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This work describes atomic processes which result from the greatly enhanced longitudinal gradient
force which is inherent to the propagation of slow light. These processes are (1) ballistic atom motion
and atom surfing, and (2) a type of local pondermotive nonlinearity or scattering which results from
free-particle sinusoidal motion and the density variation caused by this motion.

PACS numbers: 32.80.Lg, 32.80.Qk, 42.50.Vk

By combining electromagnetically induced transparency
(EIT) with cold atom technology, one may produce a trans-
mission window in an otherwise optically thick medium.
Because this window is much narrower than the natural
linewidth (Fig. 1) of an isolated atom, the dispersion of
the medium is very steep and results in a group velocity
V, that can be less than 1077 ¢ [1]. As a result of this
slow group velocity, an optical pulse that enters the EIT
medium is spatially compressed [2], as compared to its
length in free space, in the ratio of ¢/V,. An atom in this
medium will experience a longitudinally directed gradient
force that is enhanced in this same ratio.

This Letter describes atomic processes which result from
this greatly enhanced gradient force. These are (1) ballistic
atom motion and atom surfing, and (2) a type of local
optical nonlinearity or light scattering which results from
free-particle sinusoidal motion and the density variation
caused by this motion.

Before proceeding, we note that the use of slow light to
phase match and enhance acousto-optical interactions in
an ion-doped fiber has recently been described by Matsko
et al. [3]. This work departs from their work in that, here,
the described effects are based on independent (nonpropa-
gating) particle motion. We are primarily interested in con-
ditions which are characteristic of (noncondensed) trapped,
cold atoms where the atom density is too low and the mean
free path for collision is too long to support a propagating
acoustic wave.

This work should be considered in the context of a con-
siderable ongoing effort to use the unique absorptive and
dispersive properties of EIT to enhance nonlinear optical
processes of many types [4]. Representative publications
which describe all-optical nonlinearities (no motional co-
ordinate) are given in Ref. [5]; publications which dis-
cuss the enhancement of Raman processes are given in
Ref. [6]; and, as noted above, acousto-optic interactions
are described in Ref. [3].

Throughout this work we will assume dilute, two-state
test atoms with a transition energy w, — w, which are
immersed in an EIT medium with a group velocity of V.
By using test atoms at a density which is small as compared
to the EIT atoms we insure that the motion of the test atoms
does not interact with the light-slowing EIT process. In
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an early experiment, the test atoms might be a different
isotope of the same species which is used to produce the
slow light.

In general, the pondermotive force is the force on atoms
in a dielectric medium, or on electrons or ions in a plasma,
which results from the spatial variation of the optical power
density [7]. For a monochromatic plane wave, the optical
power density is independent of distance and the longitu-
dinal component of the pondermotive force is zero. For an
optical pulse in a dispersive medium, the spatial extent of
the traveling pulse varies as the optical group velocity V,
and at slow group velocities, even at modest pulse ener-
gies, will transfer substantial momentum to the test atoms
with which it collides.

We write the slowly moving electromagnetic pulse
which will impart momentum to the test atoms as

O(t,z) = Re[ﬂ(r — Vi>expj(wot — kz)] (1)
g
The carrier frequency wyq is tuned to the center of the
EIT transparency (Fig. 1) and is detuned by Aw = wy —
(wp — w,) from the transition of the test atom. This test
atom transition is assumed to be well outside the EIT pro-
file. Because the test atoms are dilute, and the refractive
index of the EIT medium is unity, the k vector is ky,.. The
Fourier components of the pulse envelope Q(tr — z/V,)
are taken to lie sufficiently within the transparency window
that, to within a good approximation, the pulse propagates
without change of shape. We also assume that the spectral
width of the envelope is small as compared to the detuning
from the test atom transition Aw.

