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Tunable Optical Parametric Oscillators 

Abstract-This paper reviews progress on tunable  optical  para- 
metric oscillators. Topics considered include:  parametric  amplifica- 
tion of Gaussian beams; threshold;  tuning techniques, spectral 
output, and stability:  saturation and power  output: spontaneous 
parametric emission; nonlinear  materials: and far  infrared  genera- 
tion. 

w 
I. INTRODUCTION 

ORK  on optical parametric oscillators began  in 
1961  when Franken et al. [l ] demonstrated second 
harmonic generation of light, and  thus  the exis- 

tence of substantial nonlinear optical coefficients. Following 
a number of proposals and theoretical studies [2]-[6] 
Giordmaine and Miller, in  1965, constructed the first 
tunable optical parametric oscillator [7]. Since then, work 
has proceeded rapidly and it is  now  possible to tune through 
most of the visible and near infrared;  to  obtain greater than 
50 percent conversion efficiency  of the light from the laser 
pump;  and  to obtain linewidths of  less than a wavenumber. 
With careful construction, threshold for a CW oscillator 
may  be as low as 3 mW. 

Many of the basic ideas of parametric amplification and 
oscillation have been  extensively explored in the microwave 
frequency range [8]. If some upper frequency op, termed as 
the pump, is incident on a material possessing a nonlinear 
reactance, then an incident signal frequency w, may  be 
amplified. In the process a third frequency ai, termed as the 
idler frequency, and such that os + mi= cop is generated. 
Irrespective of the phase of the incoming  signal frequency, 
the phase of the idler may adjust such that the signal and 
idler are amplified, and  the  pump is depleted. 

In the optical frequency range the nonlinear reactance is 
obtained via the nonlinear polarizability of noncentrosym- 
metric crystals [9]. This nonlinear polarizability is  described 
by a 27 component tensor xi,* which  relates the three com- 
ponents of the generated polarization Pi to the nine possible 
combinations of applied field EjE,.  That is, 

= 2 1 xijkE$k> (1) 
j k  

where i, j ,  and k may  be x, y,  or z. Typically  over the trans- 
parency range of the crystal, the nonlinear coefficients x i j k  
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NONLINEAR  CRYSTAL 

Fig. 1 .  Schematic of optical parametric oscillator. The mirrors are 
highly  reflecting  at  either  the signal of idler, or both. 

are nearly independent of frequency, and, unlike the case 
for a laser transition, very  wide tunability is  possible. 

Though in principle, the xi jk  allow any three optical fre- 
quencies to interact, in order to achieve  significant para- 
metric amplification it is required that  at each of the three 
frequencies (i.e., at  the  signal idler, and pump) the generated 
polarization travel at the same velocity as a freely propagat- 
ing electromagnetic wave. This will be the case if the refrac- 
tive  indices of the material are such that the k vectors  satisfy 
the momentum matching condition lis+ Ei=k, [lo].  For 
collinearly propagating waves this may  be written 

o,n, + (up - o,)q = o p n p ,  (2) 

where n,, ni, and np are the refractive  indices at the signal, 
idler, and pump. Once the pumping laser is chosen, and 
thus op fixed, then if the refractive indices at the signal, 
idler, or pump frequencies are varied, the signal and idler 
frequencies will tune. Considerable control of the refrac- 
tive  indices, and very  wide tuning, is  possible by making 
use  of the angular dependence of the birefringence  of 
anisotropic crystals, and also by temperature variation. 
Rapid tuning over a limited range is  possible  by electro- 
optic variation of the refractive indices. 

A schematic of a typical parametric oscillator is  shown  in 
Fig. 1. The oscillator consists of a nonlinear crystal and a 
pair of mirrors. As will be  discussed later, the mirrors may 
be  reflecting at either the signal or idler frequency, or  at 
both frequencies. Ideally, 100 percent conversion of inci- 
dent  pump power to tunable signal and idler power  is  possi- 
ble. The output of an optical parametric oscillator is  very 
much like that of a laser. It is  highly monochromatic with a 
spectrum consisting of one or a number of longitudinal 
modes. It is often a fundamental Gaussian transverse mode 
and may  be  highly collimated. To the eye, the output  of a 
CW parametric oscillator exhibits the same sparkle effect as 
does a He-Ne gas laser. 

One principal difference  between a laser and an optical 
parametric oscillator is the ability of the former to collect 
and store wide-band uncollimated spectral energy. A laser’s 
wavelength and linewidth are determined by the pertinent 
atomic transition and  are  not affected by the spectral or 
spacial distribution of the pumping radiation. However, 
in an optical parametric oscillator, phase coherence between 
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TABLE I 
REPRESENTATIVE PARAMETRIC OSCILLATOR EXPERIMENTS 

Pumping  Wavelength  Nonlinear  Crystal  Tuning  Range  Output  Power  References 

0.53 p 
(doubled CaW0,:Nd”) 

0.53 p 
(doubled Nd3+ -Glass) 

0.35 p 
(tripled Nd3+ -Glass) 

0.53 p 
(doubled Nd3+  :YAG) 

0.5145 p 
(argon) 

(Nd”:YAG) 
1.06 p 

LiNbO, 

KDP 
LiNbO, 

KDP 

LiNbO, 

Ba,NaNb,O,, 

LiNbO, 

LiNbO, 

LiNbO, 

0.73p-1.93/1 
(temperature  tuning) 

0.96 p- 1.18 p 
0.68 p -  2.36 /I 
(angle  tuning) 

0.53 pk IO percent 
1.06 p f 10 percent 
(angle  tuning) 

1.05/.~-1.20p 
1 . 6 4  /A-2.05 p 

(angle.  temperature,  and 
electrooptic  tuning) 

0.98 p-  1.16 p 
(temperature  tuning) 

0.68 p-0.71 /I 
1.9 p-2.1 p 

(temperature  tuning) 

50 p-238 p 
0.696 p - 0.704 

(angle  tuning) 

1.95 p-2.35 p 
(temperature  and  angle 

tuning) 

103  w 

105 w 
50  W 

-104 w 

4 105 w 

3 mW (CW) 

3 mW (Cw) 

-70 W 
105 w 

170  W  peak 
17 mW average 

(repetitively  pulsed) 

the signal, idler, and  pump is  very important;  and either 
spectral or angular  spread of  the pump may increase its 
threshold or widen its linewidth. 

Based on crystals presently being developed, it is  likely 
that within a few years, narrow-band  tunable sources will 
be available over the entire spectral region from 0.2 p to 
greater than 100 p. Like  fixed  frequency lasers, these sources 
should  provide at least lo6 times as much  power per band- 
width per steradian  as do traditional spectroscopic sources. 
Such sources are likely to have  significant  impact on many 
types of excited state spectroscopy, optical pumping,  semi- 
conductor studies, and photochemistry. Table  I summarizes 
the characteristics of a  number of parametric oscillator 
experiments  which  have  been  performed to  date. 

11. PARAMETRIC AMPLIFICATION 
A .  Amplification of Plane Waves 

Consider  waves  with a pumping  frequency wp and a signal 
frequency o, to be incident on a nonlinear material having 
a polarizability 9- E’. Mixing of these waves generates a 
traveling polarization wave at the difference frequency ai. 
By adjusting the birefringence of the crystal, the polariza- 
tion wave  may  be  made to travel at the same  velocity as a 
freely  propagating idler wave, thus resulting in cumulative 
growth. The idler wave also mixes  with the pump  to produce 
a traveling polarization wave at the signal frequency, 
phased  such that growth of the signal field also results. The 
process continues with the signal and idler fields both grow- 
ing, and the pumping  field  decaying as a function of distance 

in the crystal. The  equations describing this process [8], 
[lo]-[12], in MKS units, are 

dEs -- 
d z  - - j q , o , d E x  exp - jAkz  

- = - j q i o i d E x  exp - jAkz  dEi  
d z  (3b) 

5 = - jqpo,dE,Ei exp j A k z ,  
d z  

where the quantities E,,   Ei ,  and E ,  are the envelopes of the 
plane waves; e.g., E,(z, t )=  Re [E, exp j ( a , t -   k , z ) ] .  The 
quantities q,, vi ,  and q, are  the plane wave  impedances 
(377,’refractive index) of the three waves, and d is the effec- 
tive nonlinear coefficient. In general, d depends on the direc- 
tion of propagation  and  on the polarization of the respective 
waves, and will  be considered further in Section VII. We 
allow  for a E vector mismatch 

Ak = k,  - k, - ki. (4) 

We  first note  that by taking the complex conjugate of (3a) 
and  (3b)  and multiplying (3a), (3b), and (3c) by EJqsws,  
E J q i o i ,  and q/qpop, respectively, [ 5 ]  that 

I F \  



2098 PROCEEDINGS OF THE IEEE,  DECEMBER 1969 

Growth  at the signal  implies growth at the idler. Depending 
on the relative phases of the three frequencies,  power  may 
flow either from the-lower frequencies to the upper fre- 
quency as is the case  for  second harmonic or sum frequency 
generation;  or alternately from the pump to the lower  fre- 
quencies as in  difference  frequency generation and para- 
metric amplification. 

