
470 

linear  optical  susceptibilities,” Phys. Rev. Le t f . .  vol. 22, pp. 787-790, 
1969. 

440-443,  1970. 
ing from  inequal  atomic radii.” P!71..r. Reo. Lett.. vol. 25, pp. 

range of compounds, fEEE J. @.dU/7tU/P7 Nectvon. (Corresp.),  vol. 
QE-8, pp. 609-610, Sept. 1972. 

for  various  crystal  structures, PhJ1.s. Reo. B ,  Mar. 1973. 
, “Bond  charge calculati:n of nonlinear  optical  susceptibilities 

[4] R .  C. Miller,  “Optical  second  harmonic  generation in piezoelectric 
crystals,” Appl.  Phys. Leu.,  vol. 5, pp. 17-19,  1964. 

[5] That is, those  not  containing  an  atom i n  the first periodic  row. 
[6] S .  K.  Suri, H. K. Henish,  and J. W. Faust,  Jr.,  “Growth of P-AgI 

[7] J. Jerphagnon  and S. K. Kurtz,  “Maker fringes: A detailed  com- 
single crystals in gels,” J .  Cryst. Growth, vol. 7, pp. 277-281,  1970. 

crystals,” J. Appl.  Phys.. vol. 41, pp. 1667-1681,  1970. 
parison of theory  and  experiment for isotropic  and  uniaxial 

[X] 1-andolt-Bornstein, Z c r h l r n ~ ~ ~ ~ t e  rmcl  Funktiotren. vol. 2, pt. X .  Ber- 
lin: Springer, 1962. 

__ “A new contribution  to  the  nonlinear  optical  susceptibility aris- 

__ , “Calculations sf nonlinear  optical  susceptibilities in a wide 

__ 

11.1.1 JOIJKNAI. 0 1 ’  QUANTUM fil.ECTKONICS, VOL. QE-9, NO. 4, APRIL 1973 

[9] The bulk and  surrace  scattering losses at 2w were 34  and 27 percent, 

[ I O ]  B. F.  Levine  and  C.  G.  Bethea,  “Nonlinear  susceptibility of  Gap; 
respectively. 

relative measurement  and use of measured  values to determine  a 

[ I  I ]  R .  C. Miller and  W. A. Nordland,  “Absolute signs of nonlinear op- 
better  absolute value,” Appl .  Phys. Lett.. vol. 20, pp. 272-275,  1972. 

tical coefficients of polar  crystals,” vol. I ,  pp. 400-402,  1970. 
[ I21 A .  S. Bhalla, S. K.  Suri,  and E. W. White,  “Crystallographic  polari- 

ty of gel grown  P-AgI  crystals,” J .  Appl.  Phys., vol. 42, pp. 
1833-1835.  1971. 

[ I31 N. Bloembergen  and  P. S. Pershan,  “Light waves at  the  boundary of 
nonlinear  media,” PhJ:\-. Reo. ,  vol. 128, pp. 606-622,  1962. 

[I41 F. G. Parsons, E. Y. Chen,  and R. K .  Chang,  “Dispersion of non- 
linear  optical  susceptibilities in hexagonal 11-VI semiconductors,” 

[I51 F. N .  H.  Robinson,  “Relations between the  components of the non- 
6‘hy.v. Rec;. Left . ,  vol. 27, pp. 1436-1439,  1971. 

linear  p2larizability  tensor in cubic  and  hexagonal 11-VI com- 

[16] The  wurtzite Aa3 and  the  zinc  blende AI4 are  simply  related by A33 = 
pounds, Phys. Lett., vol. 26A,  pp. 435-436,  1968. 

(2/\’3)A,d. 

Optical  Third-Harmonic  Generation 
in Alkali  Metal  Vapors 
RICHARD B. MILES AND STEPHEN E. HARRIS 

Absrracr-This  paper  considers  third-harmonic  generation in phase- 
matched  mixtures of alkali  metal  vapors  and  inert gases. Calculations  show 
that  the  combination of near-resonant  nonlinear  susceptibilities,  the  ability 
to  phase  match,  and  the  relatively  high UV transparency of these  vapors 
should  allow  high  conversion  efficiency  for  picosecond  laser  pulses  with  a 
peak  power of lo8- lo9 W. Calculations of the  nonlinear  susceptibility  and 
of the  ratio of xenon  atoms to metal  vapor atoms which is necessary  to 
achieve  phase  matching  are  given for each of the alkalies as a  function of in- 
cident  laser  wavelength. Processes that  limit  the  allowable  peak  power  den- 
sity  and  energy  density  are  discussed  and  guides for determining  the  metal 
vapor  pressure,  cell  length,  and  beam  area  are  given. 

T 
I. INTRODUCTION 

HIS  PAPER presents  a  theoretical’analysis of phase- 
matched  optical  third-harmonic  generation in alkali 

metal vapors.  Calculations  predict  the efficient conversion 
of  high-power  picosecond  laser  pulses  into  the  ultraviolet. 
Three  complementary  phenomena  combine to  produce  the 
potentially high conversion efficiency: 1) resonant non- 
linear  susceptibility, 2 )  phase  matching,  and 3) ultraviolet 
transparency. 

The  resonant  enhancement of the  third-harmonic  non- 
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linear  susceptibility  arises  from  resonant denominators  at 
the first,  second,  and  third  harmonics  of  the  incident 
frequency.  Susceptibilities of the alkalies in the visible and 
near-infrared  spectral  region  are  typically five orders of 
magnitude  greater  than  those of the  inert gases in the  same 
region.  The  conversion efficiency is proportional  to  the 
square of this  susceptibility. 

Phase  matching is possible  because  alkali  metal vapors 
are  anomalously  dispersive if the driving  frequency is 
chosen below and  its third  harmonic chosen above  the  pri- 
mary  resonance  line.  A  normally  dispersive buffer gas  such 
as xenon  may be added to vary the indices of refraction un- 
til both  the first and  third  harmonics travel at. the  same 
velocity through  the  gas  mixture.  Third-harmonic  genera- 
tion  then becomes  cumulative  over  the  entire  length of the 
gas cell and  a  substantial increase of the  power  conversion 
is possible. 

The small absorption cross  sections of the alkali vapors 
above  their  ionization  potentials  assure that  the  third  har- 
monic is not  reabsorbed by the  vapor itself. This ul- 
traviolet  transparency allows  generation to spectral 
regions that  are  not accessible to  nonlinear  optical 
crystals. 

Assuming that high efficiencies can be experimentally 
realized, third-harmonic  generation in gas  mixtures will 
have  a  number of significant  advantages  over third- 
harmonic  generation or sequential  second-harmonic 
generation in nonlinear  crystals.  Nonlinear  crystal 
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transparency is now  limited to below the  cutoff  of  am- 
monium  dihydrogen  phosphate at  about 2000 A, while 
gases  have no  such  limitation. The isotopic  nature  of  gas 
mixtures  eliminates  Poynting  vector  walkoff  characteristic 
of  birefringent  phase  matching in crystals.  Breakdown 
power and energy  densities are higher in  gases and 
breakdown  does  not  destroy  the  medium.  Gas cells may 
ultimately  be made with very large  apertures  to  handle 
large  incident  optical  energies. 

Conversely,  metal  vapor  tripling cells are  not nearly as 
simple and will be  more expensive than  nonlinear  crystals. 
Even theoretically,  the  required  incident  power is much 
higher  for efficient tripling in vapors  than  for efficient 
doubling in crystals. At  this  time  the highest  experimental 
conversion efficiency obtained  in  metal  vapors is about 

and  considerable  experimental  effort will be 
necessary to  attempt  to verify the  calculations  and  predic- 
tions of  this  paper. 

In  the following  sections, the  third-harmonic  nonlinear 
susceptibility is calculated  and  plotted  as a  function of 
wavelength for  each of the alkalies. Tables of matrix 
elements,  oscillator  strengths,  and  transition  energies  are 
given. The power  conversion  equation is developed and 
the  ratio of xenon atoms  to  alkali  atoms, which is 
necessary to  obtain  phase  matching, is  given for  each of 
the alkalies.  Experimental  results  confirm the calculation 
of the susceptibility to within 15 percent  and  correlate 
almost  perfectly  with the  theoretical  phase-matching 
behavior. 

Processes that limit  the  maximum  metal  vapor density, 
and  thus  the  maximum  conversion efficiency, are dis- 
cussed.  These  include:  single and  multiphoton  absorption 
and  ionization,  Kerr  effect,  breakdown,  thermal 
defocusing,  and  breaking  of  the  phase-matching  condition 
as a  result of atomic  saturation. Typically  this latter 
process will be  the  most severe and will probably  limit  the 
energy  density to  about 1 J/cm2  for  tripling 1.064-11. radia- 
tion.  Formulas  for  determining  the  metal  vapor  pressure, 
cell length,  and  beam  area  are given. 

Before  proceeding, we note  that  third-harmonic  genera- 
tion in the  inert gases has been extensively studied by 
Ward  and  New [l]. The concept of phase  matching by gas 
mixing was  suggested by Armstrong et al. [2]. The  metal 
vapor  inert  gas system  was  proposed by Harris  and Miles 
[3], and  demonstrated by Young et al. [4]. 
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excited and mixed state  populations.  These  populations 
again  interact  with  the field to  produce a third-harmonic 
component of the  dipole  moment.  These  interactions  oc- 
cur  simultaneously  and  no  transitions  are  involved. 

