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Nonlinear Theory of the Internally Loss-Modulated Laser 

Abstract-This  paper presents a detailed  nonlinear  analysis of 
the  internally  loss-modulated  laser  including  the effect of arbitrary 
atomic  lineshape,  saturation,  and  mode  pulling.  Results of the 
analysis are  in part  numerical  and  include  a  study of the spectral 
and  time  domain  behavior of the  laser  output.  The  results  include 
a  determination of the  minimum  perturbation  strength which is 
necessary  to  produce  phase locking,  peak  pulse  amplitude, and mini- 
mum pulsewidth as  a function of perturbation  strength, a considera- 
tion of the  detuned  case,  and  a  comparison of AM- versus  FM-type 
phase locking. Results  are  compared  with  the  previously  obtained 
linearized  solutions of others. 

I. INTRODUCTION 

HASE LOCKING of the optical modes of a  gas 
laser  by  means of internal loss modulation was first 
reported  by  Hargrove,  Fork,  and  Pollack.“’  The- 

oretical  studies  have been given  by  DiDomenico,‘21 
Y a r i ~ , ‘ ~ ]  and Cr0we11,[~’ who present  solutions  for  a 
linearized approximation to  the problem.  Experimental 
results  on helium-neon and  argon  lasers  have  been  given 
by Cr~well . [~’  Deutsch‘”  reported  phase locking of a 
ruby  laser  and Pantell  and  Kohn‘“  have presented  a 
linearized  transient study of the  ruby laser. Recently, 
DiDomenico et  aLL7’  have reported  phase locking of a 
YA1G:Nd laser. 

I n  this  paper we present  a  detailed study of AM-type 
mode locking which includes the effects of atomic line- 
shape,  saturation,  and  frequency pulling. The results of 
this  nonlinear study differ appreciably  from  those of the 
earlier  linear  theories. I n  particular, the modulator  drive 
strength becomes an  important parameter in determining 
the characteristics of the pulsing  laser. 

The techniques employed and the form of the present 
paper  are  similar  to  those of a previous paper.[g1 In  the 
following sections, we first  derive  and discuss the equations 
which govern  AM-type locking. Conservation  conditions 
are  derived  and the equations are  put into what,  in effect, 
is an integral  form, useful in  later sections.  Numerical 
results which show the effect of varying the modulator 
drive  strength and  frequency are given. It will be seen 
that  at low modulator levels mode phases depart con- 
siderably  from  their  ideal  values  with the result that 
the laser pulses may  have sidelobes of appreciable mag- 
nitude.  Curves of peak  pulse  intensity,  and,  pulsewidth 
versus  modulator  drive strength  are given. Later sections 
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of the  paper consider the question of threshold  for locking 
and  study  the problem of phase  locking  a  laser where 
only  a single mode has  gain. It will be seen that,  in prin- 
ciple, the pulsewidth in such  a  laser  may be made as 
small as that of a  muhimode  laser. 

Before proceeding we note that periodic pulsing of a 
laser  may also be obtained  by  means of an  internal  phase 
perturbation which is driven at  a  frequency  equal to 
that of the axial mode interval. ‘*I Studies of this process 
have been given  by  Harris  and McDuff [” and  by  Ammann, 
McMurtry,  and Oshman.[’”  Except  for occasional com- 
parisons,  this type of locking will not  be considered in 
the present  paper. 

11. BASIC DIFFERENTIAL EQUATIONS 
In  this  section we summarize the derivation of the 

coupled-mode differential  equations. The procedure is 
basically the same  as that used in  an earlier  paper  on 
the FM laser.‘01 

Westart with the self-consistency equations of Lamb‘“] 
which describe the effect of an  arbitrary optical polariza- 
tion  upon the electric fields of a high-Q optical  resonator. 
I n  the present case, the polarization  includes  a  contribu- 
tion  resulting  from the  inverted atomic  media  and  a 
parametric  contribution  resulting  from the loss perturba- 
tion. We assume the loss perturbation to  be represented 
by  a  quadrature component of susceptibility, 

Ax”(z, t) = Ax”(z)[l + COS v,t], (1) 

where Y, is the driving  frequency of the  perturbation 
and is approximately  equal to  AQ, the frequency  separation 
of the resonances Qn of the  empty optical cavity.‘ The 
parametric  contribution to  total polarization is then 

~ ( 2 ,  $1 = C eo AX”(%, t ) ~ , ( t )  sin + qn(t)]un(z) (2) 
Prrametrie n 

where 

U&) = sin (no + n)H/L, 
and  the  total  cavity electromagnetic field has been ex- 
panded in  the form2 

E(%, t )  = E&) cos [.J + Cp&)l u44. 
n 

Here En(t) and cp,(t) are  the slowly time-varying  amplitude 
and  phase of the  nth mode, Y, is its frequency,  and L is 
the cavity  length. We define 

CY, = - AX”(Z)U~(.Z) d~ lL (3) 

1 We adopt  the  convention that all  symbols for  frequency  shall 

a Except  where  noted,  all sums will be from - m to 4- m . denote  circular  frequencies. 
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and where Gn is the  saturated single-pass fractional power 
gain of the  nth mode and depends nonlinearly upon 
frequency, excitation, and power  level. Similarly, we write 

The parametric component of polarization driving the 
nth mode is  given by 

PJt)  =‘z 1 P(2, t)Un(4 dx, 
2 L  

which  becomes upon combining  (1) through (4) and 
assuming that only adjacent mode  coupling applies, 

+ [En+, sin (cpn+, - cpJ 
~ O % C  

- En-l sin (pn - 9 n - l ) l  COS ( v J  + cpn). (5) 

