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Laser Spectroscopy of Core-Excited Levels of Neutral Rubidium
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This Letter describes a new technique for obtaining level positions, linewidths, autoionizing times, and
oscillator strengths of core-excited levels and transitions. The technique uses a tunable laser to deplete
the population of a radiating core-excited level, as other levels within the core-excited manifold are ac-
cessed. Level positions and linewidths are ascertained to within 1.0 cm ™! accuracy, and autoionizing
times whose Lorentzian linewidths lie beneath the combined Doppler-hyperfine structure are measured.

PACS numbers: 32.80.Dz, 32.30.Jc, 32.70.—n, 32.80.Hd

Knowledge of the locations and autoionizing times of
core-excited autoionizing levels is important for the un-
derstanding of many physical processes, as well as for its
applicability to the generation of coherent extreme ultra-
violet and soft x-ray radiation. Traditionally, the posi-
tions of these levels have been measured by ejected-
electron spectroscopy, and by absorption spectroscopy ei-
ther from the ground level or from laser-prepared
valence levels.! More recently, Cooke et al.? and
Bloomfield ez al.® have used multistep and multiphoton
excitation to prepare doubly excited column-II atoms,
and to measure their linewidths and autoionizing times.*
Also, Holmgren et al.® have used a tunable laser to
transfer population from a metastable level in neutral
Na to target levels, and by observing the resulting
fluorescence, have defined much of the quartet manifold.

In this Letter we describe experimental results on a
new technique®’ which allows the measurement of au-
toionizing times, linewidths, relative level positions, and
transition oscillator strengths of core-excited levels. The
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FIG. 1. Partial energy-level diagram of Rb showing the de-
pletion spectroscopy technique.

technique is based on the large radiative rates, relative to
their autoionizing rates, of certain levels that recently
have been termed quasimetastable.® Each of the
column-I metals and the column-II alkali-metal-like ions
has one or two such levels which radiate strongly in the
extreme ultraviolet (xuv) to levels in the valence struc-
ture.® These quasimetastable levels lie at, or near, the
bottom of the core-excited manifold of both parities. In
this technique we use laser-produced x rays to excite im-
pulsively a quasimetastable level, and’following this exci-
tation monitor the generated xuv radiation. A tunable
transfer laser is then scanned over the region where au-
toionizing levels are expected to be present. When a lev-
el is encountered, the quasimetastable population is
transferred to it, depleting the xuv fluorescence. The
shape and position of the depleted signal, as functions of
transfer-laser wavelength, determine the position and
linewidth of the autoionizing level. By using a saturation
technique which is described below, we measure the au-
toionizing times of levels which are sufficiently long lived
that their Lorentzian autoionizing linewidth lies beneath
their combined Doppler-hyperfine profile.

Figure 1 shows a partial energy-level diagram of neu-
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FIG. 2. Experimental schematic.
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FIG. 3. xuv emission spectrum of Rb.

tral rubidium. In Rb, the lowest quasimetastable levels®
are the even-parity 4p>5s5p 4S5/, level which radiates at
82.4 nm, and the odd-parity 4p°4d5s *Ps;> level which
radiates at 85.2 nm. In this work we monitor the 82.4-
nm radiation dnd therefore access odd-parity levels with

=1, 3, and 3. Figure 2 shows a schematic of the ex-
perimental drrangemem‘ A 7-ns, 100-mJ pulse of 1064-
nm Nd-doped yttrium-aluminum-garnet radiation is fo-
cused onto a tantalum target to a 100-um-diameter spot
and therefore to a power density of 2x10'" W c¢m ~2
The plasma created by this laser radiates soft x rays into
the surrounding region, which is filled with Rb vapor at a
density of 2x10'® ¢cm ~3. The x rays ionize the vapor,
producing Rb*(4p35s) and hot electrons. Both of these
species excite the Rb(4p°5s5p4S3,) quasimetastable
level, the first by charge transfer, and the second by
direct electron excitation. Figure 3 shows an emission
scan of soft-x-ray excited Rb, taken 20 ns after the end
of the 1064-nm laser pulse. Over a 10-nm-wide spectral
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FIG. 4. Depletion scan of the transition 4p°5s5p 4S3),
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region, the 82.4-nm quasimetastable radiation is the
dominant spectral feature. This allows use of 1-mm-
wide spectrometer slits and therefore relatively good col-
lection efficiency.

The transfer beam is a tunable dye laser, pumped by
the same 1064-nm laser that provides the x-ray excita-
tion. Typically the dye laser has an energy of 10 mJ
cm ~2 and a linewidth of 0.25 cm ~', and is scanned at a
rate of 1 cm ~! per second.

Figure 4 shows the 82.4-nm intensity as a function of
the frequency of the tunable laser, in the vicinity of the
quite wide 4p>4d('P)5s 2Py, level. We place this level
at 19794 cm ! above the quasimetastable level, and
measure a linewidth of 34 cm ~'. This width corre-
sponds to an autoionizing time of 1.6x10 "3 sec. The
identification of this, as well as other levels, is achieved
by comparison of the measured lifetime, transition oscil-
lator strength, and level position with the predictions of
the RCN/RCG atomic physics code,'® and also by compar-
ison with the xuv absorption data of Mansfield'' and the
ejected-electron data of Pejcev et al.'?

