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Stabilization  and  Modulation of Laser  Oscillators 
by Internal  Time-Varying  Perturbation 

S .  E. HARRIS 

Abstract-The paper reviews the application of internal time- 
varying perturbation to the problem of  laser mode control and stabili- 
zation. The spectral characteristics and time domain behavior obtained 
bymeansofphasetypeandlosstypeperturbatiomarecomidered. 
Two techniques which allow the attainment of high single frequeacy 
output powers from mlnally multimode lasers are desm’bed. A 
method for the absolute frequency stabilization of  an FM laser is coil- 
sidered, and a brief ctiscossion of an etficient method of internal modu- 
lation, termed coupling modulation, is given. 

T 
I. INTRODUC~ON 

0 A LARGE extent the gain Seen by the modes  of 
an optical  maser  is a result of their  independent 
interaction with  essentially  different atomic popu- 

lations. In gas  masers, this is  primarily the result of Dopp- 
ler broadening [l 1, while  in  solid-state  masers  it  is often 
the result of what  may be termed as spatial broadening 
[ 2 ] .  If the spectrum of such a multimode  laser  is  viewed 
with a scanning Fabry-Perot interferometer,  it  is  typically 
observed to be  unstable both in amplitude and frequency; 
and in  certain  cases of importance such as  that of  high 
gain argon, it  is  completely erratic, displaying  violent 
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amplitude fluctuations and  random appearance of the dif- 
ferent  modes [3]. An oscillator  spectrum of this type  se- 
verely  limits the application of the laser. For example, the 
distortion-free bandwidth which  is  available for communi- 
cations is  immediately  restricted to the axial mode inter- 
val-which for  many  gas  lasers  is  approximately  100 
Mc/s. 

The purpose of this paper  is to consider the use  of in- 
ternal time-varying perturbation to establish  coherence 
between and to achieve  stabilization of the laser  modes. 
By an internal time-varying perturbation is  meant an ele- 
ment  either  whose optical path length,  or  whose  loss,  may 
be varied  by an externally  applied modulating signal. An 
element of the first  type  is  termed a phase perturbation, 
while  one  of the second  type  is  termed a loss perturbation. 
Both  types of perturbations may  be  achieved  by  means  of 
either the linear  electrooptic  effect  in  crystals  such as 
KDP,  or  in certain cases  by  acoustic  means. 

Consider  iirst a situation wherein an internal loss per- 
turbation is  weakly  driven at a frequency  which  is ap- 
proximately that of the axial mode interval. Its effect  is to 
produce  sidebands at all  frequencies  which are spaced  by 
the modulation frequency from each of the original  free- 
running axial  modes. By displaying the beat  spectrum of 
the laser on an RF spectrum  analyzer we could  observe 
that the modes of the free-running  laser are slightly 
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pulled toward the parametrically  generated sidebands of 
the perturbation. If the drive strength of the perturbation 
is  increased,  a point is  reached  such that  one of the free- 
running modes is pulled into lock  with the perturbing 
sideband from an adjacent mode. At a further increase of 
drive strength, the last free-running mode of the laser is 
pulled into synchronism, and a  complete  phase  locking of 
the laser  occurs.  Phase  locking of this type was  first dem- 
onstrated by Hargrove,  Fork,  and Pollack [4] by acoustic 
modulation of the intracavity loss of a 6328 A He-Ne 
laser.  These authors  noted a  greatly  increased  stability of 
the optical spectrum and observed that the time domain 
output  corresponding to such  a  phase  locked  spectrum  is 
a  repetitive  series of narrow pulses  having  a repetition fre- 
quency equal to  that of the perturbation. 

Consider  next the case of fairly strong internal phase 
perturbation driven at a  frequency  which  is almost, but 
not exactly, that of the axial  mode  interval. The situation 
here  is  best  described  somewhat  differently. The effect  of 
the perturbation is again to associate  a  set of sidebands 
with  each of the previously  free-running  laser  modes. For 
a  sufficiently strong perturbation these sidebands will 
have  approximately  Bessel function relative amplitudes 
and FM phases,  with the modulation  depth determined 
by the strength of the phase perturbation and by the dif- 
ference in frequency  between the driving  frequency of 
phase perturbation and the axial  mode interval. In effect, 
each of the free-running laser  modes  becomes the center 
frequency  or carrier of an  FM signal. The resulting FM 
oscillations, that is the resulting  sets of sidebands, then 
compete for the atomic population in the same sense as 
did the previously  free-running  modes.  However,  while 
the free-running  modes  experienced  their  gain from 
somewhat  independent atomic populations, the com- 
peting FM oscillations to a  large  extent see the same 
atomic population. For iristance, the first  upper  sideband 
of an FM oscillation  which  is  centered at the center of 
the atomic fluorescence  line  is  in the same  homogeneous 
linewidth, and therefore sees the same atomic population, 
as does the center  frequency of an  FM oscillation  which  is 
centered  one  mode above the center of the atomic fluores- 
cence  line. The competing FM oscillations are thus much 
more tightly  coupled than were the previous free-running 
laser  modes. In the cases of principal interest the strong- 
est of the FM oscillations-usually the oscillation  whose 
carrier is at the center of the atomic line-will be able to 
completely  quench the competing  weaker  oscillations. 
The result  is that shown in the lower part of Fig. 1 wherein 
the sidebands of a  single coherent FM oscillation  deplete 
most of the inverted population of the atomic line.  Such 
FM laser  oscillation  was fmt demonstrated by Harris and 
Targ [ 5 ]  in a 6328 A He-Ne laser. 

In the following  sections  of the paper, we  will describe 
in detail the spectral  characteristics  which are obtained by 
means of internal phase or loss type perturbation. Con- 
sideration will be given to the time domain behavior 
which  is  characteristic of the different spectral outputs, 
and  to the questions of distortion and power output. Two 
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Fig. 1. Schematic of FM laser oscillation. Figure 
from Harris and McD& 191. 

techniques  which  allow the attainment of high  single fre- 
quency output powers and have been termed as the 
super-mode  technique,  and as  the method of frequency 
selective  coupling, will be considered. A technique for ab- 
solute frequency stabilization of an  FM laser will then be 
described.  Finally  a  brief  discussion of an efficient  method 
of internal modulation, termed  coupling modulation, will 
be  given. 