We include the contribut,ion of t’he atomic  medium to  the 
polarization by macroscopic quadrature  and  in phase 
components of susceptibility X;’ and x:, respectively. The 
nonlinear effect,s of the medium arc included in  the x:’ 
and x;. The self-consistency equations  t,hen become 

[+n - n AV + $~x:lEn 

and 

* [ E n + l  cos ( ~ n + 1  - ~ n )  + En-1 COS (9, - ( ~ n - d l ,  (7) 

where we have taken AV to be the detuning of the driving 
frequency from the axial mode interval An, i.e., 

9, - v, = n Av. (8) 

Equations (6) and (7) are  the basic differential cqua- 
tions to be considered and when solved give the amplitude, 
frequency, and  phase of the optical modes. They  can  be 
combined to give a set of complex  coupled-mode equations 
as presented  by DiDomenico, L 2 1  Yariv, L 3 1  and Crowell. 
The retention of the (Pn term (which is implicit in Yariv’s 
equations but assumed zero in DiDomenico’s and Cro- 
well’s) facilitates  t,he inclusion of pulling and pushing of 
the  entire coupled-mode  oscillation. 

111. DISCUSSION OF PARAMETERS 
Assuming small gain, we relate the small-signal sat- 

urated single-pass  power gain to  the  quadrature com- 
ponent of susceptibility by  the relation 

UL 
= ;x:, 

where gn is the additional  round-trip phase retardation 
which  is  seen by  the  nth mode as a result of the insertion 
of the atomic medium  and also depends nonlinearly upon 
frequency, excitation, and power  level. 

Although when possible the equations developed are 
left  in t’erms of the general expressions Gn and $-, in 
specific numerical calculations we consider the essence 
of the problem to be treated by the example of a Doppler- 
broadened Gaussian atomic line with homogeneous  line- 
width  much smaller than  both  the axial mode interval 
and Doppler linewidth. For these cases, we will  express 
the  saturated gain as 

where gn is the  unsaturated fractional power gain per 
pass of the  nth mode and /? the saturat’ion  parameter. 
For  the Doppler-broadened Gaussian line we have then 

Corresponding to this, we take qn to be 

Here go is the  unsaturated line-center gain  and 2, and 
Zi are the real  and  imaginary parts of the plasma dis- 
persion function  and are described by Lamb.“”  For 
vanishingly small homogeneous linewidth, (12)  and (13) 
become go times the normalized Gaussian and the  Hilbert 
transform of the Gaussian, respectively. The parameter 
w is the cent’er frequency of the atomic line and Ku equals 
0.6 times the half-power Doppler linewidth. 

The single-pass  power loss an is related to  the Q of 
the  nth mode by  the expression 

VL 1 
e Qm 

CY, = -- 

and includes both dissipative and  output coupling  loss 
(mirror transmission). I n  typical cases an is independent 
of n and we let CY, = CY. 

The time-varying loss perturbation is taken  to  have 
Ax’’ independent of x over the length 1 of the perturbing 
element. By assuming small loss, the power  loss per pass 
~ ( t )  through  this  perturbing element is readily shown 
t o  be 

.(t) = W ( 1  + cos V m t )  (1 5) 
where TV is given by 
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and is the average loss. If the perturbing  element is 
located  such that its  center is a  distance zo from the end 
mirror, we obtain  the self-coupling term a, from (3) 

or since no is very large, 

aa = w. (18) 

Thus  the self-coupling term is simply  equal to  the average 
loss introduced  by the  perturbation. We obtain  from (4), 
(16), and (18) the cross-coupling term 

which, again  noting that  no is very large, yields 

a, = -- 
L ffa 7rl Xnn-  

I T  2L L sin -- cos --. 

For the practical case of I << L this becomes 

The form of (21) is analogous to  that obtained  by Cro- 
well‘41  for loss modulation  and  Harris  and McDuff‘’] for 
phase  modulation. It is desirable to locate the  perturbing 
element close to  the end of the  cavity so that zo % 0 and 
such that 

To summarize, we define the loss terms  as follows: a, is 
the single-pass power  loss of the  nth mode which results 
from  dissipative  and coupling loss not  dependent on the 
internal  perturbation; an is equal to  the average loss per 
pass introduced  by the  perturbation; and a, is the mode 
coupling term resulting  from the  internal  perturbation. 
I n  places where all modes are  assumed to  have losses 
independent of n, we will let a, = a. The coupling factor 
a, is analogous to  6 in  the FM laser.[g’ 

IV. CONSERVATION  CONDITIONS 
We  now derive  conservations which result  from the 

basic  differential  equations.  These are similar to those 
of Harris  and  McDuff”] for the phase  modulation case 
and  are  derived  in  an  identical  manner. 

1C’Iultiplying (7) by E,, summing  over n, and using the 
constants of the previous  section, we obtain 

EnEn = [ (G, - a,)Ei] - 5 [aa E: 
n 2L n n 

+ 201, C En+1En COS (pn+, - P,)I* (23) 
n 

Noting that En E,E, = d /d t  [Xn E2/2],  (23) can be 
interpreted  as  an expression of conservation of power;  i.e., 
the  rate of change of energy  stored is equal  to  the  net 
power generated or absorbed in all modes.  We see that, 

in general, the loss perturbation  always  absorbs power 
from the system.  However in  a  hypothetical  ideal  system 
wherein  all E,’s are  equal, all (P,,+~ - p,, = T, and  such 
that a, = 301, (modulator at  the end of the optical  cavity) ; 
we see that  the parametric  term  on  the  right  side of (23) 
is identically  equal to zero and  contributes no net loss. 
We shall see later  that under  various  operating con- 
ditions the coupled system  tries to  adjust itself toward 
this  ideal  situation.  This  situation  corresponds to  the 
physical  picture  offered by  Cr~well‘~’  of the light  pulse 
going through  the perturbing  element at  that  instant 
of time  when its attenuation is zero. 