If  we neglect depletion of the pump, then (3a) and (3b) 
may  be  solved  subject to the boundary conditions that 
E,=E,(O) and Ei=Ei(0) at z=O. For a crystal length L, we 
obtain 

AkL E,(L) = E,(O) exp ( - j  i)[cosh SL + j - sinh SL 
Ak 2s 1 

(64 
- j 5 e(0) exp (- j I> [sinh  sL], AkL 

S 

and 

Ei(L) = Ei(0) exp ( - j  ~ ':)[cash SL + j 2s 

- j K. 2 S c(0) exp ( - j  y ) [ s i n h  sL] 
(6b) 

where 

K, = vsw,dEp 

r2 = K,K: = osoiqAipl2~,~2 

= VioidE, 

and 

s = (I?' - Ak2/4)"2. 

We first examine the single pass power gain when  only a 
signal frequency  is incident, i.e., take E,(O)=O. Defining 
G = IE,(L)/E,(0)12 - 1, we find  from (6a) 

For a given crystal temperature  and orientation, the center 
of the parametric gain linewidth occurs at  that signal and 
idler frequency  where Ak = 0. At line center the gain is thus 
sinh2rL, which for small gain is approximately r2L2. Thus 

As an example, r2L2 for a 1 cm crystal of 90" cut LiNbO, 
for A,= Ai= 1 p is approximately 0.1 Pp/A, where P,JA has 
units of MW/cm2. From (8) it is seen that the gain of a non- 
linear material is proportional to ldI2/n3, where n is the 
refractive index. This figure of merit, together with their 
transparency range, is shown for a number of nonlinear ma- 
terials in Fig. 24. It is  useful to  note  that when os = oi = wp/2 
(ad2 is termed the degenerate frequency), that the single 
pass gain of an optical parametric amplifier  is equal to the 
conversion efficiency (PsH/PF) of a second harmonic gen- 

\ 

(A+) 

Fig. 2. Normalized gain versus (ML/2). (From Byer [96].) 

erator with a fundamental frequency op/2. If  we let 
os = (op/2)( 1 + 6)  and oi = ( 4 2 )  (1 - 6), i.e., 

h s - o P -  21 P - 2, , 6 =  (9) 

then the parametric gain off degeneracy  is  reduced  from 
that  on degeneracy by the factor 1 - a2. 

The lineshape or dependence of the parametric gain on 
the optical frequency is determined by the variation of Ak 
with  frequency. Noting that for Ak2L2/4>>r2L2 and 
small T L  

U P  1, 

G ~ ~ , ,  pia z r2L2 EAky;yT, 
it  is  seen that for small gain, the full  half-power gain line- 
width  is determined by IAkLIZ 2a. For a 4 cm crystal of 
LiNbOJ  at a pump wavelength of 4880 A and a signal  wave- 
length of  6328 & the dispersion is such that  the half-power 
linewidth is about 1.4 cm-' or  about 0.56A. However, near 
degeneracy, linewidths may be much larger. From (7) it  is 
seen that  the gain linewidth is also somewhat dependent on 
r2LZ and  thus  on the strength of the pump. Fig.  2 shows the 
quantity G r 2 L 2  versus (Ak/2). 

B. Amplijication of Gaussian Beams 
In determining oscillator thresholds we  will  be concerned 

with the gain experienced by a fundamental Gaussian mode 
of the oscillator. In general, if a beam having a Gaussian 



HARRIS:  TUNABLE OPTICAL PARAMETRIC OSCILLATORS 

cross section is incident on  a nonlinear crystal and  para- 
metrically amplified, the  output beam will no longer be a 
simple Gaussian.  This occurs as a result of Poynting vector 
walk-off  (i.e., the fact that in an  anisotropic crystal, the direc- 
tion of power  flow and I; vector need not be the same) ; and 
also, in the absence of Poynting vector walk-off, as a result 
of the form of the nonlinear polarization generated in the 
parametric process. 

The power gain experienced by an incident Gaussian 
mode  may  be  found by evaluating an integral of the form 
JE* . 3 d  V ,  where E is the electric field  of the given  mode, 
and @ is its driving polarization. A general analysis of this 
problem, allowing for arbitrarily tight focusing, and also for 
Poynting vector walk-off has been  given  by  Boyd and 
Kleinman [13], and some oftheir results will be  summarized 
in the latter  part of this section. We first consider the more 
restricted but important case of near-field  focusing and 90“ 
phase  matching (for 90” phase  matching, Poynting vector 
walk-off  is absent). An analysis of this case was  first  given 
by  Boyd  and  Ashkin [14]. 

A near-field analysis keeps track of the transverse de- 
pendence of the signal, idler, and  pump modes ; but assumes 
that this transverse dependence  does not change  over the 
length of the  nonlinear crystal. It  thus requires that the con- 
focal parameter of the focus (of  all three beams)  be as long 
or longer than the length of the nonlinear crystal. 

To make the  appropriate modification of the previous 
analysis we allow the signal, idler, and pump fields to 
have Gaussian cross-sectional dependencies of the form 
E,, exp - r 2 / W f ,  Eio exp -r2/W’, and EPP exp - r 2 / W i ,  
respectively. The generated driving polanzations at the 
signal, idler, and  pump  are then also Gaussians [14] having 
beam  waist radii F, Ff and Wp given  by 

1  1  1 -=---+- 

1  1  1 
Wf w’ w; 

w: wf  w, 

w; - wf w’ 

= -  + - 5  

1 1  1 - - -++ .  

For instance, the idler and pump mix to yield a polarization 
at the signal frequency of the form 

r2  r2 r2 exp - -2 = exp - -exp - -a 

Note  that these polarization radii are always smaller than 
the  radius of either of the  Gaussian beams  which  mix to 
produce them. We take the appropriate projections of these 
Gaussian polarizations by multiplying them by exp - r2/W,”, 
exp - r2/W:,  and exp - r 2 / W i ,  respectively, and integrating 
over the transverse cross sections. The result of this is the 
set of equations 

WS W’ w; 

dEso 

dEi0 - 

- = - jqso&gJpoE$ exp - jAkz (1W dz 

- - - jq,uidgiEpoE:o exp - jAkz (1 1b) 
dz 

5 = - j q p o p d g ~ s o E i o  exp jAkz ,  
dz 

where the spatial coupling factors g s ,   g i ,  and g p  are 

These coupling factors are a measure of the failure of the 
driving polarizations to completely overlap the desired 
Gaussian modes. If (though this can  never  be the case) 
F= W,, e= w, and Wp= Wp, then g s = g i = g p =  1. Except 
for these coupling factors, (11)  is identical to (5) ; and the 
solutions of the previous section may  be  employed. 

The  parametric gain coefficient T2 of (8) thus becomes 

where,  from (10) and (12) the factor g s g i  is 

gsgi  = 4w2 W,%Wp [ wfw’ + wfw; + w’wf 1’- (14) 

The power of the  Gaussian  pump beam is  given  by 
(EiO/2qp)(zWi/2),  and  thus (13)  may  be rewritten 

where 

M 2  = [ K K W p  wfw: + wfwi + w;w; 
and Pp is the incident pump power. 