If the  incident  electric field is written as 
&(I, Y) = $[&(r)e-"' + &*(r)e"'], (1) 

we can define the  polarization at  the  third-harmonic 
frequency as 

@ ( 3 ) ( t ,  = $ [ , ( 3 ) ( r ) e - ' 3 " t  + @ ( 3 ) * ( r ) e i 3 w t  1 ( 2 )  

NX(8)(3w)[&(Y)13 
, ( 3 ) @ )  r ~ 

where 

4 ( 3 )  

and N is the  density of atoms/cubic  centimeter. 
Armstrong et al. [ 2 ]  have  shown ~ ( ~ ' ( 3 0 )  to be given  by 

11. CALCULATION OF THE SUSCEPTIBILITY 

Third-harmonic light is generated  from  a  radiating 
power-density-dependent  third-harmonic  component  of 
the  induced  polarization.  For high power  densities,  this 
third-harmonic  nonlinearity becomes  large and  radiation 
may  be  substantial.  The  creation of the  third-harmonic 
component  can  be visualized as a  step-by-step  process 
beginning  with  a strong electric field that interacts  with 
ground  state  electrons  and  produces  an  induced  dipole 
moment  at  the  driving  frequency.  This  induced  dipole  mo- 
ment  interacts with the field to  create a 2w variation of 

where p L i j  are  the  dipole  matrix  elements, pgg is the 
probability  of  occupancy of the  ground level, and Aabc are 
frequency  factors: 

1 
A a b c  = 

(Qag - 3m)(Qhu - 2m)(Q2,0 - m )  

1 
+ (Qag + w > ( Q b g  - 2 w ) ( Q c u  - w )  

.- ( 5 )  

where Q t j  are  the  atomic  transition frequencies. We 
assume  the  incident laser field to  be linearly  polarized in 
the z direction  and  thus  take pLi j  = e(i IzI j ) .  

The  Hamiltonian  from which the eigenstates I i )  are 
derived  includes  a  term  describing  the L - S coupling that 
is characteristic of the  alkalies  and  other  multielectron 
atoms.  This  coupling  accounts for the  splitting of the 
energy levels with quantum  numbers L greater  than  zero 
and is responsible,  for  instance,  for the  two closely 
separated  sodium D lines. If the  driving  frequency is much 
farther  from  the  resonances  than  the  splitting,  the L - S 
coupling  may  be neglected  by replacing the split  resonance 
lines  with an  average  resonance.  Angular  and  spin 
eigenstates  then  become  identical to  those of the hydrogen 
atom.  The  radial  quantum  number n, however, must  be 
derived  from the  particular alkali's radial  wavefunctions. 
Equation (6)  results  from  ignoring  the L - S coupling  and 
is  used for  the  ensuing  calculations: 

~ ( ~ ' ( 3 w )  = 2% { ( g  s 0 3 I z /  u p 0 $)(u p 0 $ 121 b s 0 $) e4 
a,b,c 

* ( b  S 0 $ 121 C p 0 $)(C p 0 $ 121 g S 0 $ ) A a p , b s , e p  

+ ( g  s 0 $ 121 a p 0 +)(a p 0 $ jzI b d 0 $) 

' ( b  d 0 $ 1 . ~ 1  c p 0 $>(c P 0 $ 121 g S 0 % ) & p , a d , , p f  (6) 
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TABLE I 
MATRIX ELEMENTS OF THE ALKALIES 

Lifhium 

(z) (Bohr 
Transition f AE(Ry)  Radii)  Transition f AE(Ry)  Radii) 

( z )  (Bohr 

Zr-Pp 0.724 0.1359 

23-3p 0.00128 0.2820 

Zr-hp 0.00398 0.3325 

20-5p o.ooa3g 0.3557 

3r-2p ~ 0.327 - 0.1122 

3 s - 3 p  1.21 0.0339 

js-lip 0.C300364 O.OB’z5 

3r-5p 0.00125 0.1077 

5s-2p - 0.0127 . 0.2133 
5s-3p - 0.0775 ~ 0.0672 

5s-hp ~ 1.01 - 0.0167 

5s-5p 2.05 0.0065 

1.71 3p-3d 0.0742 0.W33 

- 5.97 3p-i;d 0.521 0.0519 

~ 0.021 3p-5d 0.13 0.0745 

0.108 3p-6d  0.051~3  0.0867 

0.454 Lp-jd ~ 0.302 - 0.0473 

4.23 4p-4d 0.136 0.0014 

-11.11 4p-5d 0.490 0.0240 

- 0.165 4p-6d 0.132 0.0362 

0.244 5p-3d - O.OOr30 - 0.0705 

1.07 5p-Ld - 0.0735 ~ 0.0218 

7.78 5p-5d 0.191 0.00076 

-17.74 5p-6d 0.487 0.0130 

2.26 

0.860 

0.501 

0.345 

5.23 

3.47 

1.115 

0.867 

0.876 

-10.76 

4.95 

2.W 

0.314 

2.01 

-17.37 

6.70 

Sodium 

(z) (Bohr (z)  (Bohr 
Transition f AE(Ry)  Radii)  Transition f AE(Ry)  Radii) 

3s-3p 0.972 

3 3 - 4 ~  0.0153 

3 - 5 p  0.00251 

~ s - 6 ~  0.000821 

4 9 - 3 ~  -0;502 

4s-4p  1.44 

b - 5 ~  0.0385 

4s-6p 0.00779 

50-3p  -0.0412 

5 s - 4 ~  -0.937 

5s-5p 1.88 

5 s - 6 ~  0.062C 

6s-3p -0.0131 

6s-Lp -0.0696 

68-5p -1.36 

6s-6p  2.31 

0.1547 

0.2760 

0.3195 

0.3401 

-0.0800 

0.0413 

0.0818 

0.1054 

-0.lLBo 

-0.0267 

0.0168 

0.0374 

-0.1769 

-0.0556 

-0.0121 

0.0084 

-2.51 

-0.255 

-0.08% 

-0.0491 

2.51 

-5.90 

-0.677 

-0.272 

0.528 

5.92 

-10.58 

- 1.8 

0.272 

1.12 

10.59 

-16.56 

3p-3d 0.855 0.1113 

3p-Bd 0.0996 0.1603 

3p-5d 0.0311 0.1030 

3p-6d 0.0140 0.1953 

4p-3d -0.195 -0.0100 

4p-bd 0.948 0.0390 

4p-5d 0.142 0.0617 

LP-66 O.OL93 0.07110 

5p-3d -0.000275 6.0535 

5p-4d -0.92 6.0035 

5p-5d 1.05  0.0182 

5p-6d 0.173 0.0305 

6p-3d  -0.0000517 -0.07141 

6p-Ld -0.00141 -0.0251 

6p-5d  -0.558 -0.0024 

6p-Sd 1.17 0.0099 

-3.011 

-0.864 

-0.452 

-0.83 

4.83 

-5.40 

-1.66 

-0.894 

-0.079 

10.09 

- 8.32 

- 2.61 

- 0.0189 
- 0.260 

16.80 

-n.ee 

Potassium 
.- 

Transition f AE(Ry)  Radii)  Transition f AE(Ry)  Radii) 
(z) (Bohr ( z )  (Bohr 

4 s - L ~  1.04 0.11875 -2.96 b - 3 d  0.839 0.07760 5.60 

4s-5p 0.0158 0.22534 -0.261 4P-U 0.00121 0.13105 0.105 

48-6s 0.00277 0.261146 -3.102 4p-5d O.Wt63 0.15647 -0.112 

4 s - 7 ~  0.00C@8 0.28152 -0.0585 4p-6d 0.03226 0.17025 -0.126 

5 a - h ~  -0.525 -0.07?37 2.68 5p-Jd -0.234 -0.02899 -3.11 

55-5p  1.50 0.03362 -6.68 5p-Bd 1.19 0.08446 7 . G  

5s-6p 0.0316 0.07274 -0.659 5p-5d 0.00779 o.oSg88 0.433 

5s-7p 0.00602 0.09160 -0.256 5 ~ - 6 d  0.0000153 0.06366 -0.0170 

69-4p -0.0500 -0.13154 0.617 6p-jd -0.0110 -0.06811 -0.440 

6s-5p -0.957 -0.02495 6.19 6 p 4 d  -0.502 -0.01466 -6.41 

6s-6p 1.94 0.01417 -11.7 6p-5d 1.51 0.01076 12.98 

69-7p 0.0199 0.03303 - 1.23 6p-6d 0.0159 0.02454 0.882 

7 s - 4 ~  -0.0164 -0.15728 0.323 7p-3d -0.W317 -0.08697 0.- 

79-5p -0.0810 -0.05069 1.26 7p-4d -O.OjZh -0.03358 -1.08 

7s-6p  -1.37 -0.01157 10.88 7p-5d -0.762 -0.00810 -10.62 

7s-7p 2.37 0.007ip -18.03 7p-6d 1.82 0.00568 19.61 
-- -- .... - 

Rubidium 

( z )  (Bohr (z) (Bohr 
Transition f AE(Ry)  Radii)  Transition f AE(Ry)  Radii) 

5s-5p  1.09 

5%-6p 0.0213 

5s-?P 0.00535 

5s-8p 0.00209 

7s-5p  -0.0523 

7s-6p -1.00 

7 s - 7 ~  1.98 

7s-8p 0.0613 

8s-5p -0.0172 

88-6p -0.0008 

8s-7p -1.42 

8s-8p 2.40 

0.1161 -3.06 

0.2167 -0.335 

0 . ~ 5 4 0  -0.145 

0.8721 -0.0876 

-0.0674 2.89 

0.0331 -6.82 

0.0704 -0.765 

0.0886 -0.316 

-0.1238 0.650 

-0.0232 6.56 

0.0141 -11.85 

0.0322 - 1.38 

-0.1487 0.340 

-0.0481 1.30 

-0.0103 11.48 

0.0074 -18.06 

5p-4d 

5 ~ - 5 d  

5 ~ - 6 d  

57-74 

6p-bd 

6 ~ - 5 d  

6 p 4 d  

6p-Id 

D-46 

7P-5d 

7p-6d 

7P-7d 

8p-4d 

8 ~ - 5 d  

8p-6d 

8p-V 

0.594 0.05011 

0.0273 0.1182 

0.0233 0.1455 

0.0144 3.1600 

- 0 . l U  -0.0402 

0.935 0.0177 

0.0182 0.01149 

0.0172 0.0594 

-0.00353 -0.~957 

-0.0352 -0.C378 

-0.521 -0.0106 

1.50 0.0040 

3.44 

-0.526 

-0.438 

-0.3- 

-2.05 

7.97 

-0.698 

-0.589 

-0.427 

-4.50 

13.95 

~ 0.814 

0.210 

- 1.06 
- 7.69 

21.29 

The eigenstates  in the  equation  above  are In 1 mlm,), 
where ml = I, 1 - 1,. . , - I, and rn, = &. Selection  rules 
for  the  dipole  z-matrix  elements  state  that AI = f l,Aml = 
0, Am, = 0 [ 5 ] .  These differ from  the  total  dipole  matrix- 
element  selection  rules that include x and y components 
and  also  allow Am, = IfI 1. 