Applying a similar  procedure to (6), we obtain  the 
reactive  conservation  condition 

Solutions of (6) and (7) which give a  nonbeating  equilib- 
rium  point  have E, = 0 and all +* equal  to some constant. 
In  such cases  (24) yields 

The absolute  oscillation  frequency of the  nth mode is 
Q,, - n Av + + and is thus determined when relative 
mode amplitudes  are known. 

V. DYADIC EXPANSION OF STEADY-STATE EQUATIONS 

In  this  section we develop basic  relationships  between 
mode amplitudes  and  phases  for the nonbeating  steady- 
state case. These  equations  are used later in developing 
an  iterative  procedure for determining  amplitudes  and 
phases  exactly  and in calculating the minimum  modulator 
drive that will cause phase locking. The equations  are 
also useful in  evaluating the linear  approximate  solutions 
obtained  by  others  and  in  obtaining  approximate solu- 
tions to  the nonlinear  problem. 

We are interested in solutions of (6) and (7)  which 
have E, = 0 and +, equal to  a  constant independent of n. 
Equations (6) and (7) become 

En+, sin (cpn+l - PA - En-1 sin (cp, - pn-J 

and 

We solve (26) for relative  phase angles and treat  the rest 
of the  quantities  in  the  equation  as known. Proceeding 
similarly as in the case of phase mod~lation,‘~’ we con- 
struct  a Green’s dyadic  such that 

En+lGn+l,p - E*-iSn,a = 6n,q, (28) 
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where is the Kronecker delta,  and  introduce the bound- 
ary condition that $'n.q = 0 at  n = + m . We find 

= o  n > q. 

From (26), the equation for the relative phase is then 

sin (pn - pn-J 

Similar to  the case of phase mod~lation, '~ '  there is a 
complementary form of (30) which sums over q from 
- to n - 1 .  The equivalence of the two forms is 
assured by the reactive  conservation condition (24). 
Equation (30) is one of the principal results of this section. 

A useful identity is  now obtained from (27). First, 
it is rewritten  in the form 

If we define a Green's dyadic 

with  the  boundary conditions gn, a = 0 at n = =t 00, 
we obtain  the  identity 

En = a = - m  5 Sn,q{?Eq + Ea+1[1 + COS ( q g + l  - ? a ) ]  

We choose these  boundary conditions because we are 
interested  in a solution  with mode amplitudes  approaching 
zero at 1.1 large. By solving (32) we get 

-1 

[ k+) - +e)' - (34) 

The identity (33) becomes 

E, = 
1 

d(ff + f f a Y  - 4ffI 

Equation (35) is the second important result of this 
section. 

To gain a better understanding of (35), consider the 
case when Av and +, are small and/or a,  is large. It will 
be seen in Section VII, for this case, that  the relative 
phase angles are  approximately  equal to T. Equation (35) 
becomes 

1 
Approximate d(ff + 01,)' - 4ffE 

E,  = 

Furthermore, consider the case in which there is gain 
in only the center mode, i.e., only Go # 0, which in  this 
case yields 

E, = G"E0 
One mode d(ff + a!,)' - 4aE 

DiDomenico"' treated  the one-mode line in his linearized 
work and  obtained an equation analogous to (38). I n  this 
case where losses are assumed independent of n, the lin- 
earized treatment gives correct relative  amplitudes while 
the  saturation of the center mode sets the scale. One then 
obtains the following interpretation of (37) : the  identity 
is analogous to a homogeneous integral  equation in which 
the nth-mode  amplitude is given by  a convolution of the 
single-mode "response" and  the product of the  saturated 
gain profile and mode amplitude profile. 

VI. ITERATIVE TECHNIQUE FOR SOLVING THE 

STEADY-STATE PROBLEM 

If the relative phase angles p, - qn-l are  not exactly T, 
then small additional  terms are present  in (36). In  this 
case mode amplitudes  and phases may be obtained by 
an  iterative procedure. One begins by making a selection 
of relative mode amplitudes  and phases. The power con- 
servation condition (23) is then used to find the level 
of oscillation. The mode phases and scaled amplitudes 
are  inserted  into (35) and new values E:') are calculated. 
These new values are used in (25)  to calculate the fre- 
quency shift 6") of the coupled oscillation. Next t.he 
values E;' and + ( l )  are used in (30) to calculate the new 
relative angles (9, - qn-J ( l ) .  Although not uniquely 
specified by (30), these angles are  taken t'o be in  the 
second or  third  quadrant.  This agrees with  the direct 
numerical solution of (6) and (7) and,  as  can be seen from 
(23), angles in  these  quadrants cause the loss represented 
by a, to  subtract from that  due  to a, and  thereby to 
reduce the net  modulator loss. Finally the new values 
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EA’’ and (p, - pn-J are used in (35) and the cycle is 
repeated  until the process converges. 

Unfortunately,  this  iterative  procedure converges rela- 
tively slowly. Although (35) includes saturated gain  and 
therefore,  in effect, includes the conservation  condition 
(23),  the convergence is improved if (23) is used to  set 
the scale  each  time before repeating the  iteration cycle. 
The  iterative procedure is recommended only when a, is 
near its optimum  value  and  larger (when a, ,> go - a).  
In  this case, the use of free-running mode amplitudes 
(with  a  “t’ailing off” added  on  either  side)  and  all  relative 
phase angles equal to T as  st’art’ing  values gives a con- 
vergent answer in  about  ten  iterations.  This  requires  about 
one fourth as much  computer  time as the direct  numerical 
solution of (6) and ( 7 ) .  