11. INTERNAL PHASE PERTURBATION 

As  noted in the Introduction, the effect  of an internal 
phase perturbation is to associate  a  set of sidebands  with 
each of the previously free-running modes. The relative 
amplitudes of these  sidebands  depend in part on the 
strength of the internal phase perturbation, in part on the 
frequency  difference  between the driving frequency of the 
internal phase perturbation and the axial  mode interval 
(hereafter  referred to  as the detuning), and in part on the 
atomic gains, cavity losses, and reactive  mode  pulling 
effects  which are present in the system.  Depending on the 
relative magnitude of these parameters, a number of dif- 
ferent effects  may  be  observed. For large perturbation 
strength and a certain range of detuning, FM laser  oscil- 
lation may be obtained. Alternately,  very  small detunings 
and lower perturbation strengths yield  a  time domain 
pulsing  behavior  which  is  very  similar to  that obtained by 
means of internal loss perturbation. 

A .  Basic Equations and Discussion of Parameters 
The basic equations which  describe the effect of an in- 

ternal phase perturbation on a  laser  oscillator  have been 
given  by Gordon and  Rigden [6], Yariv [7], and Harris 
and McDuff [8], [9]. The  form of Harris and  McDuff [9] 
is as follows: 
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In these equations E, and 4, are  the amplitude and phase, 
respectively, of the nth cavity  mode, such that the total 
cavity electromagnetic field as a function of space and 
time  is  given by 

~ ( 2 ,  t> = En(1) COS [vnt + + n ( O ]  u n ( z > ,  (2) 
fl 

where U,,(z)= sin (no+n)xz/L. The integer no is the num- 
ber of spatial variations of some central mode which we 
choose to be that mode whose  frequency  is  closest to the 
center of the atomic fluorescence line and whose circular 
frequency  is R o =  no?rc/L.  Built into these equations is the 
convention that if & = 0, then the oscillation frequency of 
the nth mode V, is equal to Ro+nv, where v, is the driv- 
ing  frequency of the internal phase perturbation. Thus if 
all 4, are zero, the oscillating  modes are spaced  by v,, 
and the frequency of the central (n= 0) mode is Qo. The 
appearance of a nonzero 4, in the solution of these equa- 
tions denotes that the actual oscillation frequency of the 
nth mode is then Q,+nv,+&. The quantity AV in (la) is 
the frequency  difference  between the axial mode interval 
and the driving frequency of the internal phase perturba- 
tion, i e., Av=AR-vm;  where  positive Av denotes a driv- 
ing  frequency  less than the axial mode interval. 

The quantity xn” is the quadrature component .of the 
atomic susceptibility and for  small saturation is related 
to the single pass power  gain  by the relation 

where g, is the unsaturated single pass power gain of the 
nth mode and the brim are saturation parameters which 
represent the effect  of the mth mode on the gain of the nth 
mode [lo] ; X: is the in-phase component of the atomic 
susceptibility and may be expressed as 

C m 

where un is the additional round trip phase retardation 
which  is seen by the nth mode as a result of power inde- 
pendent mode pulling, and the T~~ represent power depen- 
dent pulling and pushing effects [IO]. We also note  that 
the Q of the nth mode may be written as 

where a, is the single pass power  loss  which  is  experienced 
by the nth mode as a result of nonzero output coupling, 
scattering, and diffraction; L is the laser cavity length, and 
v is the average optical frequency.  We note that Q,, is not 
meant to contain a contribution resulting from a para- 
metric gain or  loss in that such contributions are ac- 
counted for by the right side of (lb). 

The quantity 6 is the coupling coefficient  between adja- 
cent axial modes. In practice, the time-varying phase per- 
turbation will often be achieved  by means of a small per- 

turbing element  which has no significant spatial variation 
in the z direction. If  we let 6, denote the peak  single pass 
phase retardation of such an element of length a, then it 
may be shown [9] that the coupling coefficient 6 is 
given  by 

where a is the length of the perturbing element, and zo is 
its distance from an end mirror of the optical cavity. If 
u/L is small, then we have  COS z0?r/L)6,. It is there- 
fore desirable for such a perturbing element to be situated 
as closely as possible to the end of the optical cavity. In 
this case the coupling coefficient 6 will then be  very  nearly 
the readily measurable peak  single  pass  phase retardation 
of the perturbing element. It should be noted that if the 
perturbing element  is not small then its spatial variation 
may be of importance. As an extreme  case, if the perturb- 
ing  element is spatially uniform and completely fills the 
optical cavity then 6 would  be  zero. 

B. Solution of the Linear  Approximation 
Before  proceeding to the results of a more exact  solu- 

tion of (la) and (lb), it is instructive to examine their 
solution with nonlinearities and mode pulling  neglected, 
and with the assumption of an infinity of laser modes all 
having a single pass gain  exactly equal to their single pass 
loss. 

We  first look for steady-state solutions such that 
E n  =O and &, is constant and independent of n. Noting 
the Bessel function identity 

we see that (la) and (lb) are satisfied  by the set of q solu- 
tions 

E, = 0 
&, = qAv 

E, = Jfl&) 
+n+l - +n = 0, 

where q is an integer, and r is given  by 
c 1  1 AQ 
L Av x Av 

r = - - 8  = - - 6  

1 axial mode interval 
.rr detuning  frequency 

These solutions correspond to  FM oscillations  having a 
modulation depth of I?, and a center frequency at the qth 
mode [9]. A schematic of the q= 0 and q= 1 solutions is 
shown  in Fig. 2. 

We  see that in a h e a r  theory any of the previously 
free-running laser  modes  may  become the carrier of an 
FM oscillation. These FM oscillations, all having a mod- 
ulation depth r, are the normal modes of the lossless  sys- 

= -  6. (9) 



1404 PROCEEDINGS OF THE IEEE  OCTOBER 

-3 - 2  -I 0 -. I 2 3 ry 4 n- 

n- 

Fig. 2. Schematic of q = O  and q= 1 solutions. Figure 
from  Harris  and  McDuff [9]. 

tem in the sense that if a particular oscillation could be 
independently  excited, it would  be  indefinitely  sustained. 
In the linear approximation of this section  any  number of 
these FM oscillations  may  be  independently  excited, and 
may  exist  simultaneously  with arbitrary amplitudes  and 
phases [9]. However, in the presence of the nonlinear 
atomic gain,  these  oscillations  compete for the  atomic 
population with the result that in many  cases  of interest, 
a single  steady-state FM oscillation  may be attained. 

