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Refractive-index control with strong fields
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An electromagnetically induced transparency-like effect
reduce to unity the refractive index of a weak probe.
resonance is considered.

is described that allows a strong laser to control and
A lossless multistate system with all states far from

Electromagnetically induced transparency (EIT) in
a three-state atomic system is now reasonably well
understood.'- 4 In this effect a strong controlling
laser is used to create a combined Autler-Townes
splitting and quantum interference, which allows a
probe laser to propagate through what would other-
wise be an opaque medium. The refractive index is
also modified and, for an ideal three-state system,
is unity on resonance and linearly dispersive near
resonance. 5,6

We focus on the use of an EIT-like effect to control
the refractive index of a weak probe beam, when far
from resonance, in an otherwise nonabsorbing atomic
or molecular system. We study a system that has
an infinite number of upper states (Fig. 1), which
are connected by arbitrary matrix elements to lower
states 11) and 12). We are interested in controlling
the refractive index of a probe laser with center fre-
quency wi, by a strong laser with center frequency
do,. We will assume that the detuning from the up-

per states I i) is sufficiently large that, in the spirit of
the usual (detuned) refractive-index calculation, the
loss associated with all the 11)-li) and 12)-1i) transi-
tions is inconsequential and may be neglected.

We will see that the problem is characterized by a
parameter that varies linearly with the power den-
sity of the controlling laser. When this parameter
is large compared with the linewidth of the 11)-12)
transition, then effective control and reduction to
unity of the refractive index of the probe beam
become possible. When this parameter is small
compared with the linewidth the refractive index
is nominally unchanged, and the probe is attenuated
by two-photon absorption.

Although we will limit the latter part of this
work to the case in which the controlling laser is
strong compared with the probe laser, we develop
the equations without this assumption. We consider
one-dimensional propagation with applied electro-
magnetic fields

E,(z, t) = Re[Epf (z, t)exp j(tot - kpz)],

Ej(z, t) = Re[Ecg(z, t)exp j(coct - kIz)]. (1)

The quantities f (z, t) and g(z, t) are the (complex) en-
velopes of the probe and control lasers and vary with
space and time. The electric field amplitudes Ep and
E, are real and are independent of space and time.

The detunings of the upper states A ow are refer-
enced to the probe frequency (Fig. 1). We allow for a
(complex) two-photon detuning, At02 = 302 - j(r2/2),
from state 12). When it is optimized, the real part
of this detuning, 3W2, permits compensation for the
portion of the ac-Stark shift that is not already elimi-
nated by the inherent destructive interference of EIT.
When it is set differently from its optimum value, this
quantity allows for a simulation of the effects of inho-
mogeneous broadening. The imaginary part of A6c2
is used to create a homogenous linewidth for state 12).
(Rigorously, this term may be viewed as a decay to
other states that are outside the system.)

We will assume that each of the states I i) of Fig. 1
has nonzero matrix elements to both states I1) and
12). For convenience, we take these matrix elements
as real and define (real) Rabi frequencies as nij =
IaLEE/h and t1 2i = A2 iEfIh. States li), which cou-
ple only to states I1) and 12) but not to both, cause
additional ac-Stark shifts and a background refrac-
tive index and are not included here. Nonrotating
terms are also neglected and may also be included
separately. (In most cases, for a weak probe a small
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Fig. 1. Energy-level schematic for refractive-index control.
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change in 8aw will allow for compensation for all the
neglected effects.)

With these approximations, the equations for the
probability amplitudes are

Baa j 2 aj)f (2a)

Ba 2 .1 fl2i'

at j A&2a2 = J ai)g, (2b)

at+ jAwiai = 27 flialf + 2 fl2ia2g . (2C)at 2 a~*+ 2 jag
We assume that the derivatives of the probability am-
plitudes of the upper states ji) are small compared
with the detuning from these states and can be ne-
glected. We solve Eq. (2c) for ai in terms of a, and
a2 and substitute the result into Eqs. (2a) and (2b).
With the definitions7 of frequencies

We define the strong-field parameter K as

K _ BC E0
2 L__i(__i_2j_2_ pi)1

A h2 Y Qr,u2 /2Awj) (6)

We retain the n = 1 and n = 2 terms of Eq. (5)
and substitute these into Eq. (4c). For a time-
independent control field, and to the order of the
retained terms, the equation for the propagation of
a weak probe pulse is

(A ± +a)f = -joy3,( aZ VG atf 
e~+K 1

2 [Adto2 * - (D/2)]
1 = 1 K 1

VG C 2 [A&2* - (D/2)]20P

We first note the ideal case; with r2 = 0,
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(7b)

(7c)
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the equations for the probability amplitudes a, and
a2 are

Ba, .,A a f2 + B
a * + i 2a2f 

at + jAzV2a2 = j 2 algf * + jD a2igJ2 -
at22

(4a)

(4b)

8562 = '/2[D - (BC/A)]
= 1/2(D - K)

(8)

i.e., in the limit of zero linewidth of the 11)-12) tran-
sition there is always a detuning 3W2 of the control
laser such that e = 0, and the refractive index of the
probe is unity. If there is only a single upper state
Ii), then AD - BC = 0, 5W2 = 0, and the problem
reduces to the standard three-state EIT problem.