Ashkin and Boyd [14] have  shown that  to maximize M 2  
for W, and W ,  fixed, that  the pumping  beam  size W i  should 
be 

1  1  1 
W : = w f + j @ ,  

in  which case M 2  will be 

1 1 M & = -  
4 wf + w’ 

In  order to maximize the parametric gain at  a given pump 
power, Ws and W ,  should  be  chosen as small as possible. 
However,  since the present analysis is restricted to the near 
field, the smallest allowed spot sizes are approximately those 
of the confocal condition, i.e., Wf = L&/2nns, W ;  = LlJ2zni.  
From (16a), if both  the signal and idler are confocally 
focused, it is  seen that  the  pump should also be  confocally 
focused [14]. 

Combining the previous equations, and making  use of the 
degeneracy factor of (9), the single pass parametric gain 
coefficient G = r 2 L 2  for a confocally focused signal, idler, 
and  pump may  be written 

where oo is the degenerate frequency and Wg = (LA0)/(2nn) 
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IO + 1 

0.0 

TABLE I1 
REPRFSENTATIVE 90" PIIASE MATCHABLE M A W  

P, for 30 

focusing) 

ADP 2573 A 5.0cm 0.76 MW/cm' 39watts 8 cm-' 

cdse 2 . 5 ~  2.0cm  0.77MW/cmZ 141watts  -151x11-' 

LiNbO, 5300A 4.0cm 0.18 MW/cmz 15watts 1 cm-' 
Ba,NaNb,O,,  53WA 0.5cm 1.6 MW/cm2 17watts 8cm-l  

I 6  
0 - 2  10-1 I IO 0 2  0 3  

E 
Fig. 3. Reduction  factor 6,(B, 5 )  versus 5 .  

(From Boyd and Kleean [ 131.) 

is the degenerate confocal spot size. The price  for  moving 
off degeneracy  is the .factor (1 -d2)'. For example, if 
L,=0.473 p and Ls=0.54 p, then 6=0.75  and (1-6')' 
=0.€88; and the threshold is about five  times  higher than if 
1, = &= 21,. Substituting for W,, (17) becomes 

For a crystal of LiNbO, at a degenerate wavelength of 1 p, 
t h i s  yields 

rzLz E 0.005 q , ( i  - 62)2, (19) 
where t is in c m ,  and Pp in  watts. Note  that for optimum 
focusing rZL2 increases  only linearly with crystal length. 
Thus 1 watt of pumping power  in a  4 cm LiNbO, crystal 
provides 2.0 percent single pass gain at  a degenerate wave- 
length of 1 p. 

We  now  proceed  with  some  of the results of the Boyd and 
Kieinman analysis [13]. Allowing  for both  Poynting vector 
walk-off and arbitrarily tight focusing  they  show that the 
effective  single  pass gain of interacting Gaussian modes all 
having the same confocal parameter is given  by (18) multi- 
plied  by a reduction factor hJB, 5). The  parameter 5 is the 
ratio of the length of the nonlinear crystal to the common 
confocal parameter bo ; and  B is a double refraction param- 
eter [13] defined as 

where p is the walk-off  angle, L is the length of the non- 
linear crystal, Lo is the degenerate wavelength, and no and 
n3 are the refractive  indices at the degenerate wavelength 
and  pump, respectively. B is approximately the ratio of the 
walk-off  angle p to the far  field diffraction angle of the 
Gaussian beam. 

The reduction factor h,,,(B, 5 )  as a function of 5 with B as 
a parameter is  shown  in  Fig. 3. In the absence of double re- 
fraction (90" phase matching), B = 0, and for optimum focus- 

ing 5 = L/bo should  be 2.84. However, the increase  in  gain 
over that obtained for L/bo = 1, used in the previous near- 
field analysis, is  only about 20 percent and may not be 
worth the increased pump power density at the tighter focus. 
It  should dso be mentioned  that at the tighter focusing, Ak 
should be slightly  different from zero. This results  since, at a 
tight focus, the mixing  of the noncollinear components of 
the signal and idler fields requires slightly  longer E vectors 
than  does the collinear mixing. This optimized f i  vector 
match [13] is included  in the functionh(B, 5). 

In many practical cases B will be sufficiently large so that, 
as Seen in  Fig. 3, the maximum value ofl;,(B, 5 )  will be rather 
independent of 5. Boyd and  Kleinman [13] have  shown 
that for  large B, 

hm(B, 5 )  + a/4B2 (B2/4 > 5 > 2/Bz), (21) 
where  for  the  range of B  and 5 shown in parenthesis, (21) is 
correct to within 10 percent. Since B2 is proportional to L, 
the L in the numerator of (18) is  cancelled, and for large 
birefringence the gain is nearly independent of the length 
of the nonlinear crystal; and subject to the criteria of (211, to 
the degree of  focusing.  Since  for 90" phase  matching 
h,(B, 5 ) ~  1, the factor a/4BZ is approximately the gain  re- 
duction factor which  is  experienced as a result of  walk-off. 

As an example, to  phase  match a LiNbO, parametric 
oscillator directly  pumped by a 1.06 p Nd" :YAG laser at 
90" requires a crystal temperature of about 750°C [13]. 
Room temperature phase matching  at degeneracy  is  ac- 
complished by propagating  at an angle of  43" with  respect to 
the optic axis. This yields a walk-off angle p = 0.037 radians 
and Br4.7 L"'. For a 1 cm crystal the maximum  gain at 
a given pump -power is then 28 times  smaller than it would 
have been had 90" phase  matching been  possible. 

It  should be noted that the above discussion is concerned 
with  gain maximization  at  a given pump power as opposed 
to  at a given pump power density. If maximization  is  with 
regard to power  density,  walk-off  need not be of conse- 
quence. If the beam radii of all modes are greater than 
Wo = d p L ,  then the gain reduction due  to walk-off  will be 
less than 15 percent and may  be made essentially  negligible 
for  still  bigger beams [14]. 

Table I1  shows the approximate  pump power  densities 
and optimized pump powers  necessary to obtain 30 percent 
single  pass gain with  typically  available lengths of some 
nonlinear crystals. Approximate gain linewidths for  these 
crystal lengths are also shown. 
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111. THRESHOLD PUMPING POWER 
TO construct an oscillator it  is  necessary to resonate either 

the signal or the idler, or  both. The latter case, where both 
the signal and idler are resonant, yields the lowest threshold, 
but poses  severe stability problems and  mirror require- 
ments. Since they have the lowest threshold, oscillators of 
this type have thus  far been the most prevalent. 

To determine threshold of the oscillator we require that 
the single pass parametric gain (note  that there is  only 
gain when the signal and idler travel in the direction of the 
pump) be  sufficient to offset the round-trip cavity  loss. We 
define a, and ai as the round-trip E field  losses at  the signal 
and idler frequencies,  e.g., E,(O)=(l -asp&). From (6) for 
Ak = 0, we require 

1 E,,(O) = E,,(O) cosh TL - j 5 E;,(O) sinh TL (22a) 
1 - a, S 

1 Eio(0) = Eio(0) cosh TL - j .L E,*,(O) sinh TL,  (22b) 
K .  

1 - ai S 

where E,, and Ei, are the peak amplitudes of the Gaussian 
modes as defined  in the previous section ; r is  defined  by 
(13) ; and K ,  and x i  are given  by q,o,dE,g, and qioidEpgi,  
respectively. Taking the complex conjugate of (22b) and 
setting the determinant of the resulting two simultaneous 
equations equal to zero, we obtain 

cash I‘L - - 
1 - a, 

cosh T L  = 1 + asai . (23) 2 - a, - ai 
For low  loss resonators at  both  the signal and idler fre- 

quencies, (23) is  satisfied by 

r2L2 z a,ai. (24) 
signal and idler resonant 

small l o ses  

Alternately, if only the signal  is resonant and it  is  assumed 
that  no idler radiation is returned to the crystal input 
(ai= 1) than for  small a, 

r2L2 = 2a,. (25) 
signal only resonant 

small loses 

The ratio of threshold pump power  with the signal  only 
resonant as compared to  both signal and idler resonant is 
2/ai.  Thus for a 2 percent idler cavity loss, one-hundred 
times as much  power  is required for the signal-only-resonant 
case. It should be noted that for small losses the round-trip 
E field  losses a, and a, are also the single pass power  losses 
at  the respective  frequencies. 