We  next  consider the solution of  (1) for the case  where 
the detuning Av=O. In this case r as defined  by (9) is 
infinite and the solutions considered thus far are indeter- 
minate. Equations (la) and (Ib) have the solution 

En = En+1 

4n+l  - 4 n  = P* 
6c 6 

L 
dn = (-1)Pt'- = (-l)*l-AQ, (10) 

3r 

where p is an integer. In the time domain this solution 
corresponds to a behavior  which  consists of a repetitive 
series of pulses, and is thus similar to  that obtained by 
means of internal loss perturbation. Of interest  is the 
presence of the constant &, which denotes a uniform 
comb-type  shift of all modes  from  their free-running fre- 
quencies. 

C. Details of the FM Steady-State Solution 
In the approximation of Section 11-By nonlinearities 

and mode-pulling were  neglected, and an infinity of laser 
modes all with  gain equal to loss  were  assumed. It was 
found  that  any of the FM oscillations had exactly  Bessel 
function relative amplitudes and zero  relative  phases and 
thus were  completely distortion free. When finite atomic 
line  width,  mode  pulling, and  atomic saturation are in- 
cluded, this is no longer the case. We  define the quanti- 
ties *,, and pn as follows: 

VLXn' 
\kn = - 

C 

The quantity 'k, is the additional round  trip  phase re- 
tardation which  is Seen by the nth mode as a result of the 
real part of the atomic susceptibility and is described in 
(4). The quantity pn described in (3) and ( 5 )  is the net 
saturated single  pass  power gain of the nth  m'ode. In a 
free-running  laser, all modes  oscillate at a power  level 
such that single  pass  gain equals single  pass  loss, and 
therefore p,=O for all oscillating  modes. In the presence 
of the parametric phase perturbation, this is no longer 
the case. For those modes  which  oscillate at a level  which 
is greater than their free-running counterpart, p,, is  posi- 
tive; while for those modes  which  oscillate at a level  which 
is  less than their free-running counterparts, pn is  negative. 

For typical  experimental situations, the nonzero pn 
result in more distortion than  do the *,,. Harris and 
McDuff [9] have  shown that, for such situations, the 
first-order,  relative  mode amplitudes are still Jn(I'), and 
that the relative  phase  angles are given  by 

1 1 n-1 

sin ( a  - 4n-1) = * - 2 x- pqJq*(r) .  (12) 
Jn(r)Jn-l(I '> 6 q=-m 

Thus  to fist  order, the nonzero net saturated atomic gains 
do  not affect the relative mode amplitudes, but  do affect 
the relative  phase. The  nonzero relative  phase  angles 
result from  accumulation of nonzero  net saturated gains. 
In general an  FM laser operated at a r such that  the rela- 
tive  mode amplitudes, to  at least some extent, approxi- 
mate those of a free-running laser  will  have  less  phase dis- 
tortion  at a given 6 than  an FM laser  whose  mode ampli- 
tudes depart sharply from those of the free-running case. 
In particular, distortion will be increased  when operating 
at a such that  the amplitude of some  mode  is driven 
close to zero, or alternately when operating at a large I' 
such that a number of modes  having appreciable ampli- 
tudes are outside of the spectral width of the free-running 
laser. A particularly important point is that phase distor- 
tion may be made arbitrarily small by making the pertur- 
bation strength 6 increasingly  large. It is therefore desir- 
able to obtain a given I' by working  with the largest  avail- 
able 6 and thus from (9) with a correspondingly large 
detuning. 

At smaller perturbation strengths, or at small detun- 
ings  where the effect  of  mode  pulling  becomes more im- 
portant, significant distortion of relative amplitudes may 
also  result. To the next order, relative mode amplitudes 
are given  by [9] : 

n 1 

At sufficiently large 6 the cosine of the relative phase 
angles approach unity and their contributions to H, van- 
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AMPLITUDE OF FIRST  BEAT  OF  FREE-RUNNING  LASER = O  dB 
AMPLITUDE  OF SECOND BEAT  OF  FREE-RUNNING LASER=-7  dB 
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Fig. 3. Beat amplitude vs. 8 at  constant r. Figure 
from  Ammann,  McMurtry,  and  Oshman [ll]. 

Fig. 4. Typical FM spectra.  Figure  from Ammann, 
McMurtry,  and  Oshman [ll]. 

ish. The contribution to p, resulting from mode pulling 
also varies inversely as 6, and thus at large 6 the ap- 
proach 0 and the E,, approach Jn(r). 

One manifestation of distortion is the existence of beat 
notes when the output of an FM laser is incident on a 
photodetector. An ideal FM signal has no variation of 
amplitude with  time and thus all beats are zero. In the 
presence of phase or amplitude distortion, such beats are 
present and according to the previous formulas should 
decrease if 6 is increased and AV is adjusted to hold r con- 
stant. Figure 3 shows results obtained by Ammann, 
McMurtry, and Oshman in their experiments  with a 
He-Ne FM laser [ 1 11. The gain of the laser  in the experi- 
ment  was  such that four free-running modes were above 
threshold. The figure  shows the amplitude of the second 
beat vs. 6 at constant r. Beat amplitudes are normalized 
to the first beat of the free-running laser. These curves are 
in good qualitative agreement  with  curves  based on 
(12x14) [91. 

Some typical FM spectra obtained by means of a 
scanning interferometer by Ammann et al. [l 1 ] are 
shown in Fig. 4. These were obtained at 6=0.05 and show 
little distortion. 

D. Power Output 
We return to  (lb), multiply both sides through by E,,, 

and sum  over n from - m to + cc . Examination shows 
the right side to be zero and we thus obtain 

E (E,e. + [’ + x,,”] Enz} = 0. (15) 

Noting that E,E,,=((d/dt)(En2/2), it is  seen that the fore- 
going equation is a statement of power conservation. 
That is, fhe rate of change of total stored  energy plus the 
net power dissipated or absorbed in all modes is zero. 
Though in the absence of the parametric perturbation, 
power  is approximately conserved by all modes indi- 
vidually,  in its presence it is jointly conserved. In the 
steady state, all E, = 0, and thus if the relative mode ampli- 
tudes E, are known, then (15) is an equation in one un- 
known, and determines the level of oscillation. If 6 is 
maintained sufficiently large that relative mode ampli- 
tudes are Jn(r), and r is  increased by decreasing the de- 
tuning Av, then the laser output power  will  decrease as 
modes  with  large  relative amplitudes appear further from 
the center of the atomic line. From (15) we find that the 
condition for positive  power output from an FM laser is 
that 

n=-m 2 Qn 

(gn - an)JnZ(r) > 0. (16) 
n 

This condition is analogous to the condition go>ao for 
positive  power output for a free-running single mode 
laser. Thus at sufficiently large 6, an  FM laser  may be ex- 
tinguished by a sufficient decrease of the detuning Av. For 
optimum r’s, the maximum theoretically possible  power 
output of an  FM laser has been found to be approxi- 
mately that of the equivalent free-running laser [9], [ I1 1. 