The  ground  state of the alkalies, for which I = 0, is in- 
dicated by n = g ,  I = s, and it is assumed that this is the 
only  populated level. We see  from  the  selection  rules that 
the energy levels associated  with n = a and n = c in (6) 
must b e p  levels (I = 1). Those  associated with n = b may 

be  either s levels (1 = 0) or d levels (I = 2). Thus (6) has  two 
terms:  those  for which the b levels are s states,  and  those 
for  which the b levels are d states.  The Aap,bd,cp factor is the 
frequency  factor of ( 5 )  with  resonances s2 between I ap) and 
ground, I bd) and  ground,  and I cp) and  ground. 

Values  for the  dipole  matrix  elements in terms  of 1 and 
m values and  the  radial (Fi factor are given in Slater [ 6 ] .  For 
the z component 

( n  I ml 121 n’l + 1 mi> = d m  - m12 ~ z ; ~ , z + l ~  (7) 
where 
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TABLE I 
CONTINUED 

Cesium 

(2) (Bohr 
Transition f AE(Ry)  Radii)  Transition f AE(Ry)  Radii) 

(z) (Bohr 

473 

6s-bp 1.13 0.1053 -3.28 6p-5d 0.197 0.0275 2.93 

6s-7p 0.0270 0.1996 -0.368 6p-6d 0.281 0.1009 -1.83 

6s-8p 0.006)l 0.23L9 -0.1611 6p-7d 0.0902 0.1323 -0.904 

6s-9~ 0.00255 0.2523 -0.101 6p-8d 0.01.07 O.ll.@k -0.5711 

7s-6~ -0.576 -0.0637 3.01 7p-5d -0.0240 -0.0668 -0.657 

7s-7p 1.58 O.C)05 -7.19 7p-6d 0.354 0.0056 8.00 

IS-8p 0.01;01 0.0659 -7.80 7p-7d 0.203 O.O>BI -8.99 

7s-9~ 0.00862 0.0833 -0.322 7p-8d 0.933 0.0541 -1.44 

9s-6p -O.Ol@  -0.11101 0.367 9~-5d -0.W0851;  -0.1195 - 0.0926 
9S-7P -0.0858  -0.0458 1.37 9p-6d -0.0156 -0.0461 - 0.638 
9s-8p  -1.4k  -0.0105 11.73 9p-7d -0.0173 -0.0147 - 3.76 
98-91 2.4.1 0.0069  -18.78 9n-8d 0.578 0.001% 22.42 

and RnL is the  radial wave function. 
The  matrix  elements  to  be used in (6) for  calculation  of 

the  third-harmonic  nonlinear susceptibility  include  only 
states with mL = 0. Thus we find 

(n I O  Iz[ n’Z + 1 0)  = (Z + I ) c R % ~ : ~ ~ ~ + ~ -  (9) 

Values for  this  matrix  element  may  be  found  from  the 
Bates and  Damgaard [7] approach, which assumes  a 
Coulombic  radial  potential field and  tabulates  the  values 
of the  radial  function in terms of the effective quantum 
number of each level. They define CT, which is e a  in our 
notation.  The sign of 6t is important  and is included in 
their  derivation;  however,  Bebb [8] mentions  a sign error 
of (- I)(n-n‘)+l in his  work. 

An  alternative,  and  perhaps  superior,  approach to  the 
evaluation  of  matrix  elements is to find their  absolute 
value  from  tabulated  oscillator  strengths  and the sign  from 
Bates and  Damgaard. Solving  for the  matrix  element (n  IO. 
I zJ n‘l + 1 0) in terms of the  oscillator  strength yields 

I 4p- 3 d  - 

O e V  36- 

l e v i  

-7 
1.064 

-‘f 1.064 

t7 0.6943 

I c 0 . 6 9 4 3 ~  

1 . 0 6 4 ~  v 
Fig. I .  Energy levels of sodium. 

The average  frequency  factors to  be used in (6) are 
calculated  from  the L - S split levels weighted by the 
relative  line  strengths: 

? Enp(j=z/a ) + +Enp(i=l/z) = Ew 

$End(j=3/2) + QEnd(i=5 /2) = E n d .  (12) 

The average  energy levels are used in Table I to give 
allowed transition energies  between the lowest four s, p ,  
and d states  for  each of the alkalies. These 12 levels create 
128 terms in the  summation  and  constitute  our  ap- 
proximation  of  the  nonlinear susceptibility. 

Fig.  1  shows  the  average  energy levels of sodium.  It is 
apparent  that  the  approximation is not  good for driving 
frequencies  whose  first,  second, or third  harmonic is above 
the levels used and below the ionization  potential.  Con- 
tinuum  absorption is small for  the  alkalies  and is neglected 
in this  derivation,. Table I gives the (n 1 0 Izjn’l + 1 01 ma- 
trix  elements  with  the  osciiiator  strengths  and  energy 
differences from which  they are  calculatea. For consisten- 
cy, these  oscillator  strengths  have  all been taken  from 
calculations by Anderson [9], [lo]. The signs  of the  matrix 
elements are  from Bates and  Damgaard with the  correc- 
tion  factor  mentioned by Bebb. 

Figs. 2-6 give I ~ ( ~ ’ ( 3 w ) l  in  electrostatic  units  versus 
wavelength for  each  of  the  alkalies.  The  regions  where our 

kr 3(1 1) approximation  does  not  include  resonant levels are 

(10) of both  frequency  factors  and  matrix  elements  account  for 
the  numerous  zeros.  It is important  to  note  that  the 2w 

wherefnl;n,L + is the  oscillator  strength, #2nlL + I ; n l  is the  resonances  (occurring with the excited s or d levels) do  not 
energy  difference  associated  with the In 1 0) to In’l + 1 0) correspond  to allowed  single photon  absorption,  and, if 
transition,  and me is the  electron  mass. If the  resonant  approached by 2w, could  be used to  enhance  the  third- 
frequency s2 is written as  an energy  difference  in  rydbergs harmonic susceptibility without  substantially  increasing 
and  the  matrix  element is found in Bohr  radii,  then the loss at  the  fundamental  frequency. 

I(. I O  Iz/ n’l + 1 0)l2 = f n l : n ‘ 2 + l  2rn ,4 , z , . , ;n2  21 + 3 ’ marked  as  invalid.  Substantial  cancellations  from  the signs 
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Fig. 2. Nonlinear  susceptibility of lithium  versus  incident  wavelength. 

i 

0 
m 

Fig. 3. Nonlinear  susceptibility of sodium  versus  incident  wavelength. 

111. THIRD-HARMONIC POWER CONVERSION 

We  assume  the  incident electric field to  be a TEM,, 
Gaussian  mode focused at z = f with  a  confocal  beam 
parameter 6.  Then 
&(r) = Eoeik'"(l + it)-' exp [ - k l ( x 2  f y 2 ) / b ( l  + i t ) ] .  (13) 

In this  expression k ,  = 2an,/X, where n, is the index of 
refraction at  the incident  wavelength X; b = 27rwo2/X, 
where wo is the beam  radius;  and 4 = 2(z - A/b.  From 

Fig. 4. Nonlinear  susceptibility of potassium  versus  incident wave- 
length. 

(Wl FOR RUBIDIUM 
I31 

Fig. 5 .  Nonlinear  susceptibility of rubidium  versus  incident  wavelength. 

Ward  and  New [l], the  generated  third-harmonic  electric 
field is given by 

&(3)(r) = [ i  7 c ko2 b N ~ ( ~ ) ( 3 w ) & ~ * / / k , ]  

*exp [3ik,z]( l  - it)-' 

where 
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g l  

Fig. 6. Nonlinear susceptibility of cesium  versus  incident  wavelength. 

= 67r/X? 
= n3k0, 
index  of refraction at  the  third  harmonic, 
number of atoms/cubic centimeter, 
= v ” i Q G g l 3 7 7 ,  
= (1/81 X 10-17) ,y (3) (3w)Icsu ,  
= 2(L - f ) / b ,  
= 2f /b ,  
length of the  gas cell, 
location of the beam focus  from  the  entrance 
window, 
= k ,  - 3k,  = - (n, - n , )  = wave-vector 

mismatch. 