VII. VARIATION OF a, AT CONSTANT 
MODULATOR FREQUEXCY 

In  this  section we present the results of numerical 
analysis for a  particular  set of laser  const’ants. We assume 
a  Doppler-broadened  Gaussian  atomic line wit’h  a ho- 
mogeneous linewidth  much  smaller than  the axial mode 
interval  and  take g, and #, to  be given by (12) and  (13). 
Using the definitions of Section 111, we take go = 0.075, 
a = 0.070, and assume an axial mode interval of 0.1 Ku. 
This  corresponds to  a  ratio of Doppler  width to mode 
spacing of 16.67 and gives five free-running modes above 
threshold. In  this  and  the following section, the modulator 
is taken to  be at  the end of the  cavity so that  the coupling 
term ac is equal  to one-half the average single-pass loss 
a, through  the modulator. I n  specifying the detuning 
of the modulator  drive, we include the linear part of 
$, in the definition of the mode spacing A$L3 Mode am- 
plitudes, phases, and frequencies were obtained  by  direct 
digital  computer  solution of (6) and (7) using afourth-order 
Runge-Iiutta method. The equations were programmed 
for 21 modes (n = -10 to n = +lo) and were run  until  a 
steady-stat’e  solution  to  three decimal places was reached. 
Unless otherwise  noted in  the following, the n = 0 mode 
was taken to  be at  line center. 

I n  Fig. 1 we show laser mode amplitudes  and the 
resultant  variation of total laser  intensity  with  time at  
the modulator  position. Since the plot is versus v,t, it 
gives directly  a  picture of spike  position  relative to phase 
of the modulator  drive. In  Fig. l(a) we show the results 
for a, = 0.00008 and Av/AD = -0.00003. As will be 
seen in Section I X  this  detuning is approximately the 
optimum  value at  low modulator  drive levels. The mode 
amplitudes  are  essentially the free-running  values while 
the relative  phase angles (not shown) vary widely within 
the range  from 90” to 270”. The  resultant  intensity wave- 
shape  has  large  ripple  and  a  relatively wide, spike.  This 

3 The  function 2, of (13) can be  expanded  in  the power series[121 

We define Au with  respect  to  the mode  spacing that  would be ob- 
tained if only  the leading term of the expansion  were  present. 

7r 277 ” urn t 

Fig. 1. Laser mode amplitudes  and  intensity pulseshape at constant 
detuning  and  variable aC: go = 0.075; 01 = 0.070; AQ = 0.1 Ku; 
Au = -0.00003 A n  (five modes free-running). 

operaOing point is very close to  the condition at  which 
phase locking just barely occurs. In  Fig. l(b) we show 
the results at  the same  modulator  frequency but  at a 
higher drive level, a, = 0.0005. This could be classed as 
an intermediate region where mode amplitudes  are  still 
close to  free-running but phase angles have become more 
uniform. The  resultant improvement in spike  shape is 
obvious.  Finally, in Fig. l (c )  we show results at  very 
nearly the optimum  drive level, a, = 0.005. The mode 
amplitudes  are  very close to Gaussian while the angles 
are close to 180”. This  results  in  a  Gaussian-shaped pulse 
with zero ripple between pulses. A further  increase in a, 
broadens the linewidth of the Gaussian mode envelope 
and  thereby reduces both  the average power output  and 
the half-power pulsewidth. 

We find that when the n = 0 mode is a t  line center, 
the mode amplitudes  and  relative  phase angles are  sym- 
metrical  about n = 0. If the center mode is off line center, 
at  large a, relatively little happens. The envelope of the 
mode amplitude profile remains the same.  Individual mode 
amplitudes  change  as they  shift  position  beneath  this 
envelope. The  resultant phase angles become somewhat 
asymmet’rical  and,  as expected from (25),  there is a  slight 
shift  in  frequency of the coupled oscillation, i.e., all mode 
frequencies shift  from  their assumed values by  an  amount 
(2. There is only  a  slight  reduction in laser power and 
spike  height,  and the overall  results are  not  significant. 
In  contrast, if ac is near the minimum  value that will 
cause phase locking, as  in  Fig. l(a),  the effects of the 
center mode moving off line center  are  quite  severe. 
Relative  phase angles change  greatly  and  a  nonsteady- 
state  situation  may occur. This case is considered further 
in Section IX. 

Figure 2 shows the variation of the peak pulse intensity 
as a, is changed. The detuning  and  laser  constants re- 
main as in  Fig. 1. For comparison we show the performance 
of an identical  laser  having an  internal  phase  perturbation 
driven at  a  frequency  equal to  its axial mode interval 
(Le., in  the region termed  “phase-locked”[s’-[’o’ ). The 
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Fig. 2. Pulse  peak  intensity versus perturbation level a t  constant 
detuning: go = 0.075; LY = 0.070; A 0  = 0.1 Ku; A V  = 0 for phase 
modulat,lon; Av = -0.00003 4s for loss modulation (five modes 
free-running). 
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Fig. 3. Pulsewidth versus perturbation level at constant detuning: 

tion; Av = -0.00003 A n  for loss modulation (five modes free- 
go = 0.0'75; a = 0.070; A n  = 0.1 Ku;  4 v  = 0 for phase modula- 

running). 

quantity 6 is the peak single-pass phase retardat'ion of 
the perturbing element.4 I;or both  types of modulation 
we note an initial increase in spike amplitude at  low 
modulation levels as the relative phase angles improve 
wit'h increasing drive. At high levels of drive,  a decrease 
in spike  amplitude occurs with  eventual extinguishing 
of the laser. In  loss modulation the decrease at  higher 
drive occurs because of the nonzero modulat,or loss (pro- 
portional t'o drive level) and because energy is coupled 
from modes having net' gains to modes with  net loss. 
I n  phase modulation only the  latter effect occurs. The 
optimum peak intensit,y  obtained  with loss modulation 
is about  twenty  percent below t,hat obtained  with phase 
modulation. Similar result,s are  obtained for other laser 
constants. 