The longitudinal force on a test atom results from both
a radiation pressure term and a gradient term and may be
written as [8]

F.(t,7) = %{—jkﬂ(r - V%)

d Z *
+ P [Q(t - V_gﬂ}p”b(t’z) + cc.. (2

We work in the interaction picture and define p,;, as the
coherence of the two-state test atom. When on line center
Pap is in phase quadrature with (1 — z/V,) and only the
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FIG. 1. Transmission and phase versus frequency for subnat-
ural linewidth electromagnetically induced transparency. The
quantity Aw, is the detuning from line center of an otherwise
opaque transition with an Einstein A coefficient of 273 and an
optical depth of 100. The transition is made transparent by ap-
plying a time-independent coupling laser with a Rabi frequency
Q. = vy13. The group velocity and spatial extent of a propagat-
ing pulse vary inversely as the atom density N. [Reprinted from
Harris and Hau [5].]

radiation pressure term in Eq. (2) is nonzero. When this is
the case, less than a single quantum of momentum may be
transferred during a radiative lifetime. Here, we assume
that the detuning Aw is sufficiently large that p,, is in
phase with Q(t — z/V,). In this case, only the gradient
term is nonzero and a large number of quanta may be trans-
ferred during the applied pulse. With these assumptions
par = —Q/(2Aw) and the longitudinal gradient force is
F(t,z2) = = —

Z

4Aw dz Q(t Vg>

_om ) (L )2 _z
_hk<Vg><4wko>at Q<t Vg>

As a first example of the effect of this force we consider
the one-dimensional interaction of a Gaussian shaped tem-
poral pulse with a cold test atom which has an initial ve-
locity V. Newton’s law is m(dV /dt) = F [t — z(t)/V,].
The right-hand side of this equation denotes the force seen
by the moving test atom, i.e., z(¢) is the coordinate of the
test atom as a function of time. In the absence of friction
and assuming that the sign of the force is such as to push
on the atom, two types of behavior are possible: For a
sufficiently weak force, the atom is first accelerated and
then decelerated so as to return to its initial velocity. For a
sufficiently strong force, the atom acquires a final velocity
of 2V, — Vy. The break point between these two types
of behavior occurs when the peak pondermotive energy is
less than or greater than the kinetic energy of the particle
as viewed in the frame of the moving light pulse; that is,
at that energy where

Eo9 2

2

.3

m(Vo = Vo)* _ QO
2 4Aw

“4)

In the frame of the moving light pulse, the light pulse-
particle encounter may be viewed as an elastic scattering.
If the particle has sufficient initial energy, it moves through
the pondermotive barrier with no change in its initial ve-
locity. If the particle has insufficient initial energy to move
through the barrier, its velocity in the moving frame is re-
versed and, in the stationary frame, becomes 2V, — Vj.
Figure 2 shows, in the laboratory frame, the applied pulse
shape, force, and atom velocity. At ¢ = 0 the atom is sta-
tionary. In the first column the pondermotive energy is 5%
below the reflection condition of Eq. (4). In the second
column, the pondermotive energy is 5% greater and the
atom acquires a terminal velocity of 2V,.

Slow light moving through test atoms with a given ve-
locity distribution will alter that distribution. For example,
a distribution centered at V, will be inverted in velocity
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FIG. 2. Ballistic interaction of a previously stationary atom
with a slowly moving light pulse. In the first column the
peak pondermotive energy is 5% less than the critical energy of
Eq. (4). Here the particle returns to zero velocity. In the second
column the peak pondermotive energy is 5% greater than this
energy and the particle acquires a terminal velocity of 2V,. The
parameters for all parts of the figure are Vo = 0, V, = 1, and
m = 2; the critical pondermotive energy is therefore one unit.
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space; a distribution centered at 2V, will be inverted and
translated to zero velocity.

If a force proportional to and opposing the velocity (fric-
tion) is added to the problem, the ballistic solution, which
is described above, is no longer obtained. Now, for a weak
force, the atom velocity damps to zero. For a sufficiently
strong force, the atom surfs on the front edge of the pulse
with a velocity of V. This behavior is shown in Fig. 3.