67r 
x 

All units  of  length  are in ceqtimeters. 

over P, and  in  terms of the incident  power PC1),  is 
The  third-harmonic  power is obtained by integrating 

The conversion efficiency is  defined as  the  ratio of third- to 
first-harmonic  power.  With  the  power in watts, the alkali 
atom density N in atops/cubic centimeter,  the  nonlinear 
coefficient ~ ( ~ ’ ( 3 u )  in’ESU,  and  the  incident wavelength X 
in centimeters, the conversion efficiency becomes 

The integral I accounts  for  the effects of focusing and 
dispersion.  Two  limiting  regimes  of (17) are of interest.  In 
the plane-wave approximation (b >> L),  12 reduces to 
(4LZ/b2)  sin2 (AkL/2 ) .  Using A = bX/4, where A is the 
effective area of the  Gaussian  beam, (17) becomes 

On the  other  hand,  tight focusing in the  center  of  the cell 
( b  << L, ( = r )  gives 

/II(tightfocusing)’ = [TbAk e w  (+ibAk)I2, (19) 

for Ak < 0 and I l l z  = 0 for A k 2 0 .  
For  the plane-wave approximation,  maximum  conver- 

sion efficiency is attained  with Ak = 0. In  the  tight 
focusing approximation for negatively  dispersive  media, 
conversion efficiency is maximized  for bAk = -4 .  For 
confocal  focusing (b  = L ,  = l) at  the center of a 
negatively dispersive  media, I I1 maximizes at 2.46 when 
AkL = -3.5. 

A .  Phase Matching 
For  the  condition  where  the  confocal  parameter is much 

longer  than  the  gas cell, i.e., the  plane-wave  approxima- 
tion, Ak must  be  made  equal  to  zero. If two gases are 
mixed together,  one with  a  negative and  the  other with 
positive  dispersion,  then at  some  ratio of  partial  pressures, 
Ak will be  zero  and  phase  matching will occur. It  thus 
suffices to mix some  nonreactive  gas,  such  as  xenon,  with 
the alkali  vapor to  phase  match.  In  the  absence of  this 
buffer gas,  the  third-harmonic  generation  only  occurs  over 
the  short  distance  that  the first and  third  harmonics 
overlap.  This is called the  coherence  length  and is LC = 
Ix /Ak l .  Phase  matching will increase’ this  interaction 
length to  the  length of the cell and  thus  increase  the  output 
power by a  factor  of ( T L / ~ L ~ ) ~ .  The refractive  index of a 
phase-matched Rb  and  Xe  mixture is shown in Fig. 7 .  
Note  that  the  partial pressures  have  been  chosen so that 
the index at  the  third  harmonic  equals  that  at  the  fun- 
damental. 

The refractive  index  of  the  metal  vapors is calculated 
from  the  standard Sellmeier equation 

where 
re = 2.818 x cm, 
f i  oscillator  strength of the  ith  transition, 
Xi wavelength of the  ith  transition  in centimet’ers. 

Values  of thefi  and X i  for Li, Na, K, Rb,  and Cs are given 
in Table V. The refractive  index  of  Xe is taken  from  Koch 
[ 1 I], who  derived  the  following  equation  from  experimen- 
tal data  at STP: 
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TABLE I1 
PARAMETERS FOR THIRD-HARMONIC GENERATION 

Fig. 7. Refractive  indices of rubidium  and xenon  versus  wavelength. 

Fig. 

I 
lo 2.5 2.0 11.5 

I I I  I 
1.0 0.8 0.6 

INCIDENT WAVELENGTH (pL) 

8. Required  ratio of Xe to alkali atoms versus incident 
wavelength  for phase-matched  third-harmonic  generation. 

393235  393235 
nxe - E {46.3012 - 10-s/X2 + 59.5779 - 10-s/Xy 

7366100 
+ 139.8310 - 1O-'/X2 } x 10- (21) 

where X is in centimeters.  Fig. 8 plots  the  ratio  of  the 
number of Xe  to  alkali  atoms versus the  incident 
wavelength  for  phase-matched third-harmonic  generation 
in each of the alkalies. 

When  picosecond  pulses are used for  third-harmonic 
generation, it is  necessary that  the  broad frequency spec- 
trum  that  comprises  the pulse  be  simultaneously  phase 
matched; or equivalently that  the  fundamental  and  third 
harmonic  maintain at least  50-percent temporal  overlap. 
The minimum  allowable  pulse  length Atmin, which satisfies 
this  condition, is determined by the difference in group 
velocities Aug of the  fundamental  and  third  harmonic,  and 
is  given  by 

The  term (n,n3Au,)/c2 is labeled B and is proportional  to 
the density of atoms;  the  normalized  constant B / N  is  given 
in Table I1 for 1.064- and 0.6943-y tripling  experiments. 
From  these  data we see rhat 50  cm  of Rb  vapor  at lo'' 
atoms/cm3 will phase  match  a 0.17-ps or longer  pulse of 
1.064-y radiation.  This is to be  compared with a  minimum 
pulse  time of 6.1 ps  for  a 1-cm crystal of LiNbO,  and 0.07 
ps  for  a 1-cm crystal  of KDP for  doubling 1.064-p radia- 
tion [12]. 

8 Includes  extra  energy levels that  are  near  the 0.6943-p resonance. 

Table I1 presents  other  relevant  data  for  the 1.064- and 
0.6943-y conversion  experiments. Li and Na are  the  only 
alkalies that phase  match 0.6943 y;  thus  the  ratio of xenon 
to alkali  atoms  and B / N  are given only  for  those  two 
vapors.  The  coherence  length is inversely proportional  to 
the density of alkali  atoms  and is tabulated  as  LcN, which 
may be derived  from (20). 

The density of atoms of each  alkali is calculated  from 
the  vapor  pressure. A good  approximation of the  vapor 
pressure  for  pressures  near 1 mmHg is 

p(mm) z e x p  [-(do +dl,  (23) 

where the  constants a and da re  given  in Table 111 for  each 
of the alkalies and T i s  the  temperature in degrees  Kelvin. 
The density of atoms is, then, 

N = 9.66084 X 10" atoms/cm3. (24) T 

As the  temperature  and  thus  the  density of alkali atoms 
increase, the allowed temperature  tolerance necessary to 
maintain  phase  matching  decreases. A maximum  allowed 
variation on A k  of 6(Ak)  = ?r/L yields a maximum 
allowed temperature  variation of 

where a is the  constant in Table 111. A temperature of 814 
K gives 1017 atoms of Na.  From  Tables I1 and 111, LC is 
5.86 X lo-' cm and a = 1.2423 X lo4.  These  numbers yield 
6 ( T )  = 33.4/L K, where  L is in centimeters.  Typically  the 
vapor  pressure will be low because  of  other  limiting 
processes and  the  temperature  tolerance will  be no 
problem. 

B. Tight  Focusing 
In the  tight  focus  regime (b: << L),  setting A k b  = -4 

maximizes the  conversion efficiency. As opposed to  the 
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TABLE 111 
VAPOR  PRESSURE  CONSTANTS 

Li Na K Rb CS 

a l g i n  _ I >  1~123.3 10210.11 911.0.07 8z27.38 

d 1y.130 17.3911. 16.539 lG.oG28 16.0~07 

TABLE IV 
THIRD-HARMONIC GENERATION BY TIGHT FOCUSING 

Element Ntlyht focusin*. (atoms/cm3) K 

1.064 11 To O.j5!: ' {  

1.i 7.37 x 1O'"b 1.11 x 10-28 

NS 7 . u  x lO'd/b 1 . 1 3  x 10+7 

K 3,187 x l 0 ' 6 / b  1 .oo x 10:'O 

Rb 2 .75  X l0l6/b 5 . ' I 5  x 10-26 

Cs l . %  x 10'G/b  5.91 x 10-26 

' 0.69113 p TO O . i l j l 4  p 

~i 6.40 x 101'/b 1.14 x lo-'? 
Na 2.56 x 1016/b  2.02 x 10-28 

plane-wave  condition  where the sinc2  function is identical 
for  positive or negative Ak,  the  integral is only nonzero  for 
negative Ak in the tight  focus  approximation  and  thus a 
negatively dispersive  medium is necessary.  Since the 
wave-vector  mismatch Ak is proportional  to N ,  the  number 
of atoms/cubic  centimeter  required  for maximum  conver- 
sion by tight  focusing is 

N t i g h t  focusing = 4(LcN)/h.  (26) 

Substituting  this  value of N into (17),. we obtain 

p'3 '  
-_ - 
(1) - K(P/A)*. (27) 

Values of Ntigbt focusing and K are given in Table IV for 
tripling 1.064- and 0.6943-p radiation. 

Though  this  type of  phase  matching is of  interest 
because of  its  simplicity, it is likely that  multiphoton  ab- 
sorption [8], [22] will limit the  allowable  incident power 
density to  about 10" W/cm2  and  thus (in Cs, for  instance) 
will limit the  maximum  conversion efficiency to  about 5.31 

Fig. 9 shows  calculated  third-harmonic  power  versus 
temperature  for a  beam  confocally  focused (b = L) into a 
IO-cm cell filled with Rb vapor  and a  similar  experiment 
using an imaginary  vapor  with  the  same  characteristics  as 
Rb except  positively  dispersive. The difference is easily 
noted and  provides a method of distinguishing  positively 
from  negatively  dispersive  media. The  large first  peak  oc- 
curs only if Ak is negative and  equal  to -3.5/L. 

C. Experimental Results 

P t i g h t   f o c u s i n g  

x 10-4. 

Experimental  results  have been presented  elsewhere [4]. 
A recent correction of the  theory yielded  experimental 

477 

TEMPERATURE PC) 

Fig. 9. Third-harmonic  output  from a negatively and positively  disper- 
sive vapor  with  the  incident beam  confocally  focused  into  a IO-cm cell. 

verification of  the  nonlinear  susceptibility to within 15 per- 
cent.  Third-harmonic  conversion of 1.064-0.3547 p in  a 
Rb and  xenon  mixture is reproduced in Fig. 10 together 
with the  theoretical  prediction. To achieve the best 
experimental-theoretical  fit,  it  was necessary to  translate 
the  experimental  points by 5°C. The peak at 267°C cor- 
responds to  the  temperature  at which the  rubidium  vapor 
density  was in the  proper  ratio  to  the xenon  density to 
cause  phase  matching. 