From (24) and (25) it  is  seen that parametric gains which 
are  far  too small to be useful for tunable amplScation  are 
sufficient to  attain threshold in a parametric oscillator [14]. 
For single pass signal and idler power losses  of 2 percent 
each, (24)  yields T2L2=4x Equation (19) shows that 
to  attain this gain in a 4 cm crystal of LiNbO, at a de- 
generate wavelength of l p requires a pump power of only 

us 
Fig. 4. Pumping with a multimode  pump. 

20 mW. The possibility  of  CW parametric oscillators with 
such low thresholds was  first pointed out by  Boyd and 
Ashkin [14], and first demonstrated by Smith et al. [15]. 
Their first oscillator employed a 5 mm crystal of 
Ba,NaNb,O,, and was pumped by a doubled 1.06 p 
Nd3+  :YAG laser. Threshold was observed at 45 mW  of 
multimode power. More recently, Smith [16] has con- 
structed a CW argon pumped oscillator with a threshold of 
about 2 mW. 

The formulas of this  section  have  implied that the pump- 
ing radiation consists of only a single longitudinal mode. 
For a parametric oscillator with both its signal and idler 
cavities resonant, Hams has shown [17] that if the axial 
mode interval of the idler frequency is  set equal to  that of 
the pumping laser, then all of the modes of the pumping 
laser may act in unison to produce gain at a single  signal 
frequency mode. Though the  pump modes are randomly 
phased, the idler modes develop compensating phases 
which  maximize the gain  of the system  [18]. A schematic 
of this idea is shown in  Fig.  4. Using it, Byer et al. [19] 
demonstrated an argon pumped visible CW oscillator with 
a tuning range of  0.68 p . 7 1  in the visible and correspond- 
ing 1.9  p-2.1 p range in the IR. The oscillator used a 1.65 
cm long crystal of LiNbO, and had a threshold of about 
500 mW. 

It  has also been shown that if the dispersion of the non- 
linear crystal is  sufficiently small that the axial mode in- 
terval of both  the signal and idler may be set equal to that of 
the pump, then the peak power, as opposed to the average 
power of the pump drives the oscillator [20]. The pump 
could then be phase locked and threshold obtained at a 
lower average power. 

For  the case of the signal-only resonant oscillator, the 
idler modes are  not constrained, and  thus though it has not 
been formally proven, the full average power of a multi- 
mode laser should be  useful. Further, if the axial mode in- 
terval of the signal frequency is  set equal to that of the 
pump, then peak power should be the pertinent quantity. 

It should perhaps be mentioned that  for many parametric 
oscillators pumped with  Q-switched lasers, the problem is 
not  one of attaining threshold, but of having sufficient gain 
for a sufficient time for  the oscillation to build out of the 
noise. To deplete the  pump requires about 140 dB of total 
gain. If we assume that  the  round-trip transit time of the 
oscillator is 1 ns, and if the length of the Q-switched pulse 
of the pumping laser  is 20 ns; then the  apparent threshold 
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of the oscillator will  be a pumping power  which  yields 
somewhat less than  about 7 dB gain  per pass. 

IV. TUNING, SPECTRAL  OUTPUT, AND STABILITY 
A .  Tuning 

As noted earlier, the position of the center of the para- 
metric gain linewidth is determined by satisfaction of the I? 
vector matching condition E ,  + E i  =I?,, and the frequency 
condition os + oi = 0,. For collinearly propagating for- 
ward waves  these are combined to yield  (2). With the pump 
frequency fixed, any process which changes the refractive 
indices at the signal, idler, or pump wavelengths  will tune  the 
oscillator. Tuning methods include : temperature, angular 
variation of the extraordinary refractive index, electro- 
optic variation of the refractive indices, and, perhaps, 
pressure tuning via the photoelastic effect. Of these, 
temperature or angular tuning may be  used to  tune over 
broad ranges, and pressure or electric fields  may  be  used 
for fine tuning. 

Temperature tuning curves for LiNbO, for a number of 
different pump wavelengths are shown in Fig. 5 .  The curves 
were obtained numerically from the Sellmeier equations of 
Hobden  and Warner [21]. They may  be shifted by  30" to 
100"  by changes in crystal composition [22]. Giordmaine 
and Miller [23] have experimentally temperature tuned a 
LiNbO, oscillator over the range 7300 A- 19 300 A. 

Fig. 6 shows the temperature tuning curves for ADP and 
KDP pumped with the doubled 5145 A line  of argon. These 
curves were obtained experimentally by Dowley  [24] by 
means of the parametric spontaneous emission method 
which  will  be  discussed in Section VI. Note  that the full 
visible spectrum is tuned by a variation of  only 50°C. 

Angular tuning curves for a LiNbO, parametric oscilla- 
tor pumped by doubled 1.06 p [25], and for an  ADP 
oscillator pumped by doubled ruby, are shown  in Figs. 7 
and 8 [26]. The first  of  these  was obtained in an oscillator 
experiment, and the second was obtained via spontaneous 
parametric emission. The angle C#I in Fig. 7 is the comple- 
ment of the internal angle between the optic axis and the 
direction of propagation of the pump, i.e., I$ =O for 90" 
phase matching. For the ADP oscillator a change of about 
8 O  of the angle between the optic axis and  pump beam tunes 
most of the visible spectrum. Though the angular tuning 
method is mechanical and potentially fast compared 
to temperature tuning, its disadvantage is the reduced gain 
which results from Poynting vector walk-off  (Section 11-B). 

Experimental results of electrooptic tuning are shown  in 
Fig. 9 [27]. The oscillator was LiNb03 pumped by ruby 
and  had a tuning rate of about 6.7 A per kV per cm of ap- 
plied electric field. The angular tuning  rate of this oscillator 
is also shown. Electrooptic tuning has also been demon- 
strated by Krivoshchekov et al. [28]. 

Another  tuning technique is shown schematically  in Fig. 
10 [29]. In this case, the I; vector matching is not collinear 
[30] and the oscillator is tuned by varying the angle between 
the incoming pump beam and  the signal cavity. This type of 
tuning has  the advantage that  the nonlinear crystal need not 
be rotated inside the optical cavity. Instead either the angle 
of the input  pump is varied via a beam deflector or alter- 
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Fig. 10.  Schematic of noncollinear oscillator. Tuning  is  accomplished 
by  varying the  angle between  the  pump  and  signal cavity. (From 
Falk  and  Murray [29].) 
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Fig. 1 1 .  Tuning of the  noncollinear oscillator at  different  temperatures. 
(From  Falk  and Murray [29].) 

nately, as was done in the experiment of  Fig.  10, the entire 
cavity containing the nonlinear crystal is rotated. Results of 
this experiment are shown in Fig. 11 [29]. 

If  we let [ denote any variable which  may  be  used to vary 
the refractive  indices, and if  we assume the pump frequency 
fixed, then for collinear phase matching the rate of signal 
frequency tuning with ( is  given by 

(26) 

where b is a dispersive constant [31]  given  by 

ak. ak, 
ao i  am, 

b = > - - .  

In Section 11-A, the half-power gain linewidth was shown 
to be determined approximately by the condition (AkLI = 27r. 
Noting that doi=  -Ams, then from (4), Ak=  bAo, .  Thus 
the full  half-power gain linewidth in Hz is 
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From (26) and (28) it is  seen that xhaterials  with  small b in 
general  have large tuning rates, but also correspondingly 
large linewidths.  Also, near degeneracy  where the linewidth 
of an oscillator is  large,  it  will,  in  general, tune much more 
rapidly than when  far  from  degeneracy. As an example, 
KDP has a b that is about 4 that of LiNbO,, and  as a result 
tunes much more rapidly (see  Fig. 5 and 6). On the other 
hand, the linewidth of a 1 cm crystal of KDP is about 
40 cm", as compared  to  about 5 cm- ' for LiNbO,. 

The  rate of change of the center of the parametric line- 
width with  respect to fluctuation of the pump frequency 
has been examined by Kovrigin  and Byer [32].  

