## OSCILLATION AND DOUBLING OF THE 0.946-μ LINE IN Nd3+:YAG\*

R. W. Wallace and S. E. Harris
Department of Electrical Engineering
Stanford University
Stanford, California 94305
(Received 16 April 1969; in final form 27 June 1969)

The paper reports oscillation and doubling of the  $0.946-\mu$  line in Nd<sup>3+</sup>:YAG. Peak, Q-switched output powers of approximately 2 kW at  $0.473~\mu$  were obtained. The results of a calculation for optimum nonlinear coupling to an internal Q-switched laser are given.

The 1.06-u line of Nd3+: YAG has been shown to be a highly efficient source of both cw and Qswitched infrared radiation.1,2 By frequency doubling in nonlinear crystals such as LiNbO3 and Ba<sub>2</sub>NaNb<sub>5</sub>O<sub>15</sub>, it has also been shown to be a potentially useful source of green  $(0.53 \mu)$  radiation.<sup>3</sup> In this letter we report oscillation on the  $0.946-\mu$  line of the  ${}^4F_{3/2} - {}^4I_{9/2}$  transition in Nd<sup>3+</sup>:YAG, and also the doubling of this line to produce a Q-switched blue light source at 0.473  $\mu$ . Since the cross section of the  $0.946-\mu$  line is only about 1/14th as large as the 1.06-µ line, internal optimumly coupled secondharmonic generation is possible using KDP (KH<sub>2</sub>PO<sub>4</sub>). The lower cross section, and thus the lower gain at a given inversion, leads to longer pulse lengths than may be obtained with the 1.06- $\mu$  line at comparable peak power.

In Nd3+: YAG the terminal state of the 0.946-µ line is 848 cm<sup>-1</sup> above ground as compared to 380 cm<sup>-1 4</sup> for Nd<sup>3+</sup> in glass or 471 cm<sup>-1 5</sup> for Nd<sup>3+</sup> in CaWO<sub>3</sub>. By measuring the relative spontaneous emission of the 0.946- $\mu$  line and the 1.06- $\mu$  line, its cross section was found to be  $\sigma_{0.946} \approx 5.8 \times 10^{-20}$ cm<sup>2</sup>. To achieve a gain per unit length g requires an inversion  $\Delta n = g/\sigma$ . Assuming a ground-state dopant density of  $6.0 \times 10^{19}$  atoms/cm<sup>3</sup> (1.0% Nd), the lower level (848 cm<sup>-1</sup>) has a room-temperature Boltzman population of about  $1.0 \times 10^{18}$  atoms/cm<sup>3</sup>. The population inversion required for a gain of 6%/cm is therefore equal to the lower-state population at room temperature. At -40°C the lowerlevel population is reduced by  $\frac{1}{3}$  and is of little consequence.

Figure 1 shows a schematic of the experimental arrangement. A 3-mm-diam by 75-mm-long Nd<sup>3+</sup>:YAG rod is supported in a quartz cooling jacket which is mounted at the joint focus of a double elliptical cylinder pump cavity. The laser is pumped by two 3-in. xenon flash lamps placed at the other foci. Cooling is provided by a continuous stream of nitrogen gas which is bubbled through a Dewar of liquid nitrogen. The optical cavity employs a dispersive quartz Littrow prism at one end.

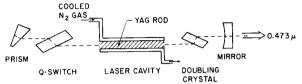



Fig. 1. Experimental arrangement for internal Q-switched second-harmonic generation of 0.946  $\mu$ . The Littrow prism and mirror are highly transmitting at 1.06 and 0.473  $\mu$  and highly reflecting at 0.946  $\mu$ . The laser is cooled by nitrogen gas bubbled through liquid nitrogen.

The dielectric coatings on the Littrow and the 3-m output mirror are very highly transmitting at 1.06 and 0.473  $\mu$  (89 and 70%, respectively) and very highly reflecting at 0.946  $\mu$ .

Figure 2 shows measured threshold as a function of rod temperature for both the 0.946- and the  $1.06-\mu$  lines. The measured threshold is the elec-

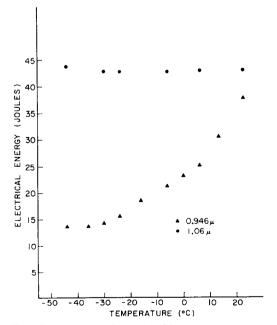



Fig. 2. Electrical threshold energy versus temperature for the 0.946- and the 1.06-  $\mu$  lines.

<sup>\*</sup>Work supported jointly by the U.S. Army Research Office—Durham, under Contract No. DAHC 04-68-C-0048 and by the Air Force Cambridge Research Laboratories, Office of Aerospace Research, under Contract No. F 19628-67-C-0038.