IV. LIMITING PROCESSES 
Third-harmonic  generation is limited at high  powers 

and  high-power  densities by competing  processes. Absorp- 
tion will, of course,  deplete  the  pump or the  third-. 
harmonic  radiation. Off line  center,  however,  absorption 
is generally not  as severe  a  problem as  are  saturation (with 
the associated  breaking  of  phase  matching  and self 
focusing), multiphoton  absorption,  and  gas  breakdown. 
Other processes will cause  additional  refractive index 
variations  and  the  dominant  limiting  process  depends  on 
the  particular  experimental  configuration. 

A .  Absorption 
The single-photon  absorption  cross  section is 

Third-harmonic  generation will most likely be  done in 
relatively  high-pressure gas cells and  far off single-photon 
absorption  resonances.  Since the Lorentzian  line  shape 
decreases  much  slower off resonance  than  does  the  Gaus- 
sian and  also  characterizes  pressure  broadening, 

where Aw is the  Lorentzian  broadened full  width at  the 
half-power  points. 

The single-photon  cross  section  may  also  be  expressed 
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TABLE V 
ABSORPTION LINE PARAMETERS 

250 260 270 280 290 300 
TEMPERATURE ( T I  

Fig. IO. Third-harmonic  power  output  from  rubidium  vapor  phase 
matched  with xenon:  theory  and  experiment. 

in terms of the  oscillator  strength of the  g+ftransition.  If 
we let w = 27rcu, where u is in centimeter-', c is in cen- 
timeters/second,  and  use (29) for  the line shape,  the  cross 
section  far off line  center  becomes 

Measurements of the  pressure-broadened  linewidth of 
alkali gases  in argon  are  tabulated by Ch'en and  Takeo 
[I31 and  show  that  the  line width is proportional  to  the 
relative  density  of the  gas.  Relative  density is the pressure 
of the  same  number of atoms  at 0°C; thus  the  pressure- 
broadened  linewidth is proportional  to  the  number of 
buffer gas  atoms  present. 

More generally, the  linewidth  must  include  con- 
tributions  from  natural,  or lifetime, broadening  and  from 
self-broadening effects. If the  number of buffer gas  atoms 
is R times the  number of alkali  atoms,  where R is deter- 
mined by the  phase-matching  criterion,  the  Lorentzian 
linewidth is 

A v =  Au,, , , , ,~+Gv,N/N,+GURN/N,.  (3 1) 

6u is the  pressure  broadened, 6v, is the  self-broadened 
linewidth at  standard  temperature  and  pressure,  and No = 
2.69 X 1019 atoms/cm3.  Values  for Avnatural, 6vs, and 6u 
are given in Table V for  the  absorption lines of the 
alkalies. The  numbers  for 6 u  enclosed in parentheses  are 
estimates;  the  other  numbers of 6u are  taken  from Ch'en 
and  Takeo's  tables  for  argon  broadening  and  are only ap- 
proximately  correct  for  broadening with xenon.  Oscillator 
strengths  are  taken  from  the  sources referenced and do not 
necessarily correspond  to  those  from which the  matrix 
elements given in Table  I were  derived.  There,  for the  sake 
of consistency,  Anderson's  calculations  were  used 
exclusively. The  resonant wavelengths are  from  Landolt 
and Bornstein [14]. 

The  natural width is calculated  from the  natural 
lifetime, or quenching  time [18], 

0.67a5 

0.3234 

0.2742 

0.5892 

0.3303 

0.2853 

0.7616 

0.4045 

0.3L47 

0.7948 
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0.932 
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0 . W  
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0.0154 

0.00277 

0.395 

0.805 

0.W5P 

O.OlOw1 

0.030974 

0.001% 

0.394 

0.814 

0.00284 

0.0174 

o.mo317 

0.001119 

36.8 

0.10 

0.081 

42.7 

0.35 

0.016 

59.0 

0.16 

0.071 

69.6 

65.6 

0.50 

0.50 

0.072 

0.ClD 

78.1 

76.9 

0.25 

0.88 

O.M? 

0.15 

a Values of 6 v  in parentheses  are  estimates;  others  are from  Ch'en 
and  Takeo 1131. 

gg and gf are degeneracies of the lower- and upper-energy 
levels and X f ,  is the  transition wavelength in centimeters. 
Values  for 7, are included in Table  V  and  are  important 
for  the  saturation process discussed in the following sec- 
tion.  The  self-broadened linewidth 6vs is calculated  from 
the  relation [19] 

(34) 

For  convenience we  will ignore  the  self-broadened  and 
natural linewidths in (31) when  calculating  the  pressure- 
broadened  cross section. The  error will not  be  large since 
typical  values  of R are  greater  than 100 and  the  xenon 
pressure-broadened  linewidths  are  only  approximate. 

Table VI gives values  of d l ) ( w ) / N  for  tripling 1.064 and 
0.6943 p in the  alkali  vapors  phase  matched  with  xenon. 
Single-photon  cross  sections at  the  third  harmonic, 
a[')(3w)/N, and  two-photon  cross sections, d Z ' ( w ) / N ,  are 
included as well. The  single-photon  cross section at  the 
third  harmonic  corresponds  to  the  absorption of the 
generated  third  harmonic. For tripling 0.6943 p, d')(3w) is 
derived  from the  continuum  cross section and is assumed 
independent of N .  The  absorption coefficient is, of course, 
CY = N a L ,  and  forms  an  upper limit  on the  length  and  den- 
sity of the  gas cell. 

Single-photon  absorption to  the  continuum is of  con- 
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TABLE VI 
SINGLE- AND TWO-PHOTON ABSORPTION CROSS SECTIONS (U IN cm2, N IN ATOMS/Cm3, PIA IN W/cmz) 

Element Ratio Nxe : N 
Phase  Matched  With  Xe 

o(l)(w)/N u(')(3w)/N U ( ~ ) ' ( W ) / N  
~~ 

1.064-0.3547 
~ ~~~~~~ 

Li 154 8.5 X 5 . 4  x 10-39 9 . 2  x 10- PIA 
Na 152 5 . 0  x 10-39 1 . 3  x 10-38 
K 326 

1 . 8  X 10-51P/A 

Rb 414 1 . 3  x 10-37 cs 658 
1 . 8  X 1 . 1  X 10-42P/A 

9 . 6  x 10-38 3 . 9  x 10-38 2 .6  x 1 0 - 4 9 ~ 1 ~  

5.7 x 10-37 1 . 0  x 10-37 2 . 2  x 10-46~.  A 

Element Ratio N,, : N u(l)(w)/N u(')(3w)& U - ( ~ ) ( O ) / N  

Li 
Na 

400 
100 

4 . 3  x 10-36  
4 . 7  x 10-38  

2 . 5  x 10-'8 2 . 2  x 10-'?PIA 
8 . 0  x 10-20 8 . 3  X 10-48PIA 

a Continuum  absorption  cross  section  from Ditchburn  [20]  assumed  independent of N. 

cern if the  third-harmonic  frequency is above  the ioniza- 
tion potential  of  the alkali atom,  as is the case for tripling 
0.6943 p.  A  summary of measurements is presented by 
Ditchburn et ai. [20]. It  shows  that  the cross  sections of the 
alkalies are typically less than lo-'' cm'. Sodium, for ex- 
ample,  has  a  cross  section of 1.2 X cm2 at its  ioniza- 
tion threshold.  The cross  section then  drops  to  2 X at 
0.1900 p and rises slowly toward  higher  frequencies.  This 
behavior 'is typical  of  alkalies and indicates that  the 
generated  third-harmonic  signal will not  be significantly 
absorbed if it is above  the ionization  energy. The 
Kuhn-Thomas  sum rule  predicts  this  low absorption since 
the  sum of the discrete level oscillator strengths is very 
nearly 1 for  all the alkalies. 

At pressures of a few torr,  the alkali  metal  vapors con- 
tain  from 1 to 10 percent  diatomic  molecules.  The  absorp- 
tion bands  are diffuse and  the  value  of  the  absorption 
cross  sections in the  IR  and UV do  not  appear  to  have 
been determined. 

Preliminary  experimental  measurements  in  our 
laboratory indicate, at least at pressures of a few torr  for 
tripling of  1.064 p in Na  vapor,  that  molecular  absorption 
should  not  be  a  problem. If the  fundamental or third- 
harmonic  frequency  should  fall in the  middle of a 
molecular  band,  it is likely that  the  molecular  absorption 
will bleach very rapidly and will not affect the refractive 
index  as  much  as  atomic  absorption.  The  absence of 
knowledge  of  molecular  absorption is a weak point of this 
paper  and requires  experimental  study. 

A derivation of the  two-photon cross  section to discrete 
levels is given by Bebb [21]. With  the  matrix  elements in 
Bohr  radii,  the  power  density in watts/centimeters2, and 
the  resonant  and incident  energies in rydbergs (1 Ry = 
109  737.31 cm-'), 

a(2)(0) = 4.597 X 

Values of the  two-photon  absorption cross  section for 
tripling 1.064 and 0.6943 p are given in Table VI. The line- 
width used for these  calculations is &% = 2.7 cm-'  and 
represents an  approximation of the  widths of the  upper d 
and s levels. For typical conditions  away  from  resonances, 
two-photon  absorption  can be ignored. 