I n  Fig. 3 we show variation in pulsewidth under the 
same condit'ions as Fig. 2. The initial rapid decrease in 
pulsewidth is due  to rapidly improving relative phase 
angles while the slow continued decrease is a result of 
the slight broadcning of the oscillating linewidth at  high 
drive levels. 

on a single pass basis the two modulators transfer  the  same  amount of 
4 The  relative alignment of the scales of 0 1 ~  and 6 is  such that 

power into  adjacent sidebands. 

VIII. VARIATION OF MODULATOR FREQUENCY 
AT CONSTANT ac 

In  this sect'ion we consider the effects of varying  t'he 
modulat,or drive frequency over the range wherein steady- 
state locking occurs. The height,  width,  and posit'ion of 
the laser pulscs are shown in Figs. 4, 5, and 6, respectively. 
The results wcre obtained by direct numerical solution 
of (6)  and (7). 

Several interesting  points  are  illustrated  by  these 
curves. First,  the range of Av over which phase locking 
occurs varies greatly wit.h modulator  drive. We will see 
in Section IX t'hat t,his range approaches zcro as a, is 
decreased to  its threshold value. Second, there is an 
optimum frequency which is relatively independent of 
drive level.5 As the frequency is changed from this  value, 
the pulse performance is degraded in  every respect, i.e., 
the peak  value decreases, the pulse wjdens slightly, and 
the phase of the peak varies  relative to modulator drive. 

These results are consistent with the equations dc- 
veloped in Sections IV and TJ  and can be explaincd using 
them. The relative phase angles are  dependent  on de- 
tuning  and mode pulling as shown by (30) and depart 
farther  and  farther from T as detuning is changed from 
its  optimum value. In  a multimode laser, a,  is typically 
much smaller than  the gain G, of the oscillating modes 
so that  the dominant  part of pLn in (35) and (36) is the 
G,E, term.  Thus  the relative mode amplitudes are ap- 
proximately independcnt of phase angles and therefore 
detuning. The scale of mode amplitudes is st'rongly de- 
pendent upon phase angles, however, as is clearly evident 
from (23). If the mode amplitudes  are  written  in the form 
E, = ken where Cn e: = 1, (23)  becomes 

E: = p 
R 

C (9, - ale: - ma Cez - 2a, Ce,+,e, cos(cp,+l - cpn) 
- _  - 

P C w2, 
(39) 

Thus  the average laser power,  which  is proportional to 
x,E;, is sensitive to changes in (cp,+, - an), cspecially 
at  the larger values of a,. If a, 2 (go - a) ,  we see that 
the laser is ext'inguished as  the relative angles dcpart 
greatly from T and, t,herefore, is extinguished at large 
detunings. If a& is smaller t'han  the excess gain, t'he laser 
is not extinguished but, as will be seen, ceascs to  be phase 
locked at large det'unings. 

Since the pulsewidth changes little as Av is varicd, the 
average power  follows vcry  nearly  t'he same shaped curve 
as does peak power in  Fig. 4. For a case corresponding 
to a, greater than excess  gain, C r o ~ e l l [ ~ ]  obscrvcd cxper- 
imentally  such  a  variation  in average power as the cavity 
resonant frequency was changed (equivalent to  detuning 
the modulator  drive). He also observed a  shift  in spike 
position similar to Fig. 6. 

5 The  fact  that  this frequency differs from zero is a consequence 
of the definition of axial mode interval. In  comparing with experi- 
ments, a consistent definition must be used. 
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Fig. 4. Pulse  peak  intensity versus detuning a t  constant ac:  go = 
0.075; CY = 0.070; AQ = 0.1 Ku (five modes free-running), 

a,= 0.005-' I 

I 1 I I I I I 1 1 
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Fig. 5. Pnlsewidth versus detuning a t  constant a,: go = 0.075; 
CY = 0.070; AQ = 0.1 Ku (five modes free-running). 

g$'201 SPIKE  LEADING 

- 0.0004 - 0.0002 
I I 

SPIKE LAGGING 

120 ! 
Fig. 6. Pulse  relative  phase versus detuning at constant a,: go = 

0.075; 01 = 0.0'70; AQ = 0.1 Ku (five modes  free-running). 

IX. THRESHOLD OF PHASE LOCKING 
Since in practice the  strength of an  intracavity loss 

perturbation  may be limited, it is important  to know 
the minimum perturbation Ohat will phase lock a multi- 
mode laser. We find that  the mode pulling of the active 
medium specifies such a minimum. 

At low modulator  drive one expects the  parametric 

terms  (right-hand side) in (7) to  have negligible  effect and 
the mode amplitudes, therefore, to be approximately  equal 
to  their free-running values. This was seen to be the case 
in Fig. l(a).  By  contrast, because the atomic mode 
pulling term x: depends nonlinearly on n, it is impossible 
to  have a  steady-state  solution (+ = constant) t'o (6) 
in which the parametric term is neglected. In  the absence 
of the  perturbation,  the modes are at  their free-running 
frequencies and, therefore, unequally spaced. The per- 
turbation  has  to pull the modes until  their  frequency 
spacing is that of the modulator drive. 

Assuming mode amplitudes to be the free-running 
values, the parametric pulling term  t'hen depends upon 
a, and  the relative phase angles as seen in (6). As a, 
is reduced, the sine terms  must increase and  eventually 
a limit is reached when one of them becomes f l .  For 
a further decrease in a, a  st'eady-state solution may no 
longer be obtained, and a  beating of mode amplitudes 
and phases results. 