B. Spectral  Properties 
The spectral character of the output of an oscillator is 

determined by the width and saturating behavior of the 
gain lineshape, and by the interaction of its signal and idler 
modes.  Even for materials with  relatively  large b the half- 
power  gain  width will typically be greater than 1 cm-' 
(30 GHz) ; and a number of  axial  modes at the signal and 
idler frequencies  will  lie  within the linewidth. For instance 
for a 4 cm crystal of L i m o ,  with a pump at 4880 A and a 
signal at 6328 A, b=6.2 x lo-'' s/m  yielding a half-power 
width  of  1.34 cm-'.  With mirrors placed on the ends of the 
crystal the axial mode spacing would  be about 1.6 GHz and 
about 25 signal and idler  modes  would  experience  sig- 
nificant gain. Near degeneracy,  typical  observed  linewidths 
are greater than 100 cm- '. Fig. 12 shows the dispersive 
constant b for LiNbO, versus temperature at a number of 
pump wavelengths. Corresponding signal and idler fre- . 
quencies as a function of temperature are shown  in  Fig. 5. 

Parametric oscillators with both their signal and idler 
frequencies resonant pose a particularly severe  problem 
[ 7 ] ,  [ll].  Since, as a result of dispersion, the axial mode 
spacing of the signal and idler  frequencies are slightly  dif- 
ferent, simultaneous resonance of a signal and an idler 

; i  
I /  -IDLER FREQUENCY wt  

Fig. 13. Longitudinal modes  of signal  and  idler cavities. Frequencies o1 
and o2 vertically in line on  the diagram  satisfy o1 +w,  =os. The  verti- 
cal dashed line  farthest to the  left  indicates  the  frequency combination 
for index matching. The  adjacent  line  represents  the  nearest  frequency 
combination for  which oscillation is possible. Since  the  frequency 
oftkt bw is comparable to the  cavity  linewidth Amc, oscillation actually 
occurs at the vertical dashed line at the  right where &=O. (From 
Giordmaine and  Miller [ 1 1 I.) 
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Fig. 14. Power  output  and  linewidth  versus PJP, (threshold) of a CW 
argon  pumped  LiNbO, oscillator. (From Byer et al. [19].) 

mode whose sum frequency is equal to the frequency  of a 
pump  mode,  can only occur for certain axial  modes. As 
shown  in  Fig.  13 the particular modes  which happen  to 
align  may be far from the center of the gain  linewidth. 
Furthermore,  as a result of temperature changes and 
vibration, the modes  which happen  to align  typically 
change very rapidly. This is particularly true when com- 
bined  with the fact that the pump frequency  is  itself  usually 
fluctuating [15]. For oscillators thus far constructed this 
fluctuation has  had a time constant between about 10 p s  
and 1 ms, and has often severely  reduced their average 
power output. Since the modes  which  align or nearly  align 
are typically  clustered together in groups having a spacing 
which  is large compared  to the axial  mode  spacing, this 
effect has been termed a "cluster  effect"  [7], [l 1 1 .  

The right scale  of  Fig. 14 shows the total spectral width  of 
a 5145 A argon  pumped  CW oscillator 1191. The data were 
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Fig. 15. Spectra  of  doubly  and  singly  resonant oscillators. (a), (b), and (c) 
Spectra of the  doubly  resonant oscillator for  increasing  pump  power. 
(d) Spectra of  a singly  resonant oscillator. (From  Bjorkholm [34].) 

obtained by taking  a long-term exposure with a scanning 
Fabry-Perot etalon. With the oscillator operated about 
two times above threshold, the spectral width approaches 
the theoretical 4 wavenumber linewidth  of the 1.65 cm 
LiNbO, crystal. For weaker pump drives, only modes 
closer to A k = O  were above threshold, and  the spectral 
width is reduced. Average signal power output is also 
shown. 

The cluster problem may  be eliminated by constructing 
the oscillator with only its signal or its idler cavity, but  not 
both,  resonant. Feedback at  the nonresonated frequency 
can be prevented by careful choice of mirrors, by the use  of 
an appropriate  absorbing material in the oscillator, or by 
means of noncollinear E vector matching. A collinear singly 
resonant oscillator of this type was  first demonstrated by 
Bjorkholm [33], [34], and some of his results are shown in 
Fig, 15. Spectra of a doubly resonant oscillator are shown 
in (a), (b), and (c) for increasing pump power. Oscillation 
occurred in three clusters which had  a spacing of about 12 A. 
Part (d) shows the spectra of his  singly resonant oscillator in 
which,  in all cases, clusters were absent. Other oscillators 
having only their signal or idler frequencies resonant have 
been constructed by Falk and Murray [29] and by  Belyaev 
et al. [35]. The oscillator of Falk and  Murray was non- 
collinear and is shown schematically in Fig. 10. Though no 
clusters were observed, an additional unexplained spectral 
component was often found a number of angstroms away 
from the primary component. Belyaev et al. also found a 
spectrum consisting of one  or two  lines spaced by a few 
angstroms ; with the width of each individual line not ex- 
ceeding 0.1 cm - '. 

At this  time an experimental study of the competition 
between the longitudinal modes of a single  cavity para- 
metric oscillator has not been accomplished A theoretical 
study by Kreuzer [36] has shown that if the oscillator is 
operated less than 4.81 times above threshold, that it should 
saturate uniformly and in the steady state have only a single 
oscillating longitudinal mode. For  an oscillator operated 
further above threshold, the steady-state solution may con- 
sist  of  two or more longitudinal modes. For the latter situa- 
tion, the pump is periodically depleted and restored inside 
the nonlinear crystal resulting in a saturated lineshape 
which  is broadened and  double peaked. 

C.  Locking 
Many experiments require an oscillator output with far 

greater stability than  that presently available. For instance, 

Fig. 16.  Schematic of frequency  locking  technique.  The  letters s, i, and p 
denote the signal, idler,  and  pump.  respectively.  The  gas  transition  is 
assumed to absorb at only the  signal  frequency;  and  the  mirrors  are 
assumed  to  have  high  reflectivity  at only the  idler  frequency.  The 
vertical  arrows  in  the LiNbOB crystals denote the  direction of their 
positive z axes. (From Hams [37].) 

optical pumping of gaseous vibrational or  rotational lines 
will require frequency control of better than 0.03 cm- l .  

One proposed approach which  may make it possible to 
lock the output of an optical parametric oscillator onto  a 
gaseous atomic  absorption line is  shown in Fig. 16 [37]. 
The usual single nonlinear crystal is  replaced by two non- 
linear crystals which have the direction of their + z  axes 
reversed. Between the reversed nonlinear crystals is  placed 
the cell containing the gas to which  it  is  desired to lock the 
output frequency of the oscillator. If the absorbing transi- 
tion is at the signal frequency of the oscillator, then the 
oscillator is made resonant at only the idler frequency. As a 
result of the reversed positive axes, the parametric gain  of 
the first crystal is partially cancelled by the second crystal. 
That is, the relative phases of the signal, idler, and  pump on 
entering the second crystal are such that instead of further 
gain the signal and idler decay to the values  which  they 
had on entering the first crystal. The pressure of an absorb- 
ing  gas  is then adjusted until it  is nearly opaque at the 
pertinent atomic transition. The loss and phase shift of this 
gas prevents the gain cancellation in the second crystal, with 
a resultant sharply peaked gain function centered at the 
frequency of the atomic transition. 

Bjorkholm has shown that it  is possible to lock,  at  least on 
a transient basis, the output of a high-power  pulsed optical 
parametric oscillator to  an incident low  level  signal. In a 
recent experiment he  succeeded in locking a LiNbO, 
oscillator, pumped by a ruby laser, to  a stabilized CW YAG 
laser [38]. A minimum locking power of 1 mW, and  a 
locking range of about 15 A were obtained. 

V. SATURATION AND POWER OUTPUT 
If the level  of the pumping field  is above threshold, the 

signal and idler fields build up  and deplete the pump  as it 
passes through  the crystal. Saturation occurs when the 
pump intensity, appropriately averaged over the length of 
the nonlinear crystal, is reduced to the point where  single 
pass gain equals single pass loss. 