Morton [22] has  derived  multiple-photon  ionization 
transition probabilities  for the alkalies for incident 
wavelengths of  1.059,  0.6943, 0.5295, and 0.3472 p.  The 
multiple-photon  absorption  cross  section is found  from 
these transition probabilities by the relation 

where q is the  number of photons  absorbed  and W is the 
transition  probability in second-'.  Values  for d q )  are given 
in Table  VII.  It is likely that  multiphoton  ionization will 
be the  dominant  process  that limits the  allowable  power 
density, and  at typical  pressures and cell lengths  this 
ionization will limit  this  density to  about 1O'O or 10'l 
W/cm2.  Once high efficiency is reached,  multiple-photon 
ionization  caused by the  generated  third-harmonic  radia- 
tion  may further restrict the  allowable incident  power  den- 
sity, 

B. Saturation 
The energy density that is applied  in  a  time less than  the 

quenching  time  and  that  reduces  the  ground  state popula: 
tion by e-' is termed  the  saturation energy density: 

(37) 

If the energy is applied in a  time  longer  than  the  quenching 
time rC, then  the pulse  length is no  longer of importance 
and  the  saturation  power density  becomes 

The  lineshape is again  Lorentzian. The  saturation energy density  can  be  written in terms of 
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TABLE VI1 
MULTIPLE-PHOTON IONIZATION CROSS SECTIONSa 

1.059 @ 0.6943 I-L 0.5295 I-L O : j 4 7 2  u 

~i 6.8 x 7.8 x (P/A)3 6.4 X (P/A)' 1.9 X lo-'' (P/A) 

N~ 2.2 X (P/A)~'  3.4 x lo-" (P/A)' 6.3 x (P/A)' 3.2 x (?/A) 

K 1.7 x (P/A)J 3.3 x (P/A)* 1.4 x 10-3' (?/A) 5.5 x 10-*9 (P/A) 

7.5 x (P/A)' 2.7 X ( P / A ) 2 ,  1.8 X (?/A) 1.9 x ~ 3 - 3 ~  (P/A)  

c8 3.7 x (P/A)3 3.9 X (?/A)' 3 . 8  X lo-'' (P/A) 3.8 x 10-28 (P/A)  

a From Morton [22]. 

the cross-section off line  center given in (29): 

(39) 

The linewidth  depends  on  the  total  density  of  atoms; if it 
is below about 1Ol6 atoms/cms,  then  the  natural  linewidth 
is to be used (see Table V); for  higher  pressures,  the ex- 
pression of (31) gives the  linewidth.  Pressure  broadening 
is generally  anticipated, so 

2 2 2  

J , , , / A  = 4.74 x 10 8 b,e - J/cm2. (40) 
f o r  v 6vR N 

The  saturation energy  density is maximized  when the  total 
density  of atoms is so low that  the  natural linewidth 
dominates.  The first two  columns of Table VI11 give this 
maximum  saturation energy  density and J,,,/A as given 
by (40) for  tripling  of 1.064- and 0.6493-p radiation. 

Though J,, , /A is comfortably  large,  a  more severe 
limitation is imposed  on  the allowable  incident  energy 
density by the tolerance  on  the  phase-matching  condition 
and by thermal defocusing. For J / A  << J,,,/A, the frac- 
tional  variation in atomic  population 6N is 

We  -may accept  a  half-power  tolerance  on  the  phase- 
matching  condition 6(Ak) of 

6(Ak),,,L P .  (42) 

The  coherence length LC of the  alkali  vapor is defined as 

AkalrL, = P .  (43) 

Assuming that only  the  alkali  vapor  experiences  satura- 
tion  and  noting  that  both 6(Ak,,,) and Akall, are  propor- 
tional to  the atomic  population,  then 

Equation (44) is somewhat in error since it neglects the 
contribution of  excited atoms  to  the refractive  index. This 
error  depends  on  the  particular  alkali  and incident 
wavelength and is generally less than  a  factor of 2. Com- 
bining the  above  equations, we obtain  the  maximum 
allowable  incident  energy  density that will not  break  the 
phase-matching  condition as 

TABLE VI11 
SATURATION DENSITY IN PHASE-MATCHED GAS MIXTURES ( J / A  IN 

J/cm2, N IN Aro~s/crn3, L IN cm) 
- 

Element 
Maximum 

J,at/A  (JsatIA) X N 
(Jphse  matching / A )  

X NZ 

1.0644.3547 p 
Li 2.37 X 105 1.09 X 10ly 6.39 X 1W/L 
Na 
K 

2.29 X lo5 1.88 X 10ls 1.09 X 1036/L 

Rb 4.14 x 104 7.14 x 1017 1 .54  x 1034/~ 
5.64 x 104 9.77 x 1017 2.67 x 1034/~ 

cs 1.77 x 1 0 4  1.62 x 1013 2.22 x 1 0 3 3 / ~  

0.6943-0.2314 8 ,  c 
Li 1.84 X lo3 3.28 X 10l6  1.67 X 1032/L 
Na 2.47 X lo4 2.99 X 5.76 X 103'/L 
K 8.05 x 103 - - 
Rb 1 .03  x 104 - 
c s  3 . 1 1  x 104 - 

- 
- 

a Assumes natural  linewidth in (39). 

Values for  this  quantity  are given in the  third  column of 
Table  VIII. Since both LC and Jsat vary as (l/N), Jphase 
matching/A varies as  1/N2.  In  general,  this  quantity will im- 
pose  the  most  severe  limitation  on  the  allowable  incident 
energy  density. 

Saturation of the  alkali  metal  vapor  may  also lead to 
thermal focusing or defocusing of the  incident  beam. For a 
Gaussain  bcam profile the  variation  of  refractive  index 
across  the beam is 

where wo is the  beam  radius  and 6n = n o ( J / A ) / ( J s a t / A ) .  
We  assume  a  beam  with  its  waist at  the  center of the cell 
and  a complex  beam parameter qo [23]. The ray  transfer 
matrix is 

which yields a qo at  the cell exit of 
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The  beam  waist  at  the cell exit is then 

48 I 

TABLE IX 
QUADRATIC KERR SUSCEPTIBILITY 

Element xc3),(w)(ESU) Kerr Effect" (W/cmz) 

Normalization  to  the  beam  waist in  absence of thermal 
defocusing (an = 0) gives the  ratio 

If  we assume  that  a  rough criterion for significant ther- 
mal  defocusing is that  this  ratio = 2, then 

and 

For confocal  focusing, wo2 = (LX/27r) and 

(53). 

which differs from  the  tolerance  imposed by the  breaking 
of ,phase  matching (44) by a  factor of 3/27r. 

C. Breakdown 
Gas  breakdown  at high optical  intensities appears  to  be 

a  two-step  process.  Initially  a  small  number of free elec- 
trons  are created  in the focal  volume  through  multiple- 
photon ionization.  These  electrons then  gain energy 
through inverse bremsstrahlung  absorption of radiation 
and collide with atoms  to  create  more free  electrons in an 
avalanche  process  that finally leads to  an  opaque  plasma. 

Kishi et ai. [24] have  found  that free  electrons are 
created at much  lower  power  intensities  than  observed 
breakdown  thresholds, indicating that  only  the  avalanche 
process need be analyzed. The theoretical  threshold  power 
density  for  inverse  bremsstrahlung  behaves  as [24], [25] 

where t p  is the laser  pulse  length. The  steady-state 
response  time 7 6  is determined by whatever  competing loss 
process is dominant:  at high pressures,  electrons  lose 
energy  from  elastic  collisions  and  at low pressures the elec- 
trons diffuse very rapidly  away  from the focal  volume. 
Observations of breakdown  in  air by Wang  and  Davis 
[26] yield 7 6  on  the  order of -4 ns. Krasyuk et al. [27], 
however, find that their  results with picosecond  pulses in 
inert  gases  scale  approximately by l / t ,  to  measurements 
done with 30-ns lasers. 

Rizzo  and  Klewe [28] have  measured  the  breakdown 
thresholds of Rb  and Cs. Although  the  vapor densities 
were  low,  they  observed a  behavior  characteristic of the 
avalanche processes.  Their  results  show that  a 65-ns ruby 
laser  pulse breaks  down lo1* atoms/cm3  at  a focal  density 
of  about 1Olo W/cm2,  and  that  breakdown  threshold 
varies  as 1 / N .  It seems likely that with picosecond  pulses, 

Li 
Na 

Rb 
K 

1.064-0.3547 @ 

6.7 X 
8 . 2  X 10V4 
1 . 7  x 1 0 - 3 2  

2.0  x 1012 
1 . 6  X 1012 

.8.0 x 1010 
6 . 9  x 10-32 2.0 x 10'0 

c s  -2 .1  x 10-31 6.3 x 109 

Li 
Na 
K - 

0.6943-0.2314 p 

6 . 3  x 10-32  
3.2 x 10-32 

2.8 x 10-32 

2.8 X 1O1O 

3 . 2  X 1O1O 
1 .4  X 10'O 

Rb cs - 3 . 0  x 10-32 
1 . 5  x 10-22 

3.0 X 1010 
6.0 X 1Olo 

a Assumes lOla atoms/crn3  and a 1-m cell. 

t ,  << T b  and  that  breakdown is determined by energy  den- 
sity  (as  opposed to power  density). Furthermore,  the  max- 
imum energy density that is allowed by the  stringent  con- 
dition  on  the  breaking of phase  matching will almost 
certainly  be less than  that which will cause  gas  break- 
down. 