One of the problems associated  with FM laser  oscilla- 
tion is that of constructing an internal perturbing element 
which  is  sufficiently  lossless that it does not significantly 
reduce the available output power. Early experiments 
were performed  with antireflection coated z-cut KDP 
crystals [ 5 ] ,  [l 1 1. This method was not satisfactory and 
yielded  maximum FM powers of about  1 mW where,  in 
the absence of the internal element, free-running powers 
of about 15  mW could be obtained. The trouble with the 
above method was that of achieving a sufficient  polish on 
the surfaces of the KDP crystal. Targ  has overcome this 
difficulty  by means of antireflection coated cover-glasses 
which are contacted to the crystal by means of index 
matching cement.  Using this technique, Targ and 
McMurtry 1121 have  recently obtained FM power out- 
puts of 53 mW from a Spectra-Physics Model 125 laser 
which furnishes 68 mW in the absence of the internal per- 
turbation. Using an argon laser, Osterink has recently 
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obtained an  FM power output of about 100  mW from a 
laser capable of about 120  mW [22]. The construction of 
low  loss internal modulation elements has also been con- 
sidered  by  Uchida  [13]. 

E. The Phase Locked Region 
In previous  sections we have  primarily  discussed what 

may be termed the FM region of operation of an  FM 
laser.  However, if either 6 or the  detuning AV is  suffi- 
ciently  decreased, the behavior  predicted by (la) and 
(lb) becomes  considerably more complex. In particular 
for small detuning there is  a  region  where the modes  have 
nearly equal amplitudes and  is  such that the behavior in 
the time domain consists of a  series  of  spikes or pulses. 
This type of solution was  indicated  by (lo), and  has been 
termed  a  phase  locked solution. In order to illustrate a 
number of interesting  effects we consider the results of a 
numerical solution of (la) and (lb) for a situation corre- 
sponding to five free-running modes in a He-Ne laser. It 
should  be  noted that  the following  numerical solutions 
assume atomic saturation of the  form (1 and 
thus, especially at higher  gains,  should not be  expected 
to agree  exactly  with  experimental  results [14], [15]. 
Further details of these solutions are given  by Harris and 
McDuff [9]. 

In Fig. 5 we show  laser  mode  intensities (+En2) vs. opti- 
cal frequency-such as would  be  observed on a  scanning 
Fabry-Perot interferometer. Figure 5(a)  shows the intensi- 
ties of the modes of the free-running laser,  i.e.,  with 6 = 0. 
In Fig. 5(b), 6 is  set equal to 0.015,  and the frequency of 
the parametric drives adjusted such that it is  exactly equal 
to the axial mode interval (Av=O). A widening of the 
optical spectrum and some  tendency  toward equalization 
of the mode  intensities  is  observed.  Relative  phases are 
found to have  values  between 0 and 50'; a uniform, angu- 
lar frequency  shift  of all modes from their free-running 
positions of $=0.946(AQ/r) is obtained. The direction of 
this shift  is dependent on initial conditions and is too 
small to show on the scale of Fig. 5.  We note that a shift 
of this type has recently been observed  experimentally  by 
McMurtry  and  Targ [ 1  1 1. 
In Figs. 5(c)-5(f), 6 is  left constant at 0.015, and  the 

detuning AV is  increased in steps. At the small detuning of 
Fig.  5(c) (Av=O.O00356Q), we observe an interesting 
shift of the envelope  of the modes of about 2Av. Associ- 
ated with this gross  envelope  shift is a  decrease  in  laser 
power as peak  relative amplitudes are moved further from 
the center of the Doppler line. As the detuning is further 
increased, the envelope  shift  and  decrease in  power con- 
tinues until, as shown in Fig.  5(d), the laser is extin- 
guished. This interesting  envelope  shift has also been ob- 
served  by Ammann,  McMurtry, and Oshman [ 11 ] and 
is shown  in Fig. 6. 

Figure 5(d)  might  be  considered as the beginning of the 
steady-state FM region  wherein there is  a  single FM oscil- 
lation with its center  frequency at the center of the atomic 
line  and  with  a modulation  depth r approximately given 
by  (9). For the detuning of Fig. 5(d), I' is  approximately 

a.0.a~ a.o.ol5 

~ * 0 . 0 0 0 3 5  k . O . W O 3  

I C )  
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( d l  - t 

a.o.015 a.0.015 
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Fig. 5. Laser mode intensities  at  constant 6 and  variable  detuning: 
g0=0.075; a,= 0.070. Five modes free  running.  Figure ftom 
Harris and M c D a  [9]. 

Fig. 6. Shift of envelope of laser modes in phase locked region. 
(a) Zero detuning. (b) Finite  detuning.  Figure  from Ammann, 
McMurtry,  and  Oshman [ll]. 

six, with the result that (16)  is not satisfied and  the oscil- 
lation is below threshold. In Figs.  5(e)  and 5(f) the detun- 
ing is further increased  with the result that I' decreases, 
relative amplitudes are concentrated closer to  the center 
of the  atomic line, and  output power  increases.  If the de- 
tuning is  increased past that of Fig. 5(f) we enter a  region 
of multiple FM oscillation. In this region more  than  one 
mode acts as a camer for an  FM oscillation and a steady 
solution in  the sense of zero does not exist. 

Figure 7 shows the time domain behavior  which cor- 
responds to the spectrums of Figs. yb) and 5(f). Output 
intensities are normalized to the total average  intensity 

of the free-running laser. We note that the pulsing of the 
phase  locked solution is at the driving  frequency  of the 
internal phase perturbation and  has peak  intensities  which 
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Fig. 7. Output  intensity vs. time  for  phase  locked  and FM opera- 
tion : go =0.075; a, =0.070. Five  modes free running. Figure 
from  Harris  and M c D d  [9]. 
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Fig. 8. Output  power vs. detuning : go= 0.075; a,=0.070. Five 
modes  free  running.  Figure  from  Harris  and  McDuff [9]. 

are approximately six times the average intensity of the 
free-running laser. By contrast the envelope  which cor- 
responds to the FM spectrum of Fig. 5(f) is more nearly 
constant and independent of time. The ripple is  entirely 
even harmonic and is a result of the distortion of ampli- 
tudes and phases from those of an ideal FM signal. As 
discussed in Section 11-D, this ripple can be made 
arbitrarily small if 6 is made sufficiently  large.  We  might 
note that, as opposed to the periodic behavior of either 
the phase locked or FM solution, the time domain be- 
havior of the envelope of a free-running laser consists of 
an erratic fluctuation with  peak intensities almost as 
great as those obtained in the phase locked  region. 