We fist  consider the case  where  only the signal  frequency 
is resonant and determine the pumping power  necessary 
to  attain appreciable conversion efficiency.  We  assume that 
the round-trip cavity  loss and  thus the saturated single  pass 
gain at the signal  frequency are sufficiently  small so that  the 
signal  field  may  be assumed constant over the length of the 
nonlinear crystal. It should be noted that this is a small gain 
as opposed to a small power assumption. Equation (3a) and 
(3c) may  be  solved subject to E,=O, and Ep=Ep(0) at 
z= 0. Taking E, as an undetermined constant, we  find 
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E ,  = E,(O) exp j - AkL[cos PL - j - sin BL 3 2 Ak 28 1 
where 

j? = [~iWpli~pdZIEs12 + Ak2/4]”’. 
From ( 5 )  the generated  signal  power  is  related to the gen- 
erated idler power, and  thus 

The  single pass power gain G=(IE,(L)I’ - ~E,(O)~’)/)E,(O)~’ 
is  now  set equal to the round-trip power  loss 2as. Thus 

With the pump level Ep(0)  fixed, \ES[ is determined by the 
solution of (31). At threshold, the [ES\ =O and therefore 
=O ( A k = O ) ,  yielding a threshold power  in  agreement  with 

(25). At line center, we see  from (29), that the pump will  be 
completely  depleted  when flL= 4 2  ; from (31), that this will 
occur at a pumping power equal to (7~/2)~ times the threshold 
pumping power [36]. If the value of the pumping field  is in- 
creased further, the  pump will again begin to grow at the 
expense of the signal and idler field. As noted  at the end of 
the last section, this spatially varying pump field creates an 
interesting type of line broadening first pointed out by 
Kreuzer [36]. 

A parametric oscillator with  only its signal  frequency 
resonant has the advantage  that if the desired output of the 
oscillator is taken at the idler frequency, then an optimum 
coupling problem is  avoided. That is, at any drive level the 
signal  cavity should be made  as lossless as possible. If the 
pump .is adjusted to (42)’ times its threshold value, then 
wi/W, of the incident pump power  will be obtained at the 
output [33]. In  a recent experiment, Falk  and  Murray [29] 
have obtained about 70 percent peak  power conversion 
and 50 percent  energy conversion from the incident ruby 
beam. As seen from the power-versus-time plots in Fig. 17, 
greater energy conversion was  prevented by the build-up 
time of the oscillator. The schematic of this oscillator is 
shown  in  Fig. 10. 

We next consider the case where both the signal and idler 
cavities are resonant. Here the signal and idler  waves travel 
through the nonlinear media  in both the forward  and back- 
ward directions. When traveling in the backward direction, 
they  mix to produce a pump wave traveling in the opposite 
direction from the incident pump wave.  As  &st pointed out 
by Siegman [39], this results m a  powerdependent reflec- 
tion of the pump and a limiting  of the transmitted pump to 
its threshold value. As  a resuit, the maximum efficiency  of 
such an oscillator is 50 percent and occurs at a  pump power 
equal to  four times the thmhold pump  power. 

Bjorkholm  has recently shown that if this backward re- 
flection  is  avoided, the signal and idler resonant case may 

800 I 

Fig. 17.  Output power of noncollinear single cavity oscillator. The dashed 
curve shows the  pump  in the absence of the parametric interaction. 
(From Fatk  and  Murray [29].) 

also be 100 percent  efficient [a]. With  powerdependent 
pump reflections absent, the generated signal and idler 
powers are given  by 

where P, is the threshold pumping power. At four times 
above threshold, 100 percent conversion efficiency  is ob- 
tained. Fig. 18 shows the efficiency and the ratio of trans- 
mitted-to-incident pump power  for the  doubly resonant 
oscillator with and without powerdependent reflections. 

Byer et al. have  recently constructed a CW argon pumped 
ringcavity parametric oscillator [41], shown  in  Fig. 19. 
The oscillator builds up in the direction in which the pump- 
ing wave  is  traveling and  powerdependent reflections are 
avoided. Though 60 percent depletion of the incident 
pumping beam  was observed, as  a result of  insul€icient out- 
put coupling only a few milliwatts  of output power  were 
obtained. 

Ammann et al. have  recently obtained about 7 percent 
average power conversion in a doubly resonant LiNbO, 
oscillator directly pumped by a repetitively  Q-switched 
Nd3+  :YAG laser [42]. 

Another interesting type of optical parametric oscillator 
is obtained when the nonlinear crystal is  placed  inside the 
cavity  of the pumping laser. The mirrors for the signal and 
idler  cavity  may be coincident with those of the pumping 
laser or may be positioned using various types  of  beam 
splitters. Oshman  and Hams [43] have  shown theoretically 
that this type of oscillator may operate in  several types of 
regimes.  These are : an efficient  regime  with operating char- 
acteristics similar to those of the previously  described 
oscillators; an inefficient  regime  in  which the parametric 
coupling in  effect drives the phase rather than the amplitude 
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Fig. 18. Efficiency and transmitted pump power of the  doubly  resonant 

oscillator, with and without power dependent pump reflection. 
PjP is the ratio of transmitted-to-incident pump power. (From 
Bjorkholm (401.) 
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Fig. 19. Ring cavity parametric oscillator where M, and M, are 5 cm 
dielectric mirrors, and M, is a flat gold mirror. (Byer et nl. [41],) 

of the oscillation and where a shift  of the signal, idler, and 
pump frequencies from their normal positions is observed; 
and a repetitively pulsing regime, characterized by short 
pulses of output power at the signal and idler. A stability 
analysis of  these various regions shows that they are mu- 
tually exclusive and  can be experimentally chosen by chang- 
ing the laser gain, the oscillator output coupling, or the 
strength of the nonlinear interaction. 

VI. SPONTANEOUS PARAMETRIC 
EMISSION 

When light from a pumping laser is incident on a non- 
linear crystal, there is spontaneous probability that  pump 
photons will split into signal and idler photons.  Without 
the need for optical resonators at either the signal or idler 
wavelengths,  emission at these  wavelengths  may  be ob- 
served. This emission has alternately been termed as spon- 
taneous parametric emission, parametric fluorescence, 
parametric noise, parametric luminescence, and parametric 
scattering [MI-[49]. It is analogous to laser  fluorescence 
or more exactly to spontaneous  Raman and Brillouin scat- 
tering. It is important since  even at pump fields  which are 
far  too low to attain oscillation it  may  still  be  observed and 
used to obtain temperature, angular,  or electrooptic tuning 
curves of potential oscillator materials. The  data for Figs. 6 
and 8 were obtained using this technique. The fact that 
the spontaneously emitted power varies linearly with pump 
power and is independent of both  the area and coherence of 
the pumping beam, also makes it a useful tool for the mea- 
surement of optical nonlinearities. 

Spontaneous parametric emission  was predicted and 
studied by Louise11 et al. [47] and others, and was  first ob- 
served at optical frequencies by Akhmanov et ai. [48], 
Magde and Mahr [26], and Harris  et al. [50]. 

ARGON  LASER 
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Fig. 20. (a) Apparatus  for viewing spontaneous  parametric emission. 
(b) k vector matching. (From Byer and Hams [31].) 

The  transition  rate  for spontaneous parametric emission 
may be calculated by forming an interaction Hamiltonian 
based on  the nonlinear susceptibility, and  then applying 
first order  perturbation theory. Kleinman [51] and  Tang 
[52] have shown that this approach yields the now-accepted 
result that the parametric emission  may  be considered to 
arise as the result of the mixing  of a fictitious zero-point 
flux, at  both the signal and idler  frequency,  with the in- 
coming pump beam  [31]. The effective zero-point flux is 
obtained by allowing one half-photon to be present in each 
blackbody mode of a quantizing volume. The result is a 
generated polarization which attempts  to radiate at all  fre- 
quencies and in all directions. Its ability to radiate effec- 
tively is determined by the degree of  velocity synchronism 
with the free wave at the given frequency and in the given 
direction. 

A typical experiment for  viewing spontaneous parametric 
emission  is shown in  Fig. 20. The  pump propagates along 
the length of a L i m o 3  crystal and is polarized along its 
optic axis. The signal and idler waves are ordinary waves 
and make angles 4 and $, respectively,  with the  pump wave. 
For a plane wave pump, for small 4 and +, the incremental 
srontaneously radiated signal power [31] in a bandwidth ah 
and angle d4 is  given  by 

dP, = BL2Ppf (os, 4)4d4 do, (33) 
where 

and f (us, 4) is the velocity synchronism reduction factor 
given  by 

(34) 

where l A k l  is the length of the wave  vector mismatch taken 
in the direction of the pump. For small  angles and small 
dispersion Ak may be written 
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Fig. 21. Total spontaneously  emitted  power  versus e', showing  theoreti- 
cal  and  experimental  results.  (From Byer  and Hams [31].) 