D. Quadratic  Kerr Effect 
The  contribution  of  the  third-order  nonlinear suscep- 

tibility to  the  polarization  at  the driving  frequency  causes 
a  change in refractive  index that  may also  break  phase 
matching  and  cause  focusing  or  defocusing of the incident 
laser  beam. The  third-order  polarization  at o is derived 
similarly to  the  third-harmonic  polarization  of (3) and 
leads to  a variation of the refractive  index  as a  function  of 
incident  power  density given by 

Given N in atoms/cubic  centimeter, x in ESU, and P / A  
in wattdsquare centimeters, the variation of index is 

Again we require 6(Ak)L I T,  and  thus 

Values of X ( ~ ) ( W )  for 1.064- and 0.6943-p upconversion 
are given in the first  column of Table  IX.  The  second 
column gives the  power  density  that will cause difficulty 
according  to  the  criterion of (57). An atom density of 10le 
atoms/cmg  and  a cell length'of 1 m  are  assumed. Positive 
values of x(*)(w) indicate  self-focusing  (as opposed  to 
defocusing)  and will probably  not  cause  a  reduction in 
third-harmonic efficiency. 

V. OPTIMIZATION 
If limiting  processes are neglected, the  third-harmonic 

conversion efficiency [(17) and (18)] varies as  the  square of 
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TABLE  X 
LIMITING ATOM DENSITIES FOR TRIPLINGPHASE  MATCHING BY MIXING  WITH  XE IS ASSUMED 

( N  IN A r o ~ s / c m ~ ,  L I N  cm, J / A  IN J/cm2, P I A  IN w/Cm2) 

N N 
Single-Photon  Single-Photon N 

Absorption  Absorption  Two-Photon N N 
Element (w) (3w) Absorption  Kerr Effect  Phase  Matching 

a Continuum  loss:  cross  section  assumed  independent of N. 

susceptibility,  power  density, cell length,  and  density  of 
atoms.  The  maximum  incident power  density is deter- 
mined by multiphoton  ionization  and is in the  range of 
1010-1012 W/cm2  for  tripling  in  the  alkali metals. For  con- 
focal  focusing in a cell of  length  L ( A  = LX/4), the  length 
of the cell  is an  invariant  with  regard to conversion 
efficiency. For  a laser  with  a given peak input  power  the 
cell should  be chosen sufficiently long that with  confocal 
focusing, the  multiphoton  ionization  power density is not 
exceeded. For high-power  lasers  this  may  not  be  possible 
unless  multipass  techniques  are  employed.  The  limit  on 
the  maximum  atom density is now  determined by the  most 
severe  of the following:  single-photon  absorption at  the 
fundamental,  single-photon  absorption at  the  third  har- 
monic,  two-photon  absorption,  Kerr effect, or,  as will most 
often  be  the  case, by the  requirement  that  the  incident 
energy  density not  destroy  the  phase-matching  condition. 
Table X gives the  value of the  maximum  atom density as 
determined by each of the  above processes  for  tripling  of 
1.064- and 0.6943-p radiation.  The limit for  each  process is 
calculated  assuming  xenon  phase  matching at  the  required 
ratio.  Laser pulses  of  length shorter  than  the  atomic decay 
or quenching  time  are  assumed. 

As  an  example,  assume  an  incident 1.064-p pulse  with  a 
peak  power  of lo8 W and  a  pulse  length of lo-” s. Assume 
that  Na is to be used for  tripling  and that P / A  = 10” 
W/cm2 is the  maximum  power  density  allowed by 
multiple-photon (five) ionization  (Table VII). For a 50-cm 
path  length,  the  confocal  area  at 1.064 p is 1.36 X cm2 
and  thus  confocal focusing is just possible. From  Table X, 
the maximum  atom densities as  determined  for  each of the 
limiting  processes are  as follows: single-photon  absorption 
at (w), Nma, = 1.07 X 10l8 atoms/cma;  single-photon  ab- 
sorption  at (3w), N,,, = 6.65 X 1017 atoms/cm3;  two- 
photon  absorption, N,,, = 6.5 X 10l8 atoms/cma;  Kerr 
effect, N,,, = 4.3 X 1017 atoms/cma;  and  phase  matching, 
N,,, = 1.71 X 1017 atoms/cm3.  The  most  stringent 
tolerance is imposed by the  joule  tolerance on the phase- 
matching  condition;  and  thus we take N = 1.71 X 1017 
atoms/cm3.  At  this  pressure  the cell is about 145 

coherence  lengths  long  and  requires  that  temperature  be 
constant  to within about  f0.6”C.  For these  conditions, 
(17) yields a  conversion efficiency of 7.1 percent. 

Table XI gives the  maximum  conversion efficiency, 
based on  the  joule  limitation on the  phase-matching  condi- 
tion,  for  each of the alkaiies  for  1.064- and 0.6943-p  third- 
harmonic  generation.  The first column  assumes  confocal 
focusing; thus cell length  and  area  do  not  appear  and  the 
conversion efficiency depends  only  on  the  square of the in- 
cident  power  divided by the  number of joules incident in 
an  atomic decay  time. The second  column gives the max- 
imum  conversion efficiency in terms of incident  power 
density,  energy  density,  and cell length.  The  atom densities 
used to  obtain  these conversion efficiencies are given in the 
fourth  column of Table X. The first column of Table XI 
applies  under  power-limited  conditions.  The  second 
column  applies  once  the  limiting  allowable  power  density 
is reached.  For  example, if  we assume that five-photon 
ionization in sodium will allow  a  maximum  incident 
power  density  of 1 X 10” W/cm2,  then  a 10-ps pulse (1 
J/cm2) in a  1-m-long cell will yield a  conversion efficiency 
of 19 percent. Fig. 11 plots necessary power  versus  pulse 
length  for  50-percent  conversion. 

VI. CONCLUSION 
This  paper  has  presented  a  theoretical  study of third- 

harmonic  generation in alkali  metal  vapors.  Principal 
results  of the analyses  include the  calculation of the  third- 
order susceptibility as  a  function of wavelength  for  each  of 
the alkalies,  a  derivation of the xenon buffer gas to alkali 
vapor mixing ratios  required  for  phase  matching, and  a 
detailed  study  of  the  various  limitations  on efficient third- 
harmonic  generation.  It  has been shown that the  principal 
limitation  process will be  the  breaking  of  phase  matching 
caused by the  change of the index  of  refraction  due to  ab- 
sorption.  Generally,  lasers with  IO-ps pulses will require 
los- 1 O9 W peak  power to achieve  50-percent  conversion to 
the  third  harmonic. 

A number of possibilities exist which may allow the 
energy density that may  be passed through metal vapor 
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TABLE XI 
MAXIMUM CONVERSION EFFIC~ENCIES AS LIMITED BY PHASE MATCHING 

Maximum  Conversion Maximum  Conversion 
Efficiency  (Confocal Efficiency  (Power  Density 

Element  Focusing-Power  Limited) Limited) 

1.064-0.3547 p 
Li  4.1 X 10-22(P2/J)  1.09 X 10-2G(P/Aj2L/(J/A) 
Na 
K 

7.1 X 10-21(P2/J)  1.89 X 10-25(P/A)2L/(J/A) 

Rb 
c s  

2 .4  X 10-m(Pz/J) 6.38 X 10-25(P/A)2L/(J/A) 
1 . 3  X 10-20(P2/J)  3.46 X 10-z5(P/A)2L/(J/Aj 

7 . 6  x I O - ~ P ~ / J )   2 . 0 2  x ~ o - ~ ~ ( P / A ) ~ L / ( J / A )  

0.6943-0.23 14 
Li  2.2 X 10-24(P2/J)  3.82 X 10-29(P/A)2L/(J/A) 
Na  9 .1  x 10-22(P/J) 1.58 x 10-2yP/A)“/ (J /A)  

I /Li 0.6943~ 

t [PULSE LENGTH ) 

Fig. 1 1 .  Power necessary for  50-percent  conversion  versus  pulse  length 
for  the alkalies. 

tripling cells to be  substantially  increased.  These  include 
the following. 

1) The  reduction of the  phase-matching  ratio by replac- 
ing the  inert  gas with a  media  with  higher  refractive  index 
per  atom;  for  example  Cd or Hg. 

2) The use of  a  molecular  quenching  agent  such  as N, or 
H, to reduce  the  atomic decay  time  (for  example, at ten at- 
mospheres  of  nitrogen,  the decay time of sodium is re- 
duced by about a factor of 100 [30]; this  should at least 
allow the use of  a train of picosecond  pulses  instead  of 
only  a  single  pulse). 

3) The use  of multipass  techniques  combined  with  tight- 
focusing-type  phase  matching. This would  allow operation 
at very  low pressures  with the  associated  natural line- 
width,  and  as  shown in Table  VIII, yield very large  satura- 
tion  densities. 

4) Finally,  Bjorklund  has  suggested  the use  of discrete 

periodic  phase  matching.  In  this  technique, cells of 
positively and negatively dispersive  media are  alternately 
spaced  and  their  pressures  independently  adjusted.  Here 
again, the metal  vapor cell could  be  operated  at very low 
pressure with  very high  energy saturation  density. 

The procedures  developed in this  paper  can  also  apply 
to sequential  third-harmonic  steps  further  into  the ul- 
traviolet by the selection of other  materials  similar to 
those discussed, but having appropriate  resonances in the 
ultraviolet  rather  than  the visible spectral  region.  In  recent 
months  third-harmonic  generation  from 5320 to 1773 A 
and  from 3547 to 1182 A has been obtained in cadmium 
and  argon  mixtures [29]. It  is’probable  that  this system has 
a significantly  higher  energy saturation  density  than  does 
the  alkali metal vapor system. It is possible to envision 
cascaded  harmonic  generators,  possibly  all  within  one 
heat  pipe  oven,  leading to  the  generation of very short 
wavelengths. A four-stage  system,  for  example,  would 
yield 132 A from  a 1.064-m, source.  Although a  system  of 
this  type  would  be  complex,  its  output  radiation will main- 
tain  many of the  desirable  features  of  the  original  radia- 
tion.  It would thus  be nearly  diffraction  limited, narrow 
band,  polarized,  and of picosecond duration. 