In Fig. 8 we show  average intensity 

as a function of the normalized detuning. At zero detun- 
ing,  i.e., in the phase locked region, the  output power is 
about 0.95 that of the free-running laser. As detuning is 
increased the mode envelope shifts away from the center 
of the Doppler line and output power  decreases to zero. 
The oscillation remains below threshold until a detuning 
corresponding to a I? of -4. For further increase of de- 
tuning, r decreases and the output power rapidly rises. 
We note that for the case  considered either phase locked 

or FM operation is obtained at nearly full power of the 
free running laser. 

The behavior vs. detuning that  has been  seen  in  Figs. 
5-8 has been  somewhat  simpler than  it would  have been 
had 6 not been  chosen  sufficiently large. At low 6 the 
region  in the above figures  where the laser  was extin- 
guished  becomes  instead an unquenched  region  where 
I?,, is not equal to zero and a number of highly distorted 
FM oscillations are simultaneously above threshold. At 
still  lower 6, this unquenched  region extends into what 
was previously the steady-state FM region. Finally for 
very  low 6 the FM solution entirely disappears. There 
remains a steady-state phase locked solution for very 
small AU and, for all other Au, the situation is that of mul- 
tiple oscillations. In such  small 6 cases, the final steady- 
state mode amplitudes of the phase  locked solution are 
approximately those of the free-running laser and the 
principal effect  of the perturbation is to cause a locking of 
the phases of these  respective modes. 

It might also be noted that if 6 is  very large, then the 
phase  locked solution completely disappears, and the 
laser is extinguished in the region of detuning between the 
positive and negative (detuning) FM solutions [9], [ 11 3 .  

111. INTERNAL Loss PERTURBATION 

The establishment of coherence  between the modes of 
an oscillating  laser  may also be achieved  by  time-varying 
perturbation of the internal loss. Early experimental work 
in this area was  performed by Hargrove, Fork, and Pol- 
lack [4] and by Giirs and Muller [16], [17].  Linear 
analyses and discussion  have been given  by DiDomenico 
[18],  Yariv [7], and Crowell [19]; and a linearized tran- 
sient  analysis has been given  by Pantell and Kohn 1201. 
An analysis of the nonlinear problem has been given  by 
McDuff and Harris [21]. 

A .  Equations and Discussions of Parameters 
The equations describing the effect  of an internal time 

varying loss have  been  given  by  several authors  [7], [18], 
[19], [20], [21]. The form of McDuff and Harris is as 
follows: 

f f C  

+ En-lcos(+n-+n-J]. (l’ib) 

These equations assume a time-varying  loss of the form 
cu(z)[l+cos v,t] to be present internally to the laser 
cavity. The quantity a, is the coupling coefficient  between 
adjacent axial modes and is given by 
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l L  ?Tz 
2 L 

ac = - Jo a(z) sin - dz. 

The quantity a is the average  single  pass  power  loss of the 
perturbing element, 

L 
a = so a(z) dz. (19) 

If the perturbing element has a loss  which  is  independent 
of z, is of length a, and is  situated a distance zo from the 
end of the laser  cavity, then ac of  (18)  becomes 

Thus if, as is often the case, a / L  is  small and  the perturb- 
ing element  is situated sufficiently  close to the end of the 
laser  cavity, then we have a,=a/2. 

Other quantities in (17a)  and  (17b) are defined in Sec- 
tion 11. 

B. Solution of the Linear Approximation 
With the assumption that  an infinity of laser modes 

saturate at gain equal to loss,  and  setting the  detuning 
Av=O, DiDomenico [18] has given the solution of (17a) 
and (17b) as: 

E n  = E n + 1  

4 n + l  - 4 n  = 1~ 

dn = 0. (21) 

This solution consists of an infinite number of  laser modes 
having equal amplitudes and r relative  phases,  and cor- 
responds to a repetitive  series of infinitely sharp pulses 
having a repetition frequency equal to the driving fre- 
quency of the loss perturbation. 

For AvZO, Yariv [7] has given the solution 

E n  = I n ( 5 )  

?r 
4 n + l  - 4 n  = - 2 

4 n  = 0, (22) 

where the 1, are modified  Bessel functions and 
,$= (ac/a)(An/Av) .  However for a reason to be  considered 
in  the following  section, this solution does not appear to 
be pertinent to the actual nonlinear problem. 

C. Power Level 
Multiplying  (17b)  by En and summing  over n, we ob- 

tain the following conservation condition: 

E n E n  + [- + ~ n " ]   E n 2  
1 

n 2 Qn 

In the steady state all E n  = 0, and  thus if the relative ampli- 
tudes are known (23)  gives the level of oscillation. 

From (23), we  see that in  general the loss perturbation is 
an additional loss to the system and  thus tends to reduce 
the overall  oscillation  level from  that of the free-running 
laser.  However, to the extent that DiDomenico's solution 
[ 181 is  sufficiently  exact, then $,, = a and En = EnS1, 
and  thus if aC= 4 2 ,  then the last term on the right-hand 
side of (23)  is equal in magnitude  and of opposite sign to 
the second term on the right-hand side; and thus the 
total loss of the internal perturbation is  zero. This ideal 
situation has been  recognized  by  Crowell  [19],  who noted 
that it can be  explained in  terms of an infinitely sharp 
light  pulse  which  passes through the modulator at  that 
instant of time  when its attenuation is  exactly  zero. 

On the other hand, Yariv's solution (22) has 
+n+l- +,, = a/2 and thus the average  loss of the modulator 
is not canceled. The result  is a solution that would run  at 
a considerably  lower  level than  the  true solution and  is 
therefore not competitive. 

D .  Efleect of Perturbation  Strength and Detuning 
The amplitudes and  phases of the various modes are in 

part determined  by the perturbing element, and  in  part 
determined  by the atomic gains and cavity  losses. For a 
very  small  loss perturbation, the mode  amplitudes are ap- 
proximately those of the free-running laser, and the mode 
phases are given  by [21]: 

sin (+n - +n-1) 

E n E n - 1  a,  q=n C 

At higher perturbation strengths the mode amplitudes 
depart considerably from those of the free-running  laser 
and a broadening of the spectrum is  observed. Figure 
9(a)  shows the spectrum  and time domain behavior  which 
correspond to a loss perturbation which  is just barely 
sufficient to obtain mode locking [21]. The data for these 
figures  were obtained by computer solution of (17a) and 
(17b), and approximately correspond to the situation of 
five free-running modes in a 6328 A He-Ne laser. The  poor 
quality time domain pulses are primarily a result of dis- 
tortion of the relative  phase  angles from their ideal  value 
of a. Figures 9(b) and 9(c)  show the spectrum  and time 
domain behavior, for the same atomic line at succes- 
sively  larger perturbation strengths. 