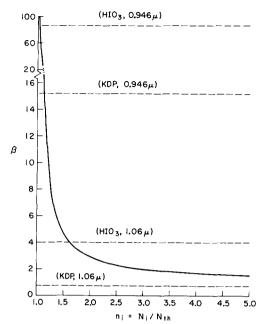



Fig. 3. Optimum second-harmonic coupling ratio  $\beta$  versus initial inversion for an internal Q-switched laser.  $\beta = 1/t_1$  (SHG conversion efficiency/watt)/(gain/stored energy).

trical energy stored in the capacitor bank prior to firing. Rod temperature was measured by placing a thermocouple in contact with the laser rod at the cooling gas exhaust end. The threshold of the 1.06-  $\mu$  line is a measure of the success of the Littrow prism and coatings. At any temperature, the maximum number of times above threshold which the 0.946-  $\mu$  line may be operated is limited by the exponential gain occuring at the 1.06-  $\mu$  line.

Light at 0.473  $\mu$  was generated in a 17-mm-long KDP crystal placed inside the laser optical cavity. The laser was Q-switched with a quartz acousto-optic switch, having a maximum 60% single-pass hold-off loss, measured at 6328 Å, and an opening time of about 1  $\mu$ sec. Peak blue output powers of about 2 kW with a pulse length of about 0.18  $\mu$ sec were obtained.

The results of a calculation of the internal second-harmonic conversion required to maximize the peak-generated second-harmonic power of a Q-switched laser is shown in Fig. 3. The coupling parameter  $\beta$  is plotted as a function of the initial inversion (the inversion at the moment the cavity is switched). This initial inversion is normalized to the threshold inversion of the cavity with the Q-switch open. It may be shown that

$$\beta = \frac{\xi}{\Gamma} \frac{1}{t_1} ,$$

where  $\xi$  is the single-pass second-harmonic conversion efficiency per incident fundamental power  $(\xi = P_{Sh}/P_F^2)$ ,  $\Gamma$  is the laser gain per stored energy in the rod, and  $t_1$  is the one-way cavity transit time. For example, in the case of small second-harmonic

conversions, the absence of walk-off, and parallel Gaussian beams of area  $\pi W_0^2$ ,  $\xi=2\eta^3\omega_1^2d^2l^2/\pi W_0^2$ , where  $\eta$  is the wave impedance  $(\eta=377/{\rm refractive})$  index), d is the effective crystal nonlinearity,  $\omega_1$  is the fundamental frequency, and l is the crystal length. Also for a laser line of cross section  $\sigma$  with a uniform mode area A in the rod, then  $\Gamma=\sigma/\hbar\omega_1A$ , where  $\hbar$  is Plank's constant. With the above normalization the curve is valid for any combination of nonlinear material and laser line. It is seen that for lower cross-section lines, less crystal nonlinearity is required for optimum coupling.

The conversion efficiency obtainable with a nonlinear crystal is determined by its nonlinearity, and also by the walk-off angle  $\rho$ . If the laser is focused to a beam radius of  $w_0 = \sqrt{2} \rho l$ , then walk-off will be of negligible consequence, and the conversion efficiency obtainable for a given nonlinear crystal becomes independent of crystal length. Based on this choice of spot size and a cavity length of 50 cm, the dotted lines of Fig. 3 show  $\beta$  for the four possible combinations of KDP and HIO<sub>3</sub> with the 0.946- and 1.06- $\mu$  lines. To the extent that  $\beta$  is greater than optimum it may be reduced by enlarging the spot size in the nonlinear crystal.  $\beta$ 's greater than optimum lead to pulse-length expansion which will be reported on subsequently.

The 0.946- $\mu$  line is of interest as a result of good photodetectors available at this wavelength; and also when doubled as the first high-power (Q-switchable) line in the blue region of the spectrum. As a pump for LiNbO<sub>3</sub> optical parametric oscillators it allows tuning over the region 0.54- $0.61~\mu$ .

The authors wish to thank V. Costich of Spectra-Physics for designing the optical coatings, D. Kuizenga and R. Rempel for help in constructing the YAG laser, and J. E. Murray for constructing the acoustic Q switch and for helpful discussions. The excellent technical support of Ben Yoshizumi is gratefully acknowledged. R. Wallace acknowledges the financial support of a Howard Hughes Doctoral Fellowship.

<sup>&</sup>lt;sup>1</sup>J. E. Geusic, M. L. Hensel, and R. G. Smith, Appl. Phys. Letters 6, 175 (1965).

<sup>&</sup>lt;sup>2</sup>R. G. Smith, IEEE J. Quantum Electron. QE-4, 505 (1968).

<sup>&</sup>lt;sup>3</sup>R. G. Smith, K. Nassau, and M. F. Galvin, Appl. Phys. Letters 7, 256 (1965).

<sup>&</sup>lt;sup>4</sup>R. D. Mauer, Appl. Opt. 2, 87 (1963).

<sup>&</sup>lt;sup>5</sup> L. F. Johnson and R. A. Thomas, Phys. Rev. **131**, 2038 (1963).

<sup>&</sup>lt;sup>6</sup> Takaski Kushida, H. M. Marcos, and J. E. Geusic, Phys. Rev. 167, 289 (1968).

<sup>&</sup>lt;sup>7</sup>S. K. Kurtz, J. G. Bergman, Jr., and T. T. Perry, Appl. Phys. Letters **12**, 186 (1968).

<sup>&</sup>lt;sup>8</sup>G. D. Boyd, A. Ashkin, J. M. Dziedzic, and D. A. Kleinman, Phys. Rev. 137, 1305 (1965).