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Two related methods for determining the Lorentzian linewidth of one- and two-photon transitions in an
atomic medium are presented. In each method, the linewidth is determined by the relationship between the
energy transmission and propagation delay of a series of laser pulses sent through the medium; precise
knowledge of the laser frequency, atom density, or matrix elements is not required.@S1050-2947~96!09106-8#

PACS number~s!: 42.50.Gy, 32.70.Jz, 39.30.1w

INTRODUCTION

This paper presents two related methods for determining
the Lorentzian linewidths of one- and two-photon transitions
in atomic or molecular media. These methods were devel-
oped as diagnostic tools for electromagnetically induced
transparency experiments in atomic lead@1#, but are widely
applicable to other media. In each method, the linewidth is
determined by the relationship between the transmission and
propagation delay of a series of laser pulses sent through the
medium; neither method requires precisely known laser fre-
quencies or a known atom density. These methods are par-
ticularly well suited to small volumes of atomic media~i.e.,
sidearm cells and heat pipes!, where the one-photon transi-
tion of interest~or the one-photon component of the two-
photon transition! is optically thick and the transitions are
collisionally broadened. With an independent means to de-
termine the linewidth of an optically thick one-photon tran-
sition, it becomes possible to make a robust spectroscopic
determination of the atom density by measuring the optical
absorption near the transition.

We begin by describing the procedure for determining the
linewidth of a single-photon transition and experimentally
illustrate the procedure using an atomic lead medium. We
then present in Sec. II the procedure for determining the
linewidth of a two-photon transition and illustrate the proce-
dure using the same lead medium. Section III discusses gen-
eral guidelines and limitations for using these two methods.

I. DETERMINATION OF THE LINEWIDTH
OF A ONE-PHOTON TRANSITION

A schematic of the atomic transition is shown in Fig. 1~a!.
A weak monochromatic laser fieldEpexp(ivpt) is tuned near
the center frequencyv31 of the transition; we denote its de-
tuning byDvp[v312vp . The transition is homogeneously
broadened and has the Lorentzian linewidth@full width at
half maximum~FWHM!# 2g3; the susceptibility of the me-
dium is then given by@2–4#
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um13u2N

e0\
FDvp2 jg3

g3
31Dvp

2 G , ~1!

where m13 is the matrix element of the transition for the
particular field polarization used andN is the population of
the ground state.

The energy transmission of the laser through the medium
is given by

Eout
Ein

5e22a~vp!L, ~2!

whereL is the physical length of the medium through which
the pulse is propagated anda(vp) is the absorption coeffi-
cient of the electric field at its center frequencyvp . The
attenuation coefficient is determined from the susceptibility

a~vp!52
v31

2c
Imx~vp!. ~3!

*Present address: Stanford Research Systems, Sunnyvale, CA
94089.

FIG. 1. ~a! One-photon transition with ground stateu1&, upper
stateu3&, and a Lorentzian FWHM linewidth 2g3 . Weak ‘‘probe’’
radiation of radian frequencyvp is tuned near the transition with
detuningDvp . ~b! Two-photon transition consisting of the one-
photon transition from~a! augmented by stateu2&. The ~non-
allowed! u1&→u2& transition has a linewidth of 2g2 . Strong ‘‘cou-
pling’’ radiation with radian frequencyv2 is tuned near the
u2&→u3& transition; its detuning from theu2&→u3& transition is
given by Dvc . The two-photon detuning is thus given by
Dvp2Dvc .
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We henceforth confine our attention to the case whereDvp
is sufficiently large that Eq.~3! can be accurately written as

a~vp!5
um13u2N

e0\

v31

2c

g3

Dvp
2 . ~4!

The conditions under which this approximation gives accu-
rate results are discussed in Sec. III.

The propagation delaytd5L/vg of the pulse through the
medium can be calculated from the group velocityvg ,
which, in turn, is calculated from the susceptibility@5#
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We define theexcess delayte[td2L/c, which corresponds
to the additional delay of a laser pulse propagating through a
distanceL in the medium compared to its delay propagating
through the same distance in vacuum. It immediately follows
that

ln~Eout/Ein!522g3te . ~6!