The pulse energy necessary to observe these effects is
modest. For a detuning of 100 MHz from a test atom tran-
sition with a matrix element of 1 a.u., a group velocity of
1 m/s, a pulse length of 1 us, and a 1-mm beam diameter,
the pulse energy necessary to satisfy Eq. (4) for a previ-
ously stationary atom is 0.35 ulJ.

We continue with a second example of the effect of these
unusually strong longitudinal light forces. This is a type of
collinear light scattering which is in the spirit of stimulated
Brillouin and Raman-Nath scattering, but differs in that
it is based on local particle motion and does not involve
a propagating acoustic wave. This type of scattering or
nonlinearity is of importance when the atom density is too
low and the mean free path for collision is too long to
support a propagating acoustic wave.

In the experiment which is considered, two monochro-
matic laser beams separated by an acoustic frequency w,
are applied to a sample of cold atoms which are embedded
in a slow light medium. The time-varying pondermotive
force drives z-directed oscillatory motion. In turn, this mo-
tion causes the atom density to vary sinusoidally with time
and distance. As the beams propagate, the time-varying
density generates a collinear comb of sidebands which are
separated by w,.

Cumulative generation of a spectrum of sidebands re-
quires that each of the generated sidebands propagate with
a k vector that is equal to the k vector of its driving polar-
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FIG. 3. Atom surfing on a slowly moving light pulse. Here,
the parameters of Fig. 2 are modified by including a frictional
force. The magnitude of this force is chosen so that the 1/e

damping time for the particle is % of the pulse length.
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ization. Because, at any z, the atom density depends only
on the electromagnetic fields at that z, the electromagnetic
nonlinearity is local in space, and k-vector matching is in-
sured by the near-linear dispersive profile of EIT. Because
the second derivative of k with respect to w is zero in the
EIT medium, to the extent that higher derivatives may be
neglected [2], the frequencies w, and k vectors k, of the
generated sidebands are

Wy = wo T qug,

ok
kq =k0 + <—

Wy,
o | Jao.

Wq
ko + g v, . 5)
Irrespective of the acoustic frequency, each sideband is
phase matched. (For a propagating sound wave, the optical
nonlinearity is not local and, for cumulative growth, there
is the additional requirement that the optical group velocity
equal the phase velocity of the sound wave [3].)
We continue with the formalism described above. To
allow for the generated as well as the applied frequencies
we write the envelope Q(t — z/V,) of Eq. (1) as

+oo
Q(r——z/vg)=:§£s)qexp[—jqwa<z—-é})}. (6)
—o g
The driving beams have Rabi frequencies (g and () ;. We
assume that all frequencies lie well within the transmission
window of Fig. 1 and satisfy the linear dispersion condi-
tion of Eq. (6). The force on each atom is given by Eq. (3)
and the atom velocity follows from Newton’s law. With N
as the number of atoms per volume, the normalized atom
density p(z,z) is defined as N = Ng[1 + p(¢,z)] and is
obtained from the one-dimensional equation of continuity
dp/ot = —dv/dz. In general, p(t,z) has Fourier com-
ponents at all multiples of w, and is
Al
Vel 1
h

plt,z) = Z o exp|:jrwa<t —
W ZQr-HQ;k- (7)

r#0

The slowly varying envelope equation for the propagat-

ing sidebands is

Q)

Tq = —j{Q, —j¢ ZPrQq*r' ®)

z r#0

The quantity { = wo(n — 1)/c, where the refractive in-
dex n of the test atoms is the same for all sidebands
and, to within the rotating wave approximations, is n =
1 — (Inl*No)/QephAw).

We eliminate the first term in Eq. (8) by the change
of variable (), = ,exp(—j{z). Following Harris and
Sokolov [6], it may be verified that an exact solution
of both the motional and slowly varying envelope equa-
tions is

pr =
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Q4(2) = Qo eXP[j(so(O) - %>Qj|~,q(')’z)

+ Qflexp[ j<go(0) - %)