The question of the optimum value for the internal loss 
perturbation has been studied by  McDuff and Harris 
[21].  Predicted  peak  intensity,  normalized to free-running 
intensity, as a function of the strength of the internal per- 
turbation is  shown in Fig.  10. It is Seen that peak  pulse 
intensities  first  rise and  then fall. The initial rise  is  caused 
primarily by an improvement in the relative  phases and 
amplitudes of the various modes,  while the decrease is 
caused  by the increased  average  value of the perturbation 
loss and  by spectral energy  extending  beyond the fluo- 
rescence  line. Figure 11  shows  pulse  width as a function 
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Fig. 9. Spectra  and  time  domain  behavior  for loss perturba- 
tion.  Figure  from  McDuff  and Hams [21]. 
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Fig. 10. Peak pulse intensity vs.  CY^. Five  modes  free  running. 
Figure  from  McDuff  and Hams [21]. 
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Fig. 11 .  Pulse  width  vs.  CY^. Five  modes  free  running. 
Figure  from  McDuff  and  Harris  [21]. 

of the strength of the internal loss perturbation. It is seen 
that the pulses continue to narrow as the perturbation 
strength is increased. 

Crowell [ 191 has noted that the tuning of the perturba- 
tion frequency is fairly critical. As seen from (24), if the 
detuning Av is not zero, then relative phase angles will 
distort. This results in distortion of the pulse shape and in 
a lowering of the level of oscillation. 

Fig.  12.  a,(threshold)  vs.  detuning.  Nine  modes  free  running. 
Figure  from  McDuff  and Hams [21]. 

E. Threshold for Locking 
As a result of the nonlinear portion of the atomic mode 

pulling, a certain minimum perturbation strength is re- 
quired to achieve mode locking. If the cavity modes were 
equally spaced, then in the limit of perfect tuning of the 
modulation frequency, a vanishingly small perturbation 
would be required. In the presence of mode pulling, the 
free-running modes are unequally  spaced and the per- 
turbation must be sufficiently strong to pull these modes 
until their frequency spacing is equal to that of the modu- 
lator drive frequency. 

A necessary condition on the minimum value of ac may 
be obtained from (24) [21]. The condition is  simply that 
the I sin (+,,-~&,-$l 5 1 for all n: Since at low perturba- 
tion strengths the mode amplitudes are approximately 
unaffected, free-running amplitudes may be used in the 
evaluation of (24). As ac is reduced, a point will  be  reached 
where the magnitude of one of these sins will  exceed 
unity, and it is this value of a, which  is the minimum per- 
turbation required for locking. 

A plot of the minimum ac necessary to obtain locking 
vs. detuning for a case corresponding to nine free-running 
modes  in a He-Ne laser  is  shown in Fig. 12. It is  seen that 
the optimum drive frequency  is  slightly greater than  the 
c/2L frequency of the laser. This results in that the effect 
of the nonlinear portion of the power independent mode 
pulling is to push the modes further from the center of 
the atomic line than they would  otherwise be, and thus 
to increase the average mode spacing. 

IV. SUPER-MODE AND FREQUENCY SELECTIVE COUPLING 
Two techniques have  been proposed whereby it is pos- 

sible to obtain a high  power  single  frequency output from 
a normally multimode laser. The first of these is termed 
the super-mode technique, and was demonstrated by 
Massey, Oshman, and Targ [22]. In this technique, shown 
in Fig. 13, the output signal from an FM laser is passed 
through an external phase modulator which  is operated 
with a single  pass phase retardation which  is exactly equal 
to the r at which the FM laser  is running. By properly 
adjusting the phase of the external modulator with re- 
spect to that of the internal phase perturbation, the re- 
sultant light signal can be made to have a modulation 
depth anywhere  between 0 and 2r. In particular, when 
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Fig. 13. Schematic of super-mode  techniques. 
Figure  from  Harris  and  McDuff [9]. 

Fig, 14. Super-mode conversion  efliciency vs. 8:ga=0.085 ; 

McDuff [9]. 
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Fig. 15. Method of frequency  selective coupling. 

the resultant modulation  depth is adjusted to 0, then  in 
principle all of the energy  which  was  previously dis- 
tributed between all of the sidebands of the FM signal 
should appear as a single monochromatic optical signal. 

If the FM signal  emerging from the FM laser  were 
completely  free of distortion then, neglecting  losses in the 
external modulator,  the conversion  process  would be 100 
percent efficient. However, as noted in Section 11, a cer- 
tain amount of distortion of the FM signal  must  always 
exist. It is therefore of interest to consider a super-mode 
conversion efficiency  which  we  define as the ratio of  power 
in the super-mode to the total power of the incident FM 
signal. Figure 14  shows the super-mode  conversion  effi- 
ciency as a function of 6 at constant r, for a case cor- 
responding to nine free-running modes in a He-Ne laser 
[9]. It is seen that, as 6 becomes  increasingly large, the 
distortion of the FM signal  is  reduced,  and the super- 
mode  conversion efficiency approaches 100 percent. It is 
to be  noted that these  curves  assume that  the external 
modulator is  lossless and is operating at the correct and 
appropriately phased I?. 

The second  technique for obtaining a high  power out- 
put  from a normally  multimode  laser has been termed the 

method of frequency  selective coupling and has been 
demonstrated  by Harris and McMurtry [23]. This tech- 
nique shown  schematically in Fig. 15 makes use of the 
joint saturation which  is  present in FM laser  oscillation. 
As  was  discussed in Section 11, if the intracavity phase 
perturbation 6 of an  FM laser  is made sufficiently large 
as compared to the atomic gains and cavity  losses of the 
various laser  modes, then these  modes  will  have approxi- 
mately  Bessel function relative amplitudes and  will sat- 
urate as  an entity. If the gain or loss of any of the modes 
is changed, relative amplitudes will still be very  nearly 
maintained, and  the oscillation  level will adjust so that 
the net average  power absorbed  and dissipated  by all 
modes remains zero. The selective  coupling is obtained 
by  replacing one mirror of the FM laser  with a Fabry- 
Perot etalon, and adjusting the etalon so that only the 
desired  mode has a nonzero  output coupling. 