This equation has a simple physical interpretation: the en-
ergy of a pulse traveling much slower than the speed of light
decays exponentially at twice the coherence decay rate of the
u1&→u3& transition. This interpretation is consistent with the
fact that, when a laser pulse travels through a medium with a
slow group velocity, most of its energy is~reversibly! con-
tained in the medium as coherent atomic excitation@6#.

In principle, measuringEout/Ein and te for a single laser
pulse is sufficient to uniquely determine 2g3 . In practice,
however, it is difficult to measure these quantities. It is more
reasonable to measureEout andEin up to constant scale fac-
tors and to determinete up to some fixed offset, so that Eq.
~6! becomes

ln~Eout8 /Ein8 !52g3te81K, ~7!

whereEout8 5c1Eout andEin8 5c2Ein indicateEout andEin mea-
sured up to fixed scale factors,te85te1t0 indicateste mea-
sured up to a fixed time offset, andK is a constant offset.

To determine 2g3 , one need only causeEout8 /Ein8 andte8 to
differ for two distinct pulses, yielding two equations from
which the unknown constants 2g3 andK can be determined.
From Eqs.~4! and ~5!, this can be accomplished by varying
either N, Dvp , or both. Note that the actual detuning or
variation inN need not be known; all that is required is to
cause the pulse attenuation and delay to differ between two
pulses.

The determination of 2g3 can be made less susceptible to
statistical fluctuations by measuringte8 andEout8 /Ein8 for many
pulses of assorted detunings from the line center or at differ-
ent atom densitiesN and plotting this pair of measurements
for each pulse as a point on a graph where they axis is
ln(Eout8 /Ein8 ! and thex axis iste8 . The slope of the line fit to

these points is the estimate for 2g3 . This approach of plot-
ting many points together also provides a confidence check
for the procedure itself: when a straight line closely fits the
data points, the form of Eq.~6! is verified, indicating that the
line shape of the transition is indeed Lorentzian.

In order to demonstrate this method, we constructed the
apparatus shown in Fig. 2 to measure the linewidth of the
6s26p2 3P0→6s26p7s 3P1 transition in atomic lead. The
lead is contained in a commercially available@7# sealed
fused-quartz sidearm cell. The body of the cell consists of a
4-in.-long, 1-in.-diam tube; optically flat windows are fused
onto the ends of the tube and a 3-in.-long,1

4-in.-diam side
arm is attached to the center of the tube. The cell is evacu-
ated to approximately 131025 Torr through the open end of
the stem and baked for 24 h at 600 °C; after this bakeout,
approximately 15 mg of metallic lead~isotopic purity
99.97% 208Pb! is distilled through the stem and the stem is
tipped off to seal the lead into the evacuated cell. Isotopically
pure material is not required~see Sec. III!; the cell was pre-
pared for other experiments needing isotopically pure mate-
rial and was reused for the present experiment.

The cell is heated in a furnace to approximately 800 °C.
The furnace has two pairs of commercially available@8#
split-tube-shaped heating elements that are used to keep the
cell body approximately 30° warmer than the stem so that
lead does not condense onto the windows. Ceramic,1

2-in.-
diam beam tubes lead from the cell windows to past the
furnace insulation in order to inhibit air currents transverse to
the laser beam direction through the cell.

The lead vapor is probed by 283-nm laser pulses pro-
duced by frequency tripling the output of a pulsed, injection-
seeded Ti:sapphire ring-laser system@9#. This system pro-
duces tunable, 14-ns-long laser pulses at 850 nm with a near
Fourier-transform-limited linewidth. The laser pulses are fo-
cused byL1 to a spot nearC1, a 1-cm-long lithium-borate
~LBO! crystal cut for type-I phase matching to frequency
double the 850-nm beam to 425 nm. The two beams emerge
from this crystal and enter C2, a 7-mm-long
b-barium-borate~BBO! crystal cut for type-I phase matching
to produce a beam at 283 nm. The waveplate WP1, which

FIG. 2. Layout of the experimental apparatus for determining
the linewidth of the one-photon 6s26p2 3P0→6s26p7s 3P1 transi-
tion in 208Pb.
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produces a full-wave phase delay at 425 nm and a half-wave
delay at 850 nm, is placed between the crystals in order to
control the 283-nm intensity; by rotating the waveplate, the
polarization of the 425-nm beam can be conveniently attenu-
ated over several orders of magnitude.