ACKNOWLEDGMENT 
The  authors would  like to express gratitude for many 

helpful  discussions  with A. E. Siegman, G. C. Bjorklund, 
A. H.  Kung,  and  particularly J. F. Young.  Experimental 
work  done by the  latter  three was used to verify the  theory, 
and  the fine job of computer  programming by L. B. 
Wigton was essential  for the  numerical results. 

REFERENCES 
[ I ]  J .  F. Ward  and G .  H.  C. New,  “Optical  third  harmonic  generation in 

[2] J .  A.  Armstrong,  N.  Bloembergen, J. Ducuing,  and  P. S. Pershan, 
gases by a focused  laser  beam,” fhys .  Reo., vol. 185, p.  57, 1969. 

“Interactions between light waves in a nonlinear dielectric.” Phys. 

[ 3 ]  S. E. Harris  and R. B. Miles, “Proposed  third  harmonicgeneration in 
Rw.. vol. 127, p. 1918, 1962. 

phase-matched  metal  vapors,” Appl. fhys .  Lett..  vol. 19, p. 385, 1971, 
[4] J .  F. Young et ai., “Third  harmonic  generation in phase-matched Rb 

[5] L. I .  Schiff, Quun/un~ Mechunics. 3rd  ed.  New  York:  McGraw-Hill, 
vapor,” Phr:s. Rec;. Lett.,  vol. 27, p. 1551,  1971. 

1968, p .  417. 
[6] J .  C .  Slater, Quantum Theor), of Atomic Strucrure.  New  York: 

McGraw-Hill, 1960, vol. I ,  ch: 6, vol. 11, ch. 25. 
(71 D. R. Bates and  A.  Damgaard,  “The  calculation of the  absolute 

strengthsofspectrallines,” Phil. Trans. Roy.Soc. London,vol.A242,p. 
101. 1949. 

[8] H. B. Bebb,  “Quantitative  theory o f  the  two-photon  ionization of the 
alkali atoms,” Phys. Rro., vol. 149, p. 25,  1966. 

191 E. M.  Anderson  and V. A. Zilitis,  “Oscillator  strengths for sodium  and 
potassium  atoms  calculated by a semiempirical  method,” Opt. Spec- 
/ro.\c. (USSR), vol. 16. p. 99, 1964. 

[ I O ]  - “Semiempirical  calculation  of  oscillator  strengths  for  lithium, 
rubidium,  andcesium  atoms,” Opt. Specfrosc. (USSR),  vol. 16,p. 21 1, 
1964. 

[ I  I ]  J .  Koch,  “On  the  refraction  and  dispersion  ofthe  noblegases  krypton 
and  xenon,” Kunal. F~~.sioarafi.sku Sullskapets I Lund Forhandlingur. 
vol. 19, p. 173,  1g49. ’ .’ ’. 

[I?] W. H. Glenn,  ‘Second-harmonic  generation by picosecond  optical 
pulses,” l E E E  J .  Quun/u1)7 Electron., vol. QE-5,  pp. 284-290, June 
1969. 

[ I31 S. Ch’en and  M.  Takeo, “Bro!,dening and  shift of spectral lines due  to 

[ 141 Landolt  and Bornstein,Zahlmn~erteun~Funktiot7enaus Physik. vol. I ,  
the  presence of foreign  gases, Reo. Mod. Phys.. vol. 29, p. 20, 1957. 

[ Is]  W. L. Wiese, M. W. Smith,  and B. M-.Miles, N.B.S. Rep.  NSRDA- 
pt. I ,  6th  ed. Berlin, Germany:  Springer, 1950. 

NBS 22, vol. 1 I ,  1969. 



484 I E l i E  JOURNAL OF Q U A N T U M  ELECTRONICS, VOL.  QE-9, NO. 4, APRIL 1973 

G. I. Goldberg, Izv. GI. Astron.  Obser.  Pulkove, vol. 156, p. 126, 
1956; results also given by Anderson [IO]. 
P. M .  Stone,  “Cesium  oscillator strength,” Phys. Reo., vol. 127, p. 
1151, 1962. 
A.  C. G .  Mitchell and  M. W. Zemansky, Resonance RadiationandEx- 
cired Atoms. New  York:  Cambridge, 1961. 
W.  W.  Houston,  “Resonance  broadening of spectral lines,” Phys. 
Reo., vol. 54, p. 884, 1938. 
R. W. Ditchburn, P. J.  Jutsun,  and G .  B. Marr,  “Thecontinuousab- 
sorption  oflight in alkali-metal  vapours,” Proc. Roy. Soc., vol. 219, p. 
89. 1953. 
H. B. Bebb  and A.  Gold,  “Multiphoton  ionization of hydrogen  and 
rare-gas atoms,” Ph~ls. Reo., vol. 143, p. 1, 1966. 
V. M. Morton,  “Multi-photon  absorption in monatomicgases,” Proc. 
Phb:T. Soc., vol. 92. p. 301. 1967. ’ 

H.  Kogelnik and  T. Li, “Laser  beams  and  resonators,” Appl.  Opt., 
vol. 5, p. 1550, 1966. 
K. Kishi, K .  Sawada, T. Okuda,  and Y. Matsuoka,  “Two  photon 

ionization  ofcesium  and  sodium  vapors,”J. Phys. Soc. Japan, vol. 29, 
p. 1053, 1970. 

[25] Ya. B.Zel’dovitchandYu.P.Raizer,“Cascadeionizationofagasbya 
light pulse,” Sou. Phys.---JETP, vol.  20, p. 772, 1965. 

[26] C. C.  Wang  and L. I .  Davis, Jr.,  “New  observations  of dielectric 
breakdown in  air induced by a focused Ndy-glass laser  with various 

[27] I .  K .  Krasyuk, P. P. Pashinin,andA.  M. Prokhorov,“lnvestigationof 
pulse  widths,” Phys. Rev. Lelt:, vol. 26, p. 822, 1971. 

breakdown in argon  and helium produced by a picosecond ruby laser 
light  ulse,” Sou. Phys.--JETP, vo1..31, p. 860  1970. 

[28]’ J. E. gizzo  and  R.  C. Klewe, “Optical breakdown’in  metal vapours,” 
Brit. J .  Appl.  Phys., vol. 17, p. 1 137, 1966. 

[29] A.  H.  Kung, J. F. Young,  G.  C.  Bjorklund,  and S .  E;Harris,  “Genera- 
tion of vacuum  ultraviolet radiation in phase  matched  Cd  vapor,” to be 

[30]  P. K .  Kibble, C.  Copley,  and L. Krause,  “Inelastic collisions  between 
published. 

excited  alkali atoms  and molecules. 11. The  quenching of sodium 
resonanceradi~tionbyN2,H2,HD,andD,,”Phys.Reu.,vol.159,p.11, 
1967. 

Properties of a  Radial  Mode COz Laser 
LEE W. CASPERSON AND CHARLES  ROMERO 

Abitrucr-The  properties of a new class of lasers  are  investigated 
theoretically and experimentally. In these lasers, the  radiation  propagates 
radially  within a disk-shaped  amplifying medium resultiag in  high  fields  and 
symmetric  illumination at the  resonator axis. Experiments  have  been  con- 
ducted  using a pulsed CO, TEA  configuration. 

M 
1. INTRODUCTION 

OST conventional laser resonators consist of a  pair 
of mirrors between which radiation  propagates.  If 

one or both of the  mirrors  are  made spherical to reduce 
diffraction  losses,  then the  resonator  modes  can be 
described by well-known  Laguerre-Gaussian or Her- 
mite-Gaussian  furlctions.  The  subject of this  paper is a 
new type of laser in which the  radiation  propagates  ra- 
dially  within a  wrap-around  mirror like that  shown in Fig. 
1. An internal  mirror  concentric  to  the  outside  mirror can 
be added so that  the z axis is external to  the  resonator. 
Among  the  important  properties of these new lasers are 
the high fields and  uniform illumination at  the laser axis. 
The  saturation  behavior is much  like that of other lasers, 
but  the analytic  expressions are all modified to  account  for 
the  radial  propagation.  We  report  here  the first operation 
of  a  radial  mode laser. Our experiments  have been con- 
ducted using for the  amplifying medium a transverse- 
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excitation atmospheric  (TEA)  discharge in a CO,-He-N, 
gas  mixture [ 11. Output pulses are  obtained  at  a  wavelength 
of  10.6 p with peak  power of up to  about 100 kW. The 
laser  oscillates  uniformly about its axis and  the  output 
properties  are in good  agreement with theory. 

11. THEORY 
In this  section, the radial  beam  modes are discussed  and 

the  saturation  behavior is obtained  for  the  simplest  case of 
steady-state oscillation. From  the wave equation,  one 
finds that  the  outward-propagating  harmonically  varying 
modes  are  described by the  function [2]  

where w = w, [ l  + ( r / r0)2]1 /2  is the  spot size in the z direc- 
tion of the  fundamental  Gaussian  mode, r, = rwO2/X is the 
Rayleigh  length, R = r [ l  + (ro/r)7 is the radius of cur- 
vature in the z direction, k = w ( p ~ ) ’ / ~  is the  propagation 
constant, H,(21 is a  Hankel  function of the  second  kind, 
H a  is a  Hermite  polynomial,  and P, = - (n  + 1 /2 )  tan-’ 
(r /ro)  is the phase. A similar  expression  involving H,(’) 
can be written for  inward-propagating  modes, or alter- 
natively, the  modes  can be expressed in terms of the Bessel 
functions J ,  = [Hm(ll + H,(2)]/2. The wave  function + 
may  be  interpreted  as the z component of either the  tlec- 
tric field or the  magnetic field and  the  other field com- 