Figure 5(a) shows the line shape of the narrow
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FIG. 5.

Depletion scan of the transition 4p3555p *S3,

— 4p3556s *Ps;, showing Lorentzian wing power broadening.

(a) Laser energy is equal to 6.8x107%J cm
-2

ergy is equal to 1.2x1072J cm
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TABLE I. Relative level energies, linewidths, autoionizing
times, and designations.

Relative? Autoionizing

energy Linewidth time Tentative

(em ™1 (cm ™) (ps) designation
14654 0.7 > 20 4p34d (3D)5s 2D3py
16339 0.8 53 4p35565 *Psp,
17060 0.7 > 530 4p3556s 4Py
18064 0.8 > 440 4p35s('P)6s 2P,
19161 0.8 33 4p35p?4Ds),
19794 34 0.16 4p34d('P)5s 2Py,

aLevel energies are relative to the 4p35s5p 4S3/; level. On the basis
of Mansfield’s (Ref. 11) position of 4p34d(3D)5s 2D3);, we place the
4p3555p Sy level at 134255+ 5 cm ~!. A recent measurement by
Reader (Ref. 13) places it at 134250.1 £0.4 cm ~ L.

tive to the quasimetastable level. Since in this case the
0.8-cm ~! linewidth is on scale with the combined
Doppler-hyperfine profile, its reciprocal is not equal to
the autoionizing time. In this case we use a saturation
technique which allows the measurement of Lorentzian
linewidths which lie beneath the combined Doppler-
hyperfine-transfer laser linewidth. The technique is
closely related to a method demonstrated by Cooke,
Bhatti, and Cromer,* and makes use of the fact that the
transition probability in the far wings of a power-
broadened Voigt profile varies as the oscillator strength
and Lorentzian linewidth of the transition, and is in-
dependent of the Doppler-hyperfine-transfer laser
linewidth. Figure 5(b) shows 82.4-nm intensity as a
function of laser detuning for the same level
(4p35565 *Psjy) as that of Fig. 5(a), but this time at an
incident laser energy density that is about 2000 times
larger. Using computer-generated power-broadened line
shapes, we compare calculated values with the experi-
mental results for a number of laser detunings and inten-

sities. For this level we measure a Lorentzian linewidth
of 0.10 cm ~!, which corresponds to an autoionizing time
of 53 ps.

We have also measured the oscillator strength of each
of the transitions from the 4p3Ss5p 4S3, quasimeta-
stable level to the accessed odd-parity autoionizing lev-
els. This measurement is made by tuning of the transfer
laser to line center and recording of the laser energy den-
sity at which the depletion curve reaches exp(—1) of its
maximum depth. This saturation energy density is in-
versely proportional to the absorption cross section, and
therefore, together with the measured (total) linewidth,
determines the oscillator strength of the transition.

Table I lists the energies relative to the 4p35s5p 4S5
quasimetastable level, the measured (low laser intensity)
linewidths, and the autoionizing times of each of the ac-
cessed levels. Table II lists the oscillator strength of
each of the accessed transitions. Oscillator strength
measurements are estimated to be accurate to a factor of
2, and in turn introduce an uncertainty of the same order
of magnitude into the Lorentz width measurements. The
uncertainty in relative level positions is about 1 cm ~!.
The absolute energy of the accessed levels depends on
that of the initial quasimetastable level. Use of Mans-
field’s'" position for the 4p°4d(3D)5s 2D+, level places
the 4p3555p 4S3/; at 134255+ 5 ecm ~'. This is within
the error bounds of the value given by Mendelsohn er
al.® A recent measurement by Reader'’ places the
4p3555p 4SSy, level at 134250.1 0.4 cm ~!'. The >
signs on the autoionizing times in Table I are the result
of either our inability to measure very narrow Lorentz
linewidths, or the possibility that the widths have a col-
lisional or radiative component.

In summary, we have demonstrated a new method for
measuring relative positions of core-excited levels, core-
excited linewidths, and autoionizing times to unprec-
edented accuracy. The method can be used to access
core-excited levels of both parities and with J values that
do not allow measurement from the ground level. The
large signals which are obtained by the x-ray excitation

TABLE II. Transition wavelengths and oscillator-strength measurements. The tabulated
quantity gf is the absorption oscillator strength f multiplied by the degeneracy of the quasimet-

astable level, g =4.

Wavelength Oscillator strength (gf)
Transition (nm) Experiment Calculation

4p35s5p 4SSy 4p34d(PD)5s 2Dy 682.24 0.003 0.002
4p3555p A4Sy 4pS5565*Ps), 611.91 1.0 1.131
4p3555p4S3— 4p35565*P3) 585.99 0.2 0.195
4p3555p A4Sy 4p35s('P)6s 2P ) 553.44 0.03 0.029
4p3555p4Syn— 4p°Sp?iDsp 521.76 0.07 0.057
4p3555p 4S5 4p ad('P)5s 2Py, 505.02 0.1 0.431
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method allow scan rates of at least 1 cm ~! per second,
thereby making this an extraordinarily versatile and
powerful technique. Further experiments may allow the
observation of Rydberg series, interferences between au-
toionizing levels, continuum repulsion, and dressed-level
effects characteristic of laser-induced autoionization. '4
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