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The paper reports oscillation and doubling of the 0.946-u line in Nd*:YAG. Peak, @-switched output
powers of approximately 2 kW at 0.473 p were obtained. The results of a calculation for optimum
nonlinear coupling to an internal @-switched laser are given.

The 1.06-p line of Nd*:YAG has been shown to
be a highly efficient source of both cw and Q-
switched infrared radiation.'’? By frequency doub-
ling in nonlinear crystals such as LiNbO; and
Ba,NaNbsOys, it has also been shown to be a poten-
tially useful source of green (0.53 u) radiation.’ In
this letter we report oscillation on the 0.946-p line
of the *Fs> — *I/, transition in Nd*:YAG, and also
the doubling of this line to produce a @-switched
blue light source at 0.473 . Since the cross section
of the 0.946-u line is only about 1/14th as large as
the 1.06-u line, internal optimumly coupled second-

harmonic generation is possible using KDP (KH,PO,).

The lower cross section, and thus the lower gain at
a given inversion, leads to longer pulse lengths
than may be obtained with the 1.06-p line at com-
parable peak power.

In Nd*:YAG the terminal state of the 0.946-p
line is 848 cm™ above ground as compared to 380
cm™ ¢ for Nd* in glass or 471 em™ ° for Nd* in
CaWO0;. By measuring the relative spontaneous
emission of the 0.946-y line and the 1.06-p line, its
cross section was found to be go,045 & 5.8 X 107%°
cm?.® To achieve a gain per unit length g requires
an inversion An = g/c. Assuming a ground-state
dopant density of 6.0 x 10'° atoms/cm® (1.0% Nd),
the lower level (848 cm™) has a room-temperature
Boltzman population of about 1.0 X 10'® atoms/em?,
The population inversion required for a gain of
6%/cm is therefore equal to the lower-state popu-
lation at room temperature. At —40°C the lower-
level population is reduced by 3 and is of little con-
sequence.

Figure 1 shows a schematic of the experimental
arrangement. A 3-mm-diam by 75-mm-long
Nd*:YAG rod is supported in a quartz cooling
jacket which is mounted at the joint focus of a
double elliptical cylinder pump cavity. The laser is
pumped by two 3-in. xenon flash lamps placed at
the other foci. Cooling is provided by a continuous
stream of nitrogen gas which is bubbled through a
Dewar of liquid nitrogen. The optical cavity em-
ploys a dispersive quartz Littrow prism at one end.

*Work supported jointly by the U.S. Army Re-
search Office—Durham, under Contract No. DAHC
04-68-C-0048 and by the Air Force Cambridge Re-
search Laboratories, Office of Aerospace Research,
under Contract No. F 19628-67-C-0038.
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Fig. 1. Experimental arrangement for inter-
nal @-switched second-harmonic generation
of 0.946 p. The Littrow prism and mirror
are highly transmitting at 1.06 and 0.473 u
and highly reflecting at 0.946 n. The laser

is cooled by nitrogen gas bubbled through
liquid nitrogen.

The dielectric coatings on the Littrow and the 3-m
output mirror are very highly transmitting at 1.06
and 0.473 1 {89 and 709, respectively) and very
highly reflecting at 0.946 p.”

Figure 2 shows measured threshold as a func-
tion of rod temperature for both the 0.946~ and the
1.06-u lines. The measured threshold is the elec-
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Fig. 2. Electrical threshold energy versus
temperature for the 0.946- and the 1.06-p
lines.
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Fig. 3. Optimum second-harmonic coupling
ratio B versus initial inversion for an inter-
nal @-switched laser. 3 = 1/, (SHG conver-
sion efficiency/watt)/(gain/stored energy).

trical energy stored in the capacitor bank prior to
firing. Rod temperature was measured by placing
a thermocouple in contact with the laser rod at the
cooling gas exhaust end. The threshold of the 1.06-
i line is a measure of the success of the Littrow
prism and coatings. At any temperature, the maxi-
mum number of times above threshold which the
0.946-u line may be operated is limited by the ex-
ponential gain occuring at the 1.06-p line.

Light at 0.473 . was generated in a 17-mm-long
KDP crystal placed inside the laser optical cavity.
The laser was @-switched with a quartz acousto-
optic switch, having a maximum §0% single-pass
hold-off loss, measured at 6328 A, and an opening
time of about 1 pysec. Peak blue output powers of
about 2 kW with a pulse length of about 0.18 usec
were obtained.

The results of a calculation of the internal sec-
ond-harmonic conversion required to maximize
the peak-generated second-harmonic power of a
@-switched laser is shown in Fig. 3. The coupling
parameter § is plotted as a function of the initial
inversion (the inversion at the moment the cavity
is switched). This initial inversion is normalized
to the threshold inversion of the cavity with the @-
switch open. It may be shown that

=& 1
B - T tl ’
where £ is the single-pass second-harmonic con-
version efficiency per incident fundamental power
(¢ = P,/P%), T is the laser gain per stored energy

in the rod, and ¢, is the one-way cavity transit time.

For example, in the case of small second-harmonic
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conversions, the absence of walk-off, and parallel
Gaussian beams of area mW,?, £=2n’wid’2/1W,?,
where 7 is the wave impedance (n = 377/refractive
index), d is the effective crystal nonlinearity, w, is
the fundamental frequency, and [ is the crystal
length. Also for a laser line of cross section ¢ with
a uniform mode area A in the rod, then I' =¢/fiw, A4,
where 1 is Plank’s constant. With the above nor-
malization the curve is valid for any combination
of nonlinear material and laser line. It is seen that
for lower cross-section lines, less crystal nonlin-
earity is required for optimum coupling.

The conversion efficiency obtainable with a non-
linear crystal is determined by its nonlinearity,
and also by the walk-off angle p.® If the laser is fo-
cused to a beam radius of w, = V2 pl, then walk-off
will be of negligible consequence, and the conver-
sion efficiency obtainable for a given nonlinear
crystal becomes independent of crystal length.
Based on this choice of spot size and a cavity length
of 50 cm, the dotted lines of Fig. 3 show g for the
four possible combinations of KDP and HIO; with
the 0.946- and 1.06-u lines. To the extent that g8 is
greater than optimum it may be reduced by enlarg-
ing the spot size in the nonlinear crystal. 8’s
greater than optimum lead to pulse-length expan-
sion which will be reported on subsequently.

The 0.946-u line is of interest as a result of
good photodetectors available at this wavelength;
and also when doubled as the first high-power (@-
switchable) line in the blue region of the spectrum.
As a pump for LiNbO; optical parametric oscilla-
tors it allows tuning over the region0.54-0.61 p.
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