Ak = + bdo, + g+', (35) 

where 

9 = k&pPki,  

and b is  defined  in (27). As a result of normal dispersion, b 
is  negative, and thus higher  frequencies will be obtained 
farther off angle. 

Combining (33), (34), and (351 the total radiated power 
over  all  frequencies in a given acceptance angle 8 is 

P, = /3L2Pp j+mjoe sinc2. [#os + g+')L]+d+ do,, (36) 
- m  

which  may be integrated [31] to yield 

P, = (/3LPp/b)d2. (37) 

The  total spontaneously emitted signal  power thus varies 
linearly with the accepted solid angle ne2, pump power, and 
crystal length. Noting (33) it  is  seen to vary as the fourth 
power  of  signal frequency and the first power of the idler 
frequency. 

The  ratio of the spontaneously emitted power to the 
incident pumping power as  a function of O2 is  shown  in 
Fig. 21 for  a 1.1 cm crystal of LiNbO, and  a CW 4880 A 
pump. The triangular points are experimental and the solid 
line  is theoretical. 

The spectral distribution of the spontaneously emitted 
light as  a function of the accepted angle 8 is  shown  in Fig. 
22. The theoretical curves were obtained by numerically 
integrating (36). As 8 is decreased the bandwidth is at first 
reduced, but then approaches the limiting bandwidth ( l /bL)  
of a collinear interaction. 

A detailed study of spontaneous parametric emission has 
been  given  by Kleinman [51]. He makes use of a matching 
surface, such as is  shown in Fig. 23, which  is the locus of 
signal and idler E vectors such that M=O. For the special 
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Fig.  22. Spectral  distribution of spontaneous power  at  different  accep- 
tance  angles. Part (c)  shows experimental points normalized to peak 
of the  theoretical  curve. (From Byer and Hams  [31].) 

Fig.  23. Kleinman's  matching  surface [51]. 

case of  emission tangent to this surface both the power and 
bandwidth of the spontaneously emitted signal are greatly 
enhanced. This effect can be considered to arise as  a result 
of a greater number of idler modes which  may contribute  to 
the emission in the given direction and is analogous to the 
increased spontaneous emission  which occurs when near 
degeneracy. 

Kleinman also discusses a background spontaneous emis- 
sion which  is independent of crystal length and which oc- 
curs in directions where phase matching is not possible 
[51]. This nonphase matched emission  is  much smaller than 
the phase matched emission and has thus far  not been ob- 
served. 

Giallorenzi and  Tang have  observed and discussed spon- 
taneous parametric emission for  the case  where the idler 
frequency lies  in the infrared absorbing region of the 
crystal [53], and they find the intensity to be approximately 
the same as it  would  have  been had there been no  absorp- 
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Fig. 24. d2/n3 and  transparency of some  phase  matchable 
nonlinear optical materials. 
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tion. With one frequency in the  absorbing region, spon- 
taneous emission provides a convenient means to  obtain  the 
dispersion curve in the lossy region. 

Recently four-photon parametric noise, corresponding to 
satisfaction of frequency and L vector conditions of the form 
wp + up = w, + mi and E ,  + E,= E ,  + E j ,  has been  observed  in 
water by Weinberg [54] and in calcite by Meadors et al. 
[55]. The potential advantage of a four-frequency process  of 
this type is that  the  pump may  be a lower frequency than 
the signal. Using a ruby pump, Meadors er al. tuned from 
4300 A to 5900 A. For a  four-photon process of this type, 
unlike the three-photon process, focusing of the pump is  of 
consequence. 

If the parametric gain  is  sufficient, spontaneous emission 
may  be directly amplified without using optical resonators. 
One technique, demonstrated by Akmanov et al. [56]  uses 
multiple reflections  between roof top prisms. With a  pump 
density of  70 MW/cm2 of doubled 1.06 ,u light, 100 kW of 
tunable radiation was obtained. The nonlinear crystal used 
was ADP,  and tuning was accomplished by crystal rotation. 
Observed linewidths were about 1-2 A. 

VII. NONLINEAR OPTICAL MATERIALS 
From  the considerations of the previous sections, a num- 

ber of desirable qualities for materials to be  used  in optical 
parametric oscillators may  be formulated. These are: high 
nonlinearity; phase matchability and, in particular, 90" 
phase matchability;  narrow linewidth (large b);  high 
transparency and freedom  from damage; and large variation 
of refractive indices  with temperature, angle, pressure, or 
electric field. Fig. 24 shows d2/n3 (see Section 11) and the 
transparency range of a number of phase matchable mate- 
rials. Normalization is to d2/n3 for KDP. Since both dand n 
are dependent on the  particular angle and frequencies at 
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Fig. 25. Second  harmonic  generation  versus  temperature for good and 

bad crystals of LiNb03. A high quality  crystal should have a half- 
power  width of about 0.64" C / L  where L is its length in centimeters. 

which phase matching occurs, there is some uncertainty to 
the values in this figure. 

The KDP-ADP type materials are  the only ones with UV 
transparency [57]-[59] and, as seen  in  Figs. 6  and 8, allow 
convenient visible tunability. These crystals might also be 
used to double  a tunable visible source into  the 2700 h- 
3000 A region  [57]. Unfortunately, Dowley has found that 
these crystals exhibit some form of UV damage which limits 
the average power  which  may  be obtained when doubling 
the 5145 A line of argon [58]. KDP-ADP type materials 
have  been found to withstand very  high optical power den- 
sities (>400 MW/cm2) before exhibiting surface damage 
[ 6 0 ]  and are particularly useful for high power Q-switched 
applications. When operated near their Curie temperature 
these materials should also allow  wide electrooptic tuning 

LiNbO, has a very  useful  visible and IR transparency 
range, and is the most widely  used oscillator material at 
this time  [62]-[65]. Crystals of  excellent optical quality 
are now available in 4 to 5 cm lengths. Great care must be 
taken to grow this material such that its refractive index 
does not vary with distance in the crystal [ a ] ,  [67] k vector 
matching for a  4 cm crystal requires that the variation of 
refractive indices  be  less than 10- '. It has been found that 
this is  best  achieved  by growing from a melt which  is about 
2 percent lithium deficient. Fig. 25 shows  second harmonic 
power  versus temperature for a high quality and  a low qual- 
ity LiNbO, crystal. For the poor crystal, the refractive 

[61 I. 
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index  varies  with distance, and different parts of the crystal 
phase match at different temperatures. For second har- 
monic generation from 1.15 p,  the half-power width for a 
high quality crystal should be about 0.64"C/L, where L is the 
length in centimeters of the nonlinear crystal. As a result of 
optical refractive index damage, LiNbO, must  be main- 
tained at a temperature greater than  about 170°C  when  in 
the presence  of intense visible radiation [68]. In a repeti- 
tively  pulsed  system surface damage probably occurs some- 
where  in the vicinity  of 20 MW/cmZ. 

BazNaNbSOIS has a similar transparency range as 
LiNbO, and a d2/n3 which  is almost ten  times greater 
[69]-[71]. However, available crystals have  lengths of 4 
mm or less, and typically exhibit severe striations. At room 
temperature the material does not exhibit refractive index 
damage, but on the other  hand its phase transition at  about 
3 W ,  and the decrease  of its nonlinearity above this transi- 
tion, limit its temperature tuning range. 

Two  possible crystals for oscillation further in the in- 
frared are proustite (Ag,AsS,) and CdSe  [72]-[74]. 
Though proustite has been  used for mixing experiments, an 
oscillator using  it has  not yet  been constructed. As a result 
of  its large birefringence,  only off angle E vector matching 
will be possible. Also, the material is reported to damage 
relatively  easily, i.e., at  about 1 MW/cm2. An absorption 
band with absorption  of.about 1 cm- at 10.6 p will prob- 
ably prevent working with the COz laser. 

CdSe has a high nonlinearity [74] and should be phase 
matchable near 90" for a pump at  about 2.5 p. 

Tellurium had attracted earlier interest when  Pate1  used  it 
both  for doubling COz [75] and  to obtain a parametric gain 
of 3 dB at 18 p [76]. d2/n3 is about 1.7 lo6 on the normalized 
scale of Fig. 21. However, the material is hard  to handle 
and  has a relatively  high  loss. 

