from the 
center of the atomic line is greater than  about one-half 
an axial mode interval,  then  either the q = - 1 or q = +1 
oscillation should become the dominant oscillation. This 



262 IEEE  JOURNAL OF QU 

type of jumping behavior has been  observed  by hmmann, 
McMurtry,  and Oshnzan [15]. From  the  point of view of 
the super-mode conversion process, the  resultant super- 
mode  will  be  &able to withill about it+ of an axial mode 
interval  from  the center of the atomic line. 

In  Section X it was noted that if the center frequency 
of an  FM oscillation is at  the center of a symmetrical 
atomic line, then all odd  harmonic beats will  be identically 
zero. This  results because the contributions to  the odd 
harmonic beats from sidebands which are  above the center 
frequency of the FM oscillation are exactly cancelled  by 
cont’ributions from sidebands below the center frequency 
of the oscillation. As the center frequency moves off 
line center, this will  no longer be the case. The cancel- 
lation of upper and lower contributions  is  no longer conz- 
plete, and odd  harmonic distortion  rapidly increases. 

Figures 14 and 15 show the amplitude  and phase, re- 
spectively, of the first and second beats as a function of 
the position of the center frequency of the  FM oscilla- 
tion with respect bo the center of the atomic line. For 
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Fig. 14. Amplitude.of first and second beat vs. position of center 
frequency: go = 0.085; a% = 0.070; AQ = 0.1 Ku.  (Nine modes 
free running.) 

these figures, 6 = 0.15, I’ = 3.0, and  other  constants and 
the normalization are  the same  as those of Fig. 8. Data 
for the figures  were obtained by  five iterations of the 
procedure of Section VII. It is seen that  the amplitude 
of the first beat is extremely sensitive to  the posit’ion of 
the center frequency of the FM oscillation, while the 
anzplitude of the second beat  is nearly independent of 
this position. In  addition, the phase of the first beat 
changes abruptly as the center of t’he FM oscillation 
moves  from  one side of the atomic line to  the ot’her. The 
behavior of higher odd and even beats is similar to  that 
of the first and second beats, respectively. Harris and 
Oshman have proposed that these effects  could  be  used 
as a frequency discriminant for stabilization of an FM 
laser, and experiments demonstrating the existence of 
such a discriminant have been  performed [17]. 
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