With mode amplitudes known, (30) affords a convenient 
means to calculate the limiting value of ac. Each  relative 
phase angle sets  a  requirement, a, 2 (ac)%, where the 
(aJn  are found by  letting sin (cp, - cp,-,) = =tl in (30); 
m ,  

where we have defined 

The largest such value of a, is the minimum that will 
be sufficient to cause phase locking of all the modes at  
the given Av. In  Fig. 7 we show a plot of the minimum 
value of oc that will cause phase locking versus Av/AQ 
for a case having go = 0.055, a = 0.0'70, and AQ = 0.1 Ku. 
This case is identical to  that considered in Sections VI1 
and VI11 except that gain has been increased to  give 
nine modes free-running. The curve is seen Do be made 
up of straight line segments resulting in a sharp minimum 
at  an optimum  detuning. We define threshold as this 
minimum value of a,. 

If the center mode is at  line center, there exists a 
simple procedure for  determining the threshold  value of 
a, and the optimum  detuning. The quantities Y,(Av), 
defined by (41), have  a linear dependence upon Av. If 
these straight lines are  plotted  in  the [Yn, Av/AQ] plane, 
it is  possible to verify that they always fall in  t'he  relative 
positions of Fig. 8; i.e., they  intersect below the Av/AQ 
axis and  the Y ,  line lies above the others  in  the  upper 
half As not'ed above, the smallest value of a,  
Ohat will phase lock the modes at a given Av is equal 
to  the largest IY,I at  that Av. From  the geometry of 
Fig. 8, this  largest  value falls somewhere along the n = 1 
line. Therefore the threshold point is located at the in- 
tersection of the n = 1 line and  the  particular image 

Only the n > 0 straight lines are shown  since (qpl - qpo) = 

at the center of a symmetrical  gain profile. 
(PO - PA), (q2 - P I )  = (9-1 - (0-2), etc.,  when the center  mode is 
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0.016-1- 

MODE SPACING (%) DETUNING 

Fig. 7. Value of aC necessary to cause phase locking versus detun- 
ing: go = 0.85; a = 0.070; A n  = 0.1 Ku (nine modes free-running). 

L 

0.008 L 
Fig. 8. Y , ( A r )  versus detuning: go = 0.085; a = 0.070; AQ = 0.1 

Ku (nine modes free-running). 

Vrn 1 

Fig. 9. Out,put  intensity versus time at threshold of locking: 
go = 0.085; a = 0.070; An = 0.1 Ku (nine modes free-running). 

of the other lines (shown dashed) that gives the largest 
value of Y,. 

At  the threshold  point  in  Figs. 7 and 8, (pl - po) = ~ / 2  
and (p4 - p3) = 3 ~ / 2  while the  other angles fall between 
these  two extremes (in the second and  third  quadrants). 
Since at  threshold the relative phase angles vary widely, 
it is expected that  output pulseshapes will be greatly 
distorted.  Figure 9 shows the  output  intensity resulting 
from  amplitudes  and phases calculated at  the above 
threshold  point. We note sidelobes which have  intensities 
comparable to  the main spike. This might explain the 
multiple  spiking which has been observed experimen- 
tally.'41 

The effects of detuning at  low perturbations can be 
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90 

Fig.  10.  Variation of threshold  value of aC with excess gain: 
A n  = 0.1 Ku. 

understood more clearly by reference to Fig. 8 since, 
at  a given ac, sin (pn - p,-,) is directly  proportional 
to Y,(Av); i.e., by using (41), then (30) can be written 

P 
01, sin (cp, - v,-~) = - Y,(Av). (42) 

At a, = 0.004 then, for example, steady-state locking 
is to be expected as Av is made more and more negative 
until  the uppermost line (n = 1) rises above the point, 
Y,  = 0.004. Here (p1 - cpJ becomes .-/2 and  steady- 
state locking ceases. Since the lines are widely spaced 
at  this point, the  other relative angles are considerably 
different and  the pulse becomes more and more distorted 
as  this  nonsteady-state condition is approached. I n  con- 
trast, as Av is increased from the value at  threshold the 
angles become more  and more nearly equal since the 
lines are converging. The n = 3 line first rises above 
Y,, = 0.004 [therefore, (p3 - pJ is the limiting angle] 
but  at  that point the  other relative angles are approxi- 
mately  equal  to (pa - p2). As this  nonst'eady-state condi- 
tion is approached, the expected pulseshape is actually 
improving. Hargrove, Fork,  and  Pollack["  noted  such 
a contrast  in behavior with  detuning  as the extremes of 
the locking range were approached. 

I n  Fig. 10 we show the calculated locking threshold 
aC versus excess gain at  the same mode spacing, AQ = 
0.1 Ku, as  in the previous figures. The ripple in the curve 
at low  excess gain is a result of the change of t'he  number 
of free-running modes as  the gain is increased. At  the 
left end the curve starts  with five modes free-running 
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and each successive hump  corresponds to  two  additional 
modes coming above the free-running  threshold. We also 
find that  the threshold a, changes as the center mode 
moves off line  center. If we determine the a, necessary 
to insure locking regardless of the position of the center 
mode, we find that  the space between humps is filled in 
and the curve becomes very  nearly the  straight line shown 
dashed  in  Fig.  10. At large (go - a,) the mode amplitudes 
are affected by the larger a, and depart from their free- 
running  values. It becomes easier to  phase lock the modes 
than is predicted  by  assuming  free-running  amplitudes. 
This lowers the curve to  the dashed line in Fig. 10 at  
large (go - an). I n  general, we find that  the threshold 
a, varies  approximately  as the  square of excess gain. 