The different wavelengths are separated by a Pellin-Broka
prism PB1; the 425-nm and 850-nm beams are blocked and
the 283-nm beam is collimated byL2 and given a circular
profile by prismsP1 andP2. The beam is expanded by a
telescope consisting ofL3 andL4, passed through attenuator
AT1, a half-wave plate WP2, through polarizer POL1, and
through an aperture AP2. The waveplate is used with the
polarizer as another stage of intensity control and the aper-
ture, together with lensL5, sets the beam size in the cell to
0.2 mm ~measured to the 1/e points!. The attenuators are
chosen so that the beam intensity in the cell is;100 mW/
cm2, which is well below the on-resonant saturation inten-
sity (;500 mW/cm2) of the lead resonance-line transition.
By rotating the waveplates alone one can, without perturbing
the beam alignment, reduce the beam intensity in the cell
from a level that causes visible fluorescence on white paper
down to the desired weak probing intensity; this feature is
useful for aligning the beam. the polarizer POL2 fixes the
beam polarization and the Fresnel rhombP3 converts the
polarization from linear to circular. Both the small beam size
and the circular polarization are used in the latter portion of
this work where the two-photon linewidth is measured; for
consistency, they are used here as well, even though they are
not required.

The beam is split at BS1 and passes through bandpass
filter F1 to a 0.5-ns-rise-time photomultiplier detectorD1
~Hamamatsu Model R5600U-03!. The portion of the beam
that emerges from the cell passes through bandpass filter
F2 and onto a second fast photomultiplierD2. The signals
from D1 and D2 are brought to a four-channel 53109

sample/s Tektronix Model TDS 684A real-time digital oscil-
loscope, which simultaneously records the pulse wave forms.
The wave forms are transferred to a computer that calculates
the relative timing between the maxima of the two pulses in
order to determine the propagation delay and calculates the
ratio of the areas of the pulses in order to determine the

energy transmission through the cell. The repetition rate of
the pulses, 10 Hz, is determined by the laser that pumps the
Ti:sapphire laser.

The results for208Pb are shown in Fig. 3. Each point in
the plot represents the normalized attenuation and relative
propagation delay of a single pulse at a particular detuning of
the pulse center frequencyvp from line center. The center
frequency of the pulses is tuned over a range of approxi-
mately 1 cm21 on one side of the line. As expected, the
points fall near a straight line; the slope of this line is 1.7
3108 rad/s, which is the estimate for 2g3 . From this value,
the upper-state lifetimet351/2g3 is estimated to be 5.9 ns,
lying within the tolerances of other measured values@10#.
We emphasize that it is not necessary to measure the opti-
cally frequency of the pulses; the only requirement is that the
optical frequency be varied over a large enough range that
there is a significant change inEout/Ein andte .

The atom densityN in the quartz cell can now be deter-
mined spectroscopically from the optical thickness of the
u1&→u3& transition, which is found by measuring the trans-
mission of probe laser pulses through the cell as a function of
the laser frequency and by determining the frequency inter-
val Dv1/e , over which the transmission is less than 1/e. This
frequency range is typically very broad compared to the line-
width 2g3 and is thus easy to measure with a standard com-
mercial wavemeter. Assuming that the inhomogeneous line-
width is much less thanDv1/e , Eq. ~4! gives the relation
betweenN andDv1/e :

N5Dv1/e
2 e0\c

4um13u2g3v31L
. ~8!

A plot of the probe transmission as a function of its detuning
from line center is shown in Fig. 4. From this plot,Dv1/e is
0.39 cm21 and, using the 2g3 determined above and the
known matrix element (m13520.79 a.u. for the circular po-
larization used!, N is found to be 1.531014 atoms/cm3.

FIG. 3. Natural logarithm of the energy trans-
mission of a series of pulses passed through the
cell, plotted against their excess delayte as the
detuning of the pulses from line center of the
transition is varied. The atom density is
N51.531014 atoms/cm3. The slope of the dotted
line fit by least squares to the data is 1.73108

rad/s, which is the estimate for 2g3 .
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II. TWO-PHOTON METHOD

A schematic diagram of the system considered here is
shown in Fig. 1~b!. The system is based upon that of Fig.
1~a! with the addition of another stateu2&; our object is to
determine the Lorentzian~FWHM! linewidth 2g2 of the
two-photon u1&→u2& transition. In addition to the probe
field, we incorporate a second, ‘‘coupling,’’ monochromatic
field Ecexp(ivct) tuned near the center frequencyv32 of the
u2&→u3& transition with detuningDvc5v322vc . The Rabi
frequencies of the probe and coupling fields on their respec-
tive transitions are given by Vp5um13Epu/\ and
Vc5um23Ecu/\, where m23 is the matrix element of the
u2&→u3& transition for the particular coupling field polariza-
tion used.