Some other possible nonlinear crystals for use  in  oscil- 
lator applications are discussed in [77]-[84]. 

The conventions for  specifying optical nonlinearity have 
caused some confusion, and may be summarized as follows 
[13]. If the electric  field and polarization waves are written 
in the form 

E,(?) = Re [Ei(w) exp jwt] 

and 

9J t )  = Re [9,(w) expjwt], (38) 
then for three interacting frequencies  with w,  = w1 +w2,  
the generated polarization is given  by 

9ii(w3) = Xijk(-w3? O1, 02)Ej(01)Ek(oZ) 
j k  

9ii(wZ) = 12 xi,i(-w2, -01, w3)E7(01)Ek(w,) (39) 
j k  

g i ( W 1 )  = Xijk(-wl, - 0 2 9  w3)Ef(w2)Ek(w3)* 
j k  

The nonlinear susceptibility coefficients xijk satisfy what is 
termed as overall permutation symmetry, which states that 
the subscripts and frequencies may be permuted in any 
order. For instance 

xijk(-o3, 01 ,  OZ) = x" JIk (o 1 3  -O3, 
(40) 

= Xkji(wZ3 ~ 1 ,  -03). 

Overall permutation symmetry in effect states that if three 
frequencies are involved in a lossless nonlinear process, 
that irrespective of  which  is doing the generating, or being 
generated, the nonlinear coefficient governing the process  is 
the same. 

The above x i j k  are related to the diJi  which are used to 
describe second harmonic generation by 

Xijk(-20?w, = 2dijk(-20, o, (41) 

Since  diJx is symmetric in the subscripts j and k,  it is ex- 
pressed in the usual abbreviated notation where dijk=dil 
according to 1 = 1, 2, 3 ,4 ,  5,6 for j k =  11, 22, 33, 23, 13, 12, 
respectively. For lossless  media  these  coefficients  may  be 
shown to be real, and their small dispersion over the trans- 
parency range of the crystal is  usually  neglected. In cases 
where the direction of optical propagation is not along the 
principal crystal axes, it  is  necessary to take the projection 
of the generated polarizations in the directions of the 
respective optical E fields. The resulting coefficients  have 
been termed as effective nonlinear coefficients, and their 
value  for a number of uniaxial crystal classes  have  been 
tabulated by  Boyd and Kleinman [13]. 

VIII. TUNABLE FAR-INFRARED GENERATION 
There is great interest in extending tunable source tech- 

niques to the  far IR region of the spectrum, where  relatively 
conventional sources are at their poorest. Assuming other 
factors  constant, the pump power necessary to achieve a 
given gain increases inversely as the square of the lower fre- 
quency. Also, in the far IR losses are typically somewhat 
greater than in the visible or near IR,  and thus significantly 
larger nonlinearities are required. Such nonlinearities may 
be obtained either by making use of a very  high  index mate- 
rial, such as tellurium, or by operating with the IR fre- 
quency below the Reststrahl frequencies, and thus gaining 
the  contribution of the lattice to the nonlinear coefficient. 
For instance, in LiNbO,, the nonlinear coefficient governing 
the interaction between a microwave frequency and two 
optical frequencies  is approximately 30 times  ,greater than 
the nonlinear coefficient relating three similarly polarized 
optical frequencies. (This may be deduced by converting the 
light modulation coefficient rsl into an equivalent d co- 
efficient.) Two other principal changes may occur when one 
of the interacting frequencies lies  below the lattice absorp- 
tion frequencies. First,  the lattice contribution  to  the low- 
frequency dielectric constant often creates the situation 
where the sum of the signal and idler li vectors is greater 
than  the  pump I; vector. This allows noncollinear phase 
matching of three waves  of the same polarization. (By 
contrast, as a result of normal dispersion, at optical fre- 
quencies (k,( + lkil < lk,l.) Second, it  is  usually  necessary to 
include the effect  of  loss on the low-frequency  wave. 

As the IR frequency approaches one of the vibrational 
modes of the lattice an increasing fraction of its energy  is 
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Fig. 26. Dispersion of the A ,  symmetry 248 cm- ' polariton mode  of 
LiNbO,. The  vertical lines intersecting  the  dispersion  curve denote 
the  value of 6 necessary for  vector  matching.  (From  Yarborough 
et al. [89].) 

mechanical rather  than electromagnetic, and in this region 
it  is often termed a polariton mode [MI. Gain results from 
the interaction with both the vibrational and electromag- 
netic portions of the mode;  and  to the extent that the vibra- 
tional portion is important, it may  be considered as a 
tunable Raman gain [86],  [87]. 

In two recent experiments, Gelbwachs et al. [88] and 
Yarborough et al. [89] have obtained tunable radiation in 
the vicinity  of the A symmetry 248 cm- polariton mode of 
LiNbO,. The dispersion diagram for this mode is  shown  in 
Fig. 26. The vertical lines intersecting the dispersion curve 
denote  the value of the angle 6 between the  pump  and the 
Stokes beams which  is  necessary for li vector matching. 
(In analogy with the usual Raman process, the upper fre- 
quency is termed as the Stokes wave). As 8 is varied, the 
oscillator is tuned. In the Gelbwachs et al. experiment [MI ,  
tuning was accomplished by varying the angle between the 
laser beam and  the axis  of a high-Q resonator. In the Yar- 
borough er al. experiment [89]: opposite faces of the crystal 
were polished flat and parallel and  an external resonator 
was not employed. Infrared tuning from 50 p to 238 p was 
obtained with a conversion efficiency to the Stokes fre- 
quency of greater than 50 percent. Though infrared powers 
were not measured, it was estimated that  about 70 watts 
were generated inside the crystal at E. z 50 p ,  

As the infrared frequency approaches the lattice reso- 
nance, both the absorption coefficient and  the nonlinear 
susceptibility become resonately large, though in such a 
manner as  to leave the gain relatively unchanged. Fig. 27 
shows theoretical results of Henry and  Garrett [90] as the 
infrared frequency is  swept through the 366 cm- ' lattice 
resonance of gallium phosphide. The  absorption coefficient, 
parametric gain, and the ratio of generated infrared to 
Stokes radiation  are shown. The solid portion of the curves 
indicate the region  over  which phase matching is  possible. 
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Fig. 27. Parametric gain,  absorption mfficient, and  ratio of W to 
Stokes  power, as a  function of frequency  near  the 366 cm-' lattice 
resonance of gallium phosphide.  (a) Relative  parametric gain. (b) IR 
absorption  coefficient. (c)  Ratio of IR to Stokes power densities 
(SI&). The solid portion of the  curve denotes the  region  over  which 
phase  matching is possible.  (From Henry  and  Garrett [%I.) 

The slow variation of the gain coefficient and its approach 
to zero at  about 250 cm- ' is a result of destructive inter- 
ference  between the parametric and  Raman type portions 
of the gain coefficient. This interference has been  verified 
experimentally by Faust  and Henry [91]. 

Though the resonant behavior sf the infrared absorption 
does not substantially affect the gain,  it  may greatly in- 
fluence the production of infrared radiation. Henry and 
Garrett [90] have  shown that the ratio of infrared to Stokes 
powers  is approximately 

mi G 
0, aIR 

&RIfLokes = - - ' 

where G is the gain and am is the infrared loss coefficient. 
As seen  in Fig. 27, though in the vicinity of the resonance 
the gain is relatively  unaffected, the IR power drops sharply. 

Far-infrared radiation has also been obtained by differ- 
ence frequency mixing  of higher frequencies. Van Tran  and 
Patel [92] have  recently reported the use  of a magnetic 
field to achieve phase matched difference frequency genera- 
tion in InSb. Phase matching was accomplished by varying 
the cyclotron frequency and thus the free carrier contribu- 
tion to the refractive index. Discrete tuning from 95 p to 
105 p was obtained by mixing a number of wavelengths of 
two synchronously Q-switched COz lasers. Previously, 
nonphase matched far-infrared generation has been  re- 
ported by Zernike [93]. 

Two other approaches  to tunable generation in the far 
infrared are backward wave oscillation in a material with 
low birefringence such as LiTaO, [94], [95], and  Raman 
down shifting of  higher frequency tunable radiation. 
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