X. GAIN IN A SINGLE M O D E  

We have seen that  the  internal  perturbation  not only 
locks the existing  free-running modes but also strongly 
affects  their  amplitudes  and produces nonzero amplitudes 
where modes were previously below threshold. As an 
extreme example, this  section considers the  situation where 
the atomic  gain profile  is so narrow that only one laser 
mode  has  gain.  Since  their effects are  similar to  the 
multimode case, mode pulling and  detuning will not be 
considered. Mode  amplitudes were given  by (38) which 
is rewritten  here  as 

E,, = Eo r ' " ' ,  

where 
(43) 

and Eo is determined  from the power conservation re- 
quirement 

GO = V'(a + a,)' - 4af. (45) 

If inhomogeneous saturation of the  form of (11) is as- 
sumed,  then (45) gives 

I .  r 1 

1 d ( a  + a,)-:] * (46) 

The laser  intensity  has  a  time  dependence given by['] 

S A  

For  the one active mode line, we substitute (43) into (47), 
use standard geometric  sum  formulas  and  obtain 

The  resultant  output  intensity  has peak and  minimum 
values  given  by 

W(t) I = - (-) * v,t = a, 3a, 5a, - * .  Et 1 + r "  
one mode geak 2 1 - r ' 

L' - "m --..__I 
.. .. 

TIME * 

Fig. 11. Normalized intensity versus time for an  atomic  line  having 
gain  in  only  one mode. 

ac/a 

Fig. 12. Pulse  peak  intensity versus a D / a  for an atomic line having 
gain in  only one mode. 

upon the gain, the shape of the curve  depends  only  upon r 
and  therefore  upon a,/a (we are  still  assuming (22) to 
be true). Normalized  plots of laser  intensity  from (48) 
are shown in Fig. 11 at several  values of aJa. At higher 
modulator  drive levels the result is a  spiking output 
which can be as peaked as  that of a  multimode laser.' 

The peak  intensity of the spike  can be many  times the 
free-running  intensity of the single mode. At free  running 
we have 

go(1 - @E;) = a. (50) 

Solving (50) for  free-running  intensity  and combining 
with (46) and  (49), we get 

Figure  12 shows a plot of (51) versus a,/a at  several 
values of go/a. As shown, there is an  optimum  modulator 
drive which produces  a  spiking output having  a  peak 

In  this section we are considering 90, act and CY which are large 
enough that  the  small  gain  approximations of Section I11 are  not 
always correct. We  still  take  the  equations of that section as defini- 
tions of these quantities  although  they  may  not now be exactly  equal 
to  fractional gain and/or loss per pass. For example, the  exact expres- 
sion for  gain  per  pass is 

Although the scale of W(t)  depends on Eo and hence which becomes approximately  equal  to Gn only at G, small. 
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much larger than  the free-running intensitmy.  These values 
are inside the  cavity; however, even if one  specifies opti- 
mum coupling in each case, there can  still  be enhancement' 
in useful power output of about one  half the amounts 
shown. 

We have looked at  the single-mode laser under the ideal 
conditions where Ohere is  no detuning  and where the center 
mode is exactly at  the center of t,he atomic line. If the 
center mode is not on line cent,er, the primary effect is 
to reduce the gain. Consideratmion of pulling of the center 
mode in  this case requires the exact solution of (6) and 
(7). as  in  the multimode  situation. The effect of detuning 
is similar to  that of the multimode problem having 
cy, 2 (go - c y T L ) ;  Le., detuning  the modulator reduces 
t'he  output  until  the laser is extinguished. If the n = i l  
modes have  small gain (but  still  far below free-running 
threshold), the only effect  is to slight,ly increase the power 
out'put of the laser. 

XI.  APPROXIMATE SOLUTIONS 
In this section we consider approximations to  t'he exact 

solution of (6) and (7) and discuss the linearized solutions 
obtained by others. 

A. Approximations  to   Nonl inear  Solut ions 
At small and large values of perturbation a, and at 

AV small, the solution of (6) and (7)  can  be predictcd 
approximately. I n  Section IX we considered the small 
perturbation case. I n  Table I we show a comparison of 
the results of an exact solution of (6) and (7)  near threshold 
with the approximat,e solution obt,ained by  taking free- 
running mode amplitudcs  and using (30) to calculate 
angles. The laser constants  are those of the nine-mode 
case  considered in Section IX.  The values obtained  are 
seen to  be very close to t,he exact solution. 

At larger modulator  drive levels we have  noted that 
the relative mode amplitudes are almost perfectly Gaus- 
sian. At  any particular assumed linewidth of this  Gaussian 
envelope, we can use (30) to calculate relative  phase 
angles and  t,hen (39) to calculaOe the scale factor. If we 
follow this procedure and  determine the oscillating  line- 
width that maxinixes laser intensity, we find at small 
AV that  the answers agree  closely with the exact solution 
of (6) and (7) .  Table I1 shows the detailed comparison 
of mode amplitudes  and phases at AV = 0. These results 
were obtained using laser constrants of the five-mode  case 
of Sections VI1 and VIII. The agreement bccomes better 
over a wider range of AV as ac is increased. 