Osterink et al. [24], have  recently  shown that success- 
ful operation of the selective coupling method  is also pos- 
sible in the phase locked  region of operation of an  FM 
laser  discussed in Section 11-E. In fact, at higher  laser 
gains, operation in  the  phase locked  region appears to be 
essential. Osterink et al., find that when  coupling  is at- 
tempted to some particular mode of an  FM oscillation, 
the entire FM oscillation  often shifts its carrier frequency 
by a mode  and thereby runs  in a condition where  it  sees 
a lower  loss. In  the phase locked  region, all modes  have 
more nearly the same amplitude, and this difficulty  is 
better avoided. 

It should be noted that  at  the present  time there is con- 
siderable practical difficulty  associated  with  either the 
super-mode method or the method of frequency  selective 
coupling. Both  methods require a very  low  loss internal 
perturbing element. The  super-mode method requires an 
external modulator having a single  pass  phase retardation 
which is larger than is at present  conveniently obtainable. 
The method of frequency  selective  coupling  suffers from 
problems of mirror alignment and stability. 

V. ABSOLUTE FREQUENCY STABILIZATION 
As a result of fluctuations in the length of the laser 

cavity, all modes of an FM or phase locked  laser will drift 
with  respect to the center of the atomic fluorescence line. 
In  the case of a free-running or phase  locked laser, the 
relative  mode amplitudes are primarily  determined by 
the atomic gain  profile. Thus as the modes drift they con- 
tinuously  change their amplitudes so that their envelope 
remains  approximately  unchanged. 

In  an  FM laser the situation is considerably  different. 
In this case  relative  mode amplitudes are determined by 
the internal phase perturbation, and the primary question 
is that of the competition between the different potential 
FM oscillations. It is thus expected that if the drift from 
the center of the atomic line  is  greater than  about  one half 
of an axial mode interval, one of the adjacent FM oscil- 
lations will  become dominant and a discrete jump in all 
mode amplitudes will  occur. This type of behavior has 
been  observed  experimentally  and  is  discussed  by Am- 
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Fig. 16.  Amplitude of first  and second beat vs. position of  center 
frequency: go =0.085 ; an =0.070. Nine modes free  running. Fig- 
ure from  Harris and  McDuff  [9]. 
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Fig. 17.  Phase of f m t  and  second  beat  vs:position of center  fre- 

quency: g0=0.085; a,=0.070. Nine modes free  running.  Figure 
from Harris and  McDulT [9]. 

mann,  McMurtry,  and Oshman [ l l  1. From the point of 
view  of the super-mode  conversion  process  discussed in 
Section IVY the resultant super-mode will  be stable to 
within about *$ of an axial mode interval from the 
center of the atomic line. 

If the center frequency of an  FM oscillation  is  exactly 
at the center of a symmetrical atomic line, then all odd 
harmonic beat notes will  be  identically zero [9], [ 113. 
This results  because the contributions to the odd  har- 
monic beats from sidebands which are above the center 
frequency of the FM oscillation are exactly  canceled  by 
contributions from sidebands  below the center frequency 
of the oscillation. As the center frequency  moves off line 
center, this is no longer the case. Cancellation of upper 
and lower contributions is no longer  complete, and  odd 
harmonic distortion rapidly increases. 

From  another point of  view, the FM signal can be 
thought of as a swinging  frequency  with its amplitude dis- 
torted by the atomic lineshape; thus for a symmetrical 
line, this AM distortion will be  even  harmonic. 

These ideas provide the basis for a technique for the 
absolute frequency stabilization of an  FM laser [25]. 
Figures 16 and 17 show the amplitude  and phase,  respec- 
tively,  of the first and second beats as a function of the 
position of the center  frequency of an  FM oscillation 
with  respect to  the center of the  atomic line. The  data for 
these  figures correspond to a case of nine  free-running 
modes in a He-Ne laser,  with 6=0.15,  and I?= 3.0. It 
is seen that the amplitude of the first beat is  extremely 
sensitive to the position of the center  frequency of tke FM 
oscillation,  while the amplitude of the second beat is 
nearly independent of this position. In addition, the 
phase of the first beat (with  respect to the phase of the 
driving perturbation) changes abruptly as the center of 
the FM oscillation  moves from  one side  of the atomic 
line to the other. 

In a practical stability  scheme, one might detect the 
ratio of the first and second beat amplitudes, and thereby 
eliminate the possibility that spurious variations in output 
power  would  be  incorrectly interpreted. By homodyning 
with the driving source, the phase information could 
provide the sign  of the necessary correction in mirror 
position. In cases  where the atomic fluorescence line is 
asymmetrical, stabilization could still be  accomplished 
with  respect to the nonzero  minimum of the fundamental 
beat amplitude. 

VI.  COUPLING  MODULATION 
In previous  sections we have  considered the application 

of internal time-varying perturbation to the problem of 
spectral control of multimode  laser  oscillators. Another 
application of internal time-varying  elements  is that of 
coupling modulation. By coupling modulation is meant a 
technique wherein the internal perturbation itself, or in 
conjunction with another element,  becomes the  output 
coupler of the laser oscillator. The  optimum coupling  loss 
for most  lasers  is on the order of a few percent, and is 
typically obtained by means of the finite  transmission of 
an  output mirror. If instead, the mirrors of the laser are 
opaque, and if this entire coupling  loss  is obtained via 
the internal element, then the maximum  available  power 
of the laser  may  be obtained as a modulated  signal. 

A .  Amplitude Modulation 
The technique of coupling modulation, as applied to 

amplitude  modulation, was  first  proposed and  demon- 
strated by Gurs  and Muller, and is shown  schematically 
in Fig.  18  [16],  [17]. The internal coupling element con- 
sists of a KDP crystal followed  by a reflective type 
polarizing  element  such as a Rochon prism. The KDP 
crystal  is  oriented  with its optic axis in the longitudinal 
direction and  with its electrically  induced principal axes 
at 4 5 O  to the polarization of the laser. When in this 
orientation, the KDP crystal acts to create AM type side- 
bands which are orthogonally polarized to the main laser 
beam. The polarizing  element  couples  these sidebands 
directly  from the laser,  while  allowing the main polariza- 
tion to pass through unchanged. For components as de- 
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scribed  above, the resulting modulation will  be  entirely 
at the second harmonic of the driving frequency of the 
KDP crystal. If, as is usual, it  is  desired to obtain modula- 
tion at the  fundamental frequency, then a bias equal to 
the peak  value of the ac  signal must be  applied to  the 
crystal. This bias may  be obtained either  electrically, by 
means of a retardation plate, or by  deliberately  mis- 
orienting the KDP crystal so that there is a small  angle 
between its optic axis  and the direction of l e t  propaga- 
tion. To obtain 100 percent modulation of the maximum 
laser output, both the bias loss and the peak ac  loss should 
be adjusted to equal the optimum coupling  loss of the 
laser.  Kaminow has noted that even in the presence of a 
properly adjusted bias a certain amount of higher har- 
monic distortion will always be present  [26]. 
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Fig. 18. AM type  coupling modulation. 