The parameter K determines the weak- and strong-
field limits of 4. In the weak-field limit, K << F 2 ,

(9a)weak-field = 1 -±+ * * +
1`1

We take dipole moments and, from Maxwell's equa-
tions, form propagation equations for the envelopes
f and g:

(Ad + A)a lpp(Ja1i2f + aja2 g) (4c)

(a+ c -a)g JPc(1a2 12g+ Cal*a2f) (4d)

With an atom density N, the quantities f3p =
(/1 to/so)"2h wNA/E 2 and /3, = (mo/so)"12 hcowND/E0 2

are the real parts of the propagation constants of the
probe and control lasers when all atoms are in states
11) and 12), respectively, and with the alternative
laser absent.

We study these effects for the case in which the
control laser is sufficiently strong compared with the
probe laser that almost all the population remains in
the ground state (a, = 1). We also assume that the
envelope of the control laser is time independent and,
therefore, take g = 1. With these approximations,
Eqs. (4a) and (4d) are ignored, and the solution of
Eq. (4b) is written as

a2 = Vj(n-i) C an-if*
2 n= 2 [Ali 2 - (D/2)]n atn-1 (5)

Here the probe laser sees the normal refractive
index and also two-photon absorption as caused by
the control laser. In the strong-field limit, K >> F2
and 502 = (D - K)/2,

(9b)4weak-field = j K + * * *± K .

Here, increasing the strength of the control laser
decreases the absorption and, for sufficiently
large K, causes : -. 0 and the refractive index
to approach unity.

We turn next to the group-velocity term of Eq. (7c).
This term sets the minimum total energy density for
the control laser. The argument is that the control
laser pulse (with power density PC/A) must have a
pulse length that is at least as long as the time it
takes for the probe pulse (relative to the control pulse)
to transit through the medium. For a medium of
length L with atom density N, and with F2 = 0 and
2302 = D - K, we obtain

-CA N L( (10

A (K)
=PthwNL, (10)
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where

R 'P 2[ Ei~ulz2/2h cos)(11)
C, [YLi(AliA2i12Ac,)]2

(The dimensionless ratio R is defined so that, for
a resonant three-state system with equal oscillator
strength on the 11)-13) and 12)-13) transitions, R =
1.) We thus find the important result that the pulse
length of the control laser must be sufficiently long
that it has a number of photons equal to the number
of atoms through which it will transit.

For a given linewidth of the 11)-12) transition,
Eq. (9b) determines the power density of the control
laser that is required for a given reduction in the re-
fractive index. Using it, one may show that to reduce
6 until 16,/pLI = 1 requires a control laser power den-
sity of

P~ F2Ac= 22RhojNL. (12)

For pulses that are long compared with the inverse
linewidth, 1/r2, the control laser power density re-
quirement is set by Eq. (12). For pulses that are
short compared with this linewidth, the energy den-
sity requirement is set by Eq. (10).8

We remark that the small probe assumption is nec-
essary for this work but is not necessary when there
is only a single upper state. For three-state EIT the
Stark shift 28co2 = AD - BC is always zero, and the
propagation constants at both the probe and the con-
trol lasers are equal to their free-space values. For
multistate EIT we choose 8Ow2 so that the probe prop-
agates at its free-space value; but, here, the propaga-
tion constant of the control laser approaches its free-
space value only as the probe intensity approaches
zero.

To observe refractive-index control in gases at large
detunings (for example, 104 cm-' with a Doppler
width of 0.1 cm-') requires a control laser power
density of -1010 W/cm2. To transit through an NL
product of 1017 atoms/cm2, for red photons, requires a
control laser energy density of >30 mJ/cm2. Lasers
with pulse length of several picoseconds may there-
fore be most appropriate.

Nonlinear-optical processes based on EIT are
already showing promise for applications. To date,
experiments have been based on three-state systems
operated at or near resonance.910 The results of this
Letter suggest the extension to multistate systems
operated far from resonance.

This problem shares some common features with
the problem of propagation through an asymmetric
continuum. In particular, both make use of a fre-
quency offset from two-photon resonance to adjust
either the real or the imaginary part of the propa-
gation constant. 1112
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