B. Linearized  Solutions 
DiDomenico'" first obtained an approximate soluOion 

having  equal mode amplitudcs  and  relative phase angles 
equal to T .  Taking AV and #% equal to zero and assuming 
all Gn equal, we  noOe that (26) and (27) have the solution 

all E, = Eo 
all (pa - pn-J = 8 ( a n y   d u e )  (52) 

+ = o  

TABLE I 
COMPARISON OF EXACT ANI) APPROXIMATE SOLUTIONS 

AT SMALL 01, 

QO = 0.085 9 modes free-running 
a,  = 0.070 0 1 ~  = 0,00135 

Doppler  width 
Mode spacing = 16.67 A v / A i l  = -0.000088 

n 

0 - 1 -  
- 1 -  

1 
- 1 -  

2 

3 

4 

5 

6 

TABLE I1 

AT LARGE 0 1 ~  

COMPARISON O F  EXACT  AND  APPROXIM.4TE  SOLUTIOKS 

90 = 0.075 5 modes free-running 
an = 0.070 0 1 ~  = 0.005 

Doppler width 
Mode spacing = 16.67 A v / A i l  = 0 

1 

2 

3 

4 

5 

6 

n 

0 

7 

Approximate 
Exact 

Solution of (6)  and (7) 
Optimum Gaussian 

Amplitudes and (30) 
E', ( P n  - 'Pn-1) E n  ('Pa - % - I )  

____ ~- 

0.990 - 

224.212" 0.003 205. %55 1 0.000 

217.237' 0.012  202.220" 0.004 

209.460" 0.048  198.244' 0.022 

201.  705" 0.142  194.383" 0.096 

194.795" 0.331  190.801" 0.300 

i s9 .  5560 0.607 187.605 O 0.624 

186.715" 0.874 185.649 0.894 

- 0.986 
- 

~ ____ ~ _ _ _ _ _ _ _ _ _ _ _ _  

___- 

____ _ ~ _ _ _ _ ~ _ _ _ _ _ _ _ _  
_______ -__- __- 

_____ __ _______---_ _______ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~  ---_ __ 

wit11 the value of Eo determined from the solution of 

G, - = aa + za, COS e. (53) 

Here 0 can have  any  value insofar as the linmrized equa- 
tions are concerned. Only by including nonlinearities or 
by use of a physical argument as per Cr~we l l '~ '  do we 
know that e should be  equal to T. We note  further  that 
this solution is only an exact solution of the linearized 
equations  when an infinit,e number of modes have the 
same gain. For a finite number, an exact solution of the 
linearized equations gives nonconstant mode amplitudcs 
except for a,  vanishingly small. But  then mode pulling 
#, cannot  be neglected as has been shown. 

YarivC3' obtained a solution of the linearized equations 
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at  Av # 0. Taking @ and $n equal to zero, (26) and (27) 
yield in  this case 

G, - a = a, (54) 

E,, = kl,(- - -.) 1 A 0  
a Av ’ 

which is Yariv’s solution  in  our  notation.  Here an infinite 
number of modes having single-pass gain equal to single- 
pass loss at  the assumed values of E, is required for the 
answer to be an exact solution of the linearized equations. 
Of more importance, the linearized solution fails to sim- 
ulate  the  real answer to  the nonlinear problem. In  the 
nonlinear case a  solution  with (9, - pn-J closer to T 
oscillates at  a higher level and is, therefore, able to negate 
the solution of (54). Solution (54) causes modulator loss 
to be high and  equal to  the average loss, aa [note (23) or 
(39)], while in  the  true solution the average modulator 
loss is approximately zero. I n  other  terms, the pulse 
produced by the I,, solution would pass through the 
modulator when its loss is at the average value rather 
than zero. I n  the direct numerical solution of (6) and (7) 
we have never observed a  solution  in the form of (54). 
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Far-Infrared Electronic  Transitions in Solids 
ARMAND  HADNI, GUY MORLOT, AND PIERRE  STRIMER 

Absfracf-Two years ago at  the  Third  Quantum Electronic 
Conference we showed[’] that  at low temperatures  there  were a 
large  number of infrared  transparent crystalline matrices.  These 
solids  can  be doped with  other  ions,  and we have  recently  found 
several  far-infrared electronic transitions  in both pure  and doped 
materials. r21 

FAR-INFRARED ELECTRONIC TRANSITIONS IN 

PURE MsTERIALS 

Previous Results 

T WO LINES in PrCI,, two lines in  PrF,,  four 
lines in  dysprosium  gallate,[3’ one line in 
Nd(N0,),.6H20, and one line in  Sm(NO3),-6H2O, 

have been previously described and explained in  terms 
of transitions from the ground to various higher sublevels 
split  by  the crystalline field. Figure 1 shows, as an example, 
the spectrum of 3Ga,O,. 5Dy2O3,  and Fig. 2 the scheme 

Manuscript received August 26,1966; revised December 12, 1966. 
The  authors  are  with  the  University of Nancy,  Nancy,  France. 

of the possible  transition^.'^' The  spectra of PrF, (Fig.  3) 
were obtained  with powder dispersed in NaCI.  They  have 
been recently confirmed in  the laboratory,  with  a single 
crystal, 2-mm thick (Fig. 3, curve 4),  and  at  the NOLC[14’ 
with  PrF, powder pressed in polyethylene with  an effective 
thickness of 65 microns. 

Pure ErCl, 
There  are  three lines in  pure ErC1, that are  fairly  intense 

(Fig. 4). Figure 5 shows the evolution of the 160-micron 
doublet  with  temperature, which is measured with  a 
carbon bolometer attached  to  the sample. It is most 
unlikely that  the room temperature 69.5-cm-l line shifts 
to lower frequencies (67-cm-‘) at  low temperahre.  In 
Fig. 5 there is some evidence that  the 69.5-em-’ line 
is a hot line that disappears a t  low temperatures, while 
the 67-em-‘ line appears, is clearly visible at  45’11, and 
increases when the temperature is lowered down to 20°K. 
The energy levels of Er3+ are  and represented 
in Fig. 6; however, they correspond to  Er3+  in LaC1, 
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