In that coupling modulation  does  not require modula- 
tion of the average internal stored  energy of the laser, it 
is not restricted in frequency by either the laser  cavity 
bandwidth or the atomic fluorescence  linewidth. It is 
however  restricted by distortion considerations. The  prob- 
lem  is, that associated  with the desired AM modulation 
of the orthogonal polarization, there is  also a simul- 
taneous  and  unavoidable  AM  modulation of the  primary 
laser polarization [18], [26]. If the modulation frequency 
is far from a c/2L frequency, then the AM sidebands do 
not appreciably  affect the behavior of other modes.  How- 
ever, as the modulation frequency approaches an axial 
mode  frequency  or  multiple thereof, the internal stored 
energy  of the laser wiU be  appreciably  affected, and  the 
internal mode amplitudes will  behave as described in 
Section 111. The situation will  be particularly bad if the 
modulation frequency  is  such as  to produce a sideband 
near a frequency  where there is already a free-running 
laser  mode, but serious distortion will  also  result if a 
cold Fabry-Perot  mode is approached.  The question of 
distortion in coupling mddulation  has been  considered 
analytically by DiDomenico [18],  Kaminow  [26], and 
Uchida [13],  and has been  studied  experimentally  by 
Uchida  [13]. 

A  number of methods  have  been  suggested for increas- 
ing the distortion free bandwidth of coupling modula- 
tion. All of these are based on keeping the internal AM 
perturbation coefficient a, of Section I11 at as low a level 
as possible. Gurs and  Muller  have  suggested a push-pull 
coupling  element  wherein  two modulators are fed  180' out 
of phase, so that the total internal energy  remains con- 
stant [16], [17],  [26]. Another technique suggested  by 
Fox, is to place the coupling  elements as close as possible 
to the center of the laser  cavity and to precede it by a 
second  polarizing  element  [26]. The transit time of the 

light  between  successive  passes through the modulator 
will then be very  nearly one-half period at the modulation 
frequency,  and the internal modulation experienced on 
successive  passes  will  approximately  cancel. 

B. Frequency Translation 
Coupling  modulation may  also  be  used to accomplish 

efficient optical frequency translation (alternately termed 
as single-sideband-suppressed carrier modulation). The 
first such technique  was proposed and demonstrated by 
Siegman  et al. [27],  and  is  shown in Fig. 19. This tech- 
nique  utilizes the Brillouin scattering from a traveling 
acoustic wave to achieve the frequency translated output 
from the laser  cavity. An optical beam which  is  incident 
on a traveling  acoustic wave at approximately the Brag  
angle will be partially reflected from  the acoustic  wave- 
fronts and translated in frequency  by the acoustic fre- 
quency. The direction of this frequency  shift  is  upward or 
downward, respectively, depending on whether a com- 
ponent of the incident optical velocity  is  in the direction 
opposite to or in the same direction as the velocity of the 
acoustic wave [28],  [29]. When attempted externally to 
a laser  cavity the practicality of the Brillouin scattering 
technique  is  presently  limited  by the large acoustic drive 
strengths needed to achieve  efficient  conversion. When 
placed  internally to the laser  cavity, the acoustic  element 
scatters the same fraction of the very  much  larger light 
intensity  which  exists  inside the laser cavity; and as noted 
above, if the fraction which  is  acoustically  coupled out is 
the same as the fraction ordinarily transmitted by the 
laser mirrors, then the intensity of the frequency trans- 
lated beams  will  be comparable to  that of the free-running 
laser. 
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Fig. 19. Acoustic  frequency  translation. 

Since the internal energy of the laser  is not affected, 
the efficiency  of this technique  is not influenced  by the 
relation of the driving acoustic  frequency to  the c/2L 
frequencies of the laser. For the configuration of Fig. 19, 
it is noted  that two output  beams are obtained-one 
shifted up and the other down in frequency. A single 
beam output could be obtained by operation in a ring 
type resonator. 

Methods of optical frequency translation which  utilize 
the electrooptic effect  have been proposed and  demon- 
strated by Targ et al. [30],  and  also by Peterson and 
Yariv  [31]. The configuration for Targ's method  is 
similar to  that for AM type  coupling modulation which 
was  described  above and shown  in  Fig. 18. The differ- 
ences are: first, the path length between the center of the 
KDP crystal and the 100 percent  reflective right-hand 
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end mirror is  set equal to  an odd  number of quarter wave- 
lengths at the modulation frequency; and second, the 
crystal is  misoriented in order to achieve a quarter wave- 
length of necessary distributed birefringence.  (Alternately, 
a retardation plate of lumped X/8 birefringence  may be 
employed.) The principle of operation of this coupling 
element  is  similar to  that of a single  sideband modulator 
which  was  proposed  earlier  by  Buhrer [30]. A linearly 
polarized optical signal propagating  from left to right 
through the electrooptic crystal generates a pair of orthog- 
onally  polarized  sidebands. The signal then traverses the 
air path  and returns to the electrooptic crystal with  side- 
band phases such that on its  second path  through  the 
crystal the magnitude of one sideband  is  enhanced  while 
the other sideband  is  eliminated. The remaining  sideband 
is  coupled out of the laser  cavity  via the polarizing  ele- 
ment. By changing the sign of the bias, either the upper 
or lower  sideband  may  be obtained. 

Peterson  and  Yariv’s  method [3 1 ] utilizes a KDP crys- 
tal oriented as a phase modulator, followed  by an etalon 
output coupler. The length of the etalon is  adjusted  so 
that (ideally) it is 100 percent  reflective at the frequency 
of the laser  oscillation, and completely transparent at the 
desired translated frequency. Their experiments were 
performed  with a 6328 A He-Ne laser, and a translation 
frequency of 8.9 Gc/s. Either the upper or lower  sideband 
could  be obtained by tuning of the etalon. 
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