We assume that the coupling field intensity is much
greater than the probe field intensity, so thatVc@Vp . The
linear susceptibility of the medium as seen by the probe is
then given by@11#

x~vp!5
um13u2N

e0\ F Dṽ2

Dṽ2Dṽ32
uVcu2

4
G , ~9!

whereDṽ25(Dvp2Dvc)1 jg2 andDṽ35Dvp1 jg3 . We
confine our attention to the case~discussed further in Sec.
III ! whereVc is sufficiently large that this equation can be
simplified to

x~vp!.
um13u2N

e0\
F24~Dvp2Dvc!24 jg2

uVcu2
G ~10!

so that, using Eqs.~3! and ~5!, we obtain the absorption
coefficient

a5
um13u2N

e0\

2g2v31

Vc
2c

~11!

and the excess group delay

te5
um13u2N

e0\

2v31L

Vc
2c

. ~12!

It immediately follows that

ln~Eout/Ein!522g2te . ~13!

This equation is analogous to Eq.~6! for one-photon transi-
tions and can be interpreted in a similar way with the modi-
fication that the energy decay rate of the probe pulse is now
2g2 instead of 2g3 . Physically, the energy of the pulse is
~reversibly! contained in the coherent excitation of stateu2&
and in the coupling laser field@12#. Stateu3& is only infini-
tesimally excited~since the rate of change of the probe pulse
is ‘‘adiabatic’’ @13#! and thus its decay rate is not important.

Since Eq.~13! does not containVc , the coupling field
intensity does not, to a first approximation, need to be con-
stant during the propagation of a probe pulse in order for the
linewidth to be determined. This is of practical importance
since, in order to achieve a sufficiently intense coupling field,
the laser is often operated in a pulsed mode and thus, during
the passage of the probe through the cell, the coupling laser
intensity varies.

The experimental technique for determining 2g2 is analo-
gous to that for 2g3 , except thatVc is varied instead of
Dvp . By fitting ln(Eout8 /Ein8 ) vs te8 to a line and determining
its slope, we determine 2g2 . To demonstrate this procedure,
we determine the linewidth of the two-photon
6s26p2 3P0→6s26p2 3P2 transition in atomic lead, using as
an intermediate state the upper state of the one-photon tran-
sition discussed above. The experimental apparatus is shown
in Fig. 5; the portion that produces the 283-nm beam is omit-
ted since it is unchanged from the one-photon experiment;
the cell and furnace are also unchanged.

A second seeded Ti:sapphire laser system produces
812-nm pulses that are focused byL6 to a spot near a 7-mm-
long BBO crystal (C3) cut for type-I phase matching in
order to produce a 406-nm beam. The 406-nm beam is given
a circular profile by cylindrical lensL7 and is then colli-
mated byL8 so that the beam size in the cell is 1 mm. The
waveplate WP3 rotates the linear 812-nm beam polarization

FIG. 4. Energy transmission of a series of
pulses as a function of their detuningDvp . Us-
ing this figure and the linewidth determined in
Fig. 3, the atom density is determined to be 1.5
31014 atoms/cm3.
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out of thec axis ofC3, thus controlling the intensity of the
406-nm radiation in the same manner that WP1 controls the
intensity of the 283-nm radiation. A Pellin-Broka prism PB2
separates the 406-nm from the 812-nm beam, which is
blocked. The 406-nm beam is reflected byM2 into BS2~at
the position occupied byM2 in the one-photon-experiment
apparatus!, which combines the 283-nm and 406-nm beams.
The portion of the 406-nm beam that reflects from BS2
passes through bandpass filterF3 and enters a third fast pho-
todetector whose signal goes to the same oscilloscope moni-
toring the signals fromD1 andD2. POL2 andP3 ensure
that the beams have opposite circular polarization before en-
tering the cell. A Pellin-Broka prism placed after the cell
separates the 406-nm and 283-nm beams; the 283-nm beam
travels through a bandpass filter to the photomultiplierD2
and the 406-nm beam is blocked.

The coupling and probe laser pulses must overlap in both
space and time. In order to ensure good temporal overlap, the
coupling pulse is timed to enter the cell before the probe
pulse and it is of sufficient duration that it remains present
until after the probe pulse has left the cell. The coupling laser
pulse duration~100 ns! is thus intentionally made signifi-
cantly longer than the probe laser pulse; to accomplish this,
the 812-nm laser cavity round-trip distance is made very
long ~2 m! compared to the 40-cm round-trip distance of the
850-nm laser cavity.

In order to ensure that the transverse portions of the probe
beam travel together with the same group velocity, the cou-
pling laser intensity must be uniform across the probe beam.
The probe beam, focused to a 0.2-mm-diam spot~measured
to the 1/e intensity points! in the cell, is thus centered on the
0.9-mm-diam coupling laser beam so that the coupling laser
intensity varies by only a few percent across the probe beam.

The data collection in this experiment is similar to the
setup for the one-photon experiment with the addition of a
fast photodiode~PD3! to monitor the coupling laser inten-
sity. As before, the wave forms are transferred to a computer
that calculates, on a shot-to-shot basis, ln(Eout8 /Ein8 ) andte8 . In
order to reduce the effect of fluctuation in the relative arrival
times of the probe and coupling lasers, the computer retains
only wave forms where the probe pulse peak arrives at the
cell within 16–30 ns before the coupling pulse peak. The
coupling laser amplitude is calibrated in cm21 by using the
method described in Ref.@1#.

The results for208Pb are shown in Fig. 6. These data are
the same as those used in Ref.@1#. The plot is analogous to
Fig. 3, where each point in the plot represents the normalized
attenuation and relative propagation delay of a single probe
pulse overlapped by a particular coupling laser pulse. The
peak coupling laser intensity is varied from pulse to pulse by
turning the intensity-control waveplate as the pulses are re-
corded. In this plot, the peak coupling laser Rabi frequency
varies from 0.5 cm21 on the left to 0.15 cm21 on the right.
As expected, the points fall around a straight line; the slope
of this line is 1.03107 rad/s, which is the first-order estimate
for 2g2 . In Sec. III, this estimate is refined to 8.33106 rad/s
by compensating for the Doppler effect.

In this experiment, the atom density~determined using the
method of Sec. I! is 231014 atoms/cm3 and theu1&→u3&
transition linewidth is 2g351.93108 rad/s, which is broader
by 23107 rad/s than the value determined in Sec. I. We
believe that collisional broadening from a small amount of
‘‘foreign’’ gas, either outgassed from the cell walls or liber-
ated from impurities inadvertently distilled into the cell, is
responsible for this increase in linewidth. The cell had been
at 800 °C for only a few hours when the data of Sec. I were
acquired, but had been hot for 20–30 h when the data in the
present section were taken.

FIG. 5. Layout of the apparatus for determining the linewidth of
the two-photon 6s26p2 3P0→6s26p2 3P2 transition in 208Pb. The
283-nm beam is produced by part of the appartus shown in Fig. 2.

FIG. 6. Natural logarithm of the energy trans-
mission of a series of pulses plotted against their
excess delayte as the coupling Rabi frequency
Vc is varied. The atom density isN5231014

atoms/cm3, as determined by the method de-
scribed in Sec. I. The slope of the line fit to this
data is 1.03107 rad/s and is the first-order experi-
mental estimate of the Lorentzian FWHM line-
width 2g2 of the 6s

26p2 3P0→6s26p2 3P2 tran-
sition in our 10-cm-long208Pb cell at 800 °C. For
reference, various data points are labeled with the
peak Rabi frequency experienced by the pulse:
Vc(1)50.15 cm21, Vc(2)50.17 cm21,
Vc(3)50.19 cm21, Vc(4)50.25 cm21, and
Vc(5)50.5 cm21.
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The foreign gas is also probably responsible for the value
of 2g2 we measured, as the natural lifetime of this meta-
stable transition is very much larger than the 100-ns coher-
ence time implied by our measurement of 2g2 . Further evi-
dence for the presence of foreign gas broadening of both
transitions is provided by noting that the 23107 rad/s excess
linewidth of theu1&→u3& transition is close to the 8.33106

rad/s linewidth of theu1&→u2& transition, which is typical
behavior of nonresonant collisional broadening@15#. More-
over, after the cell is maintained for many days at 800 °C,
both transitions continue to broaden, but the ratio of these
linewidths remains nearly the same.

III. DISCUSSION: CONDITIONS AND LIMITATIONS
ON THE GROUP-VELOCITY METHOD

We now discuss the limitations for determining the line-
width of one-photon transitions and then present the limita-
tions for two-photon transitions.

A. One-photon transitions

The central assumption made in the analysis leading to
Eq. ~6! is that the homogeneous transition line shape is
Lorentzian. In systems where the transition is broadened
only by the natural lifetime of the states, this assumption is
valid; however, when the transition is collisionally broad-
ened, the assumption of a Lorentzian linewidth is not neces-
sarily valid. In general, for systems with gas pressures less
than 100 Torr, a Lorentzian linewidth can be assumed since,
in this regime, it is valid to make the impact approximation
for the collision dynamics@4#.

In dilute media, it is tempting to tune the laser pulses very
close to line center since, according to Eqs.~4! and ~5!, a
and 1/vg increase rapidly asDvp becomes small and it is

easier to accurately fit the line determining 2g3 to wide-
ranging data. There is, however, a lower bound toDvp be-
low which Eq. ~1! becomes inaccurate; this bound is deter-
mined by the inhomogeneous linewidth of the transition. In
the case of a gaseous medium, the inhomogeneous linewidth
is due to the Doppler effect: the atoms are not stationary in
the direction of the probe laser and have randomly distrib-
uted velocities so thatv3 is different for each atom. In order
to calculate the correctx it is necessary to replacev3 by
v3(11vx /c) in Eq. ~1! ~wherevx is the atom velocity in the
direction of the probe laser! and to integrate over the
Maxwell-Boltzmann distribution ofvx . In order to calculate
the conditions under which Eq.~4! is accurate, we separate
Dvp into Dvp5Dvp,01Dvp,vx

, whereDvp,0 is the detun-

ing from thevx50 velocity class andDvp,vx
is the addi-

tional detuning from the class with velocityvx , and expand
Eq. ~1! in a power seriesDvp,vx

/Dvp,0 . The first term of
this expansion gives Eq.~4!. Analytically integrating the sec-
ond term over the Doppler distribution, we find it negligible
in comparison with the first term when

Dvp,0@g3 ,DvD3 , ~14!

whereDvD3 is the FWHM Doppler width of theu1&→u3&
transition.

In order to study the effect of finiteDvp , we have nu-
merically integrated Eq.~1! over the Doppler distribution for
the parameters of this experiment. Figure 7 shows ln(Eout/
Ein) plotted vste asDvp is varied, both with and without
taking into account the inhomogeneous linewidth. This and
the simulations shown in Sec. III B, are performed using an
adaptive step-size Runge-Kutta algorithm@14#. For
Dvp.0.1 cm21 ~1.8 times the FWHM Doppler linewidth!,
the points for the system with inhomogeneous broadening

FIG. 7. Numerical simulation of the experiment to determine the Lorentzian linewidth of the 6s26p2 3P0→6s26p7s3P1 transition in
atomic lead. Here 2g351.73108 rad/s, N51.531014 atoms/cm3, and ~for circular polarization! the transition matrix element is
m13520.79 a.u. The crosses represent the natural logarithm of the energy transmission plotted vs the excess delay of pulses traveling
through the medium with no inhomogeneous linewidth included in the simulation. The solid dots are as above, except that they allow for the
inclusion of the inhomogeneous linewidth from the Doppler effect atT5800 °C. Various points are labeled with their respective detunings:
Dvp(1)50.085 cm21, Dvp(2) 50.095 cm21, andDvp(3)50.15 cm21. Data points for whichte.30 ns do not fit the line determining
2g3 .

4552 53A. KASAPI, G. Y. YIN, MANEESH JAIN, AND S. E. HARRIS



included in the calculation lie near the line determining
2g3 , which indicates a practical lower bound forDvp .

Although the analysis and experiments presented in this
paper have focused on a single-isotope atomic medium~with
no hyperfine structure!, this is not a necessary restriction. In
media made up of a variety of constituents~possibly exhib-
iting hyperfine structure!, the u1&→u3& transition seen by the
probe becomes a family of nearby transitions. Insofar as each
of these transitions has equal linewidth, the method works as
long as the laser detuning satisfies Eq.~14! for each transi-
tion.

In order for a probe pulse to travel through the medium
without distortion, its frequency components must all travel
through the medium with nearly the same group velocity and
energy transmission. Since distortion is not readily quantified
and depends upon the details of the input pulse shape, we
can only approximate its lower bound. For a pulse of detun-
ing Dvp and equivalent duration@16# Dt satisfying

Dt.
10

Dvp
, ~15!

vg , for the frequency components within its equivalent
bandwidth, varies by no more than 10%. In the present ex-
periment, we are thus constrained toDt.0.6 ns. In practice,
for probe pulse lengths near this bound, one should repeat
the measurement of 2g3 for different pulse lengths and
verify that they yield the same estimate for 2g3 . A more
detailed analysis of this effect is given in Ref.@5#.

It is important to note that this technique may be used to
measure the linewidth of transiently populated, excited-state
transitions. The reason for this is that the populationN is
absent from Eq.~6!, which means thatN may vary from

pulse to pulse or even vary as the pulse traverses the me-
dium. In any case, as noted above,N need not be measured.

B. Two-photon transitions

In order to accurately determine 2g2 , it is necessary for
the experiment to satisfy all of the conditions implicit in the
derivation of Eq.~13!. In particular,v2 andv3 are assumed
to be fixed and resonant with all of the atoms in the medium,
Vc is assumed to be constant while the pulse travels through
the medium, and both lasers are assumed to be monochro-
matic.

If the atomic transitions are inhomogeneously broadened,
v2 andv3 are no longer fixed for all the atoms in the me-
dium; this effect must be considered when we determine the
conditions under which Eq.~9! can be accurately approxi-
mated with Eq. ~10!. Making the approximation
uVcu2@4uDṽ2Dṽ3u and expanding Eq.~9! in a power series,
we obtain

x~vp!5
um13u2N

e0\
F24Dṽ2

uVcu2
2
16Dṽ2

2Dṽ3

uVcu4
1•••G . ~16!

We now determine the conditions under which we may drop
all terms in this series beyond the first, yielding Eq.~10!.
Defining DvD2 as the Doppler linewidth of theu1&→u2&
transition and integrating the first two terms of Eq.~16! over
the Doppler distribution, we find that the contribution of the
first term to the susceptibility is dominant when

uVcu2@max@4g2g3 ,DvD2DvD3 ,~g3 /g2!DvD2
2 #. ~17!

FIG. 8. Numerical simulation of the experiment to determine the Lorentzian linewidth of the two-photon 6s26p2 3P0→6s26p2 3P2

transition in atomic lead using the parametersN5231014 atoms/cm3, 2g351.93108 rad/s, and 2g258.33106 rad/s. The data points
represent the natural logarithm of the energy transmission and the excess delay plotted together for a series of pulses as the coupling Rabi
frequencyVc is varied. The clear dots are calculated for a system free from inhomogeneous linewidth and the solid dots are calculated for
the inhomogeneous linewidth produced by the Doppler effect atT5800 °C. The points marked by crosses result when the two-photon
detuning isDvp2Dvc50.03 cm21. For excess delay under 50 ns, both the solid and the clear dots lie near the same line, but for longer
delays the points with inhomogeneous broadening taken into account fall away. The results for nonzero detuning do not lie close to a straight
line until Vc.0.5 cm21. For reference and for comparison with the experimental data of Fig. 6, various points are labeled with their Rabi
frequencies:Vc(1)50.15 cm21, Vc(2)50.17 cm21, Vc(3)50.19 cm21, Vc(4)50.25 cm21, andVc(5)50.5 cm21.
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In the case of our experiment, (g3 /g2)DvD2
2 is largest and

equals~0.08 cm21)2.
Due to pulse-to-pulse fluctuations, it is desirable to ac-

quire data with a large spread in ln(Eout8 /Ein8 ) andte8 . This is
accomplished by varyingVc over a wide range, but practical
limitations ~beam uniformity and laser power! set an upper
limit on Vc so that, in practice, one may approach the bound
of Eq. ~17!, as is the case with the present experiment. In
order to refine our estimate for 2g2 , we numerically simu-
late the experiment by integrating Eq.~9! over the Doppler-
induced distribution ofv2 andv3 , using the parameters of
our experiment and various trial values for 2g2 , until the
slope of the line fit to the results matches that found in the
experiment. In this way, we refine the estimate for 2g2 to 8.3
3106 rad/s~a 20% correction!.

Another important limitation on the accuracy of this
method for determining two-photon linewidths is the detun-
ing of the lasers from resonance. Estimating the detuning for
which the imaginary term of Eq.~9! doubles, we get

Dvp2Dvc!
Vc

2 S g2

g3
D 1/2. ~18!

In order to illustrate the effect of detuning, we numerically
simulate the experiment using the measured values for
2g3 , 2g2 , N, andT. The results are shown in Fig. 8, where
three sets of data are plotted:~1! circles correspond to the
case where no inhomogeneous broadening is present (T50
K! and both lasers are resonant~for the other data sets, in-
homogeneous broadening corresponding toT5800 °C is
present!, ~2! dots correspond to the case where both lasers
are resonant, and~3! crosses correspond to the case where
Dvp2Dvc50.03 cm21 and Dvp50. From Eq.~18!, the
Rabi frequency must exceed 0.3 cm21 in order to use the
two-photon method with 0.03-cm21 wave numbers of detun-
ing; we see, in Fig. 8, the result when this condition is not
met: a much larger apparent linewidth is measured. We have
observed this result experimentally: when our lasers are de-
tuned, the measured value of 2g2 always exceeds the correct
value.

In media made up of a variety of isotopes, the method can
still be applied, provided that Eq.~18! is satisfied for each of
the isotopes. In the case of isotopes with hyperfine structure,
Dvp and Dvc in Eq. ~18! are replaced by the hyperfine
splittings of statesu3& and u2&, respectively. Situations
where Eq.~18! is not satisfied are discussed in@17#.

The expression given byx in Eq. ~9! assumes, in addition
to the absence of an inhomogeneous linewidth, that the lasers

used are monochromatic. As in the case of the one-photon
method, the probe pulse can be represented as a superposi-
tion of monochromatic radiation with most of the energy
distributed in a frequency band of widthdvp about the cen-
ter frequencyv3 . As long as the values calculated fora and
vg do not vary significantly for frequencies within this band,
we can neglect the effect of finite pulsewidth. From inequal-
ity ~18! above, the absorption coefficient approximately
doubles whenDvp increases from 0 to (Vc /2)Ag2 /g3; te is
relatively unchanged. The bandwidth of the probe pulses
must therefore satisfydvp!VcAg2 /g3. In the case of the
14-ns-long pulses used in our experiment,dvp'

1
50

VcAg2 /g3.
The effect of a nonmonochromaticVc is more subtle than

for a nonmonochromatic probe pulse. Numerical simulations
indicate that probe pulses travel free from distortion when
the coupling laser pulse width~FWHM! exceeds the transit
time of the probe pulse in the cell and the probe ‘‘sees’’ the
rising and falling edges of the coupling laser for equal times.
If, however, the probe pulse sees only a rising~falling! cou-
pling laser intensity, the front edge of the pulse experiences a
longer ~shorter! excess delay than the back edge since, ac-
cording to Eq.~12!, te varies as the inverse square ofVc . As
a consequence, the probe pulse shape changes. This effect is
especially pronounced when the total propagation delay of
the probe pulse through the medium is on the same scale as
the coupling laser pulse width. Due to unavoidable jitter in
the timing of pulsed lasers, the result is that data become
noisy for longer propagation delays, an effect that is discern-
ible in Fig. 6 and discussed in more detail in Ref.@1#.

CONCLUSION

In summary, we have presented two methods for deter-
mining one- and two-photon Lorentzian linewidths and ap-
plied these methods to a208Pb atomic medium. The tech-
niques do not require precise knowledge of the atom density,
laser frequency, or matrix elements and are reasonably
simple to use. As an additional benefit, with the Lorentzian
linewidth of a one-photon transition determined, the number
density of a medium can be robustly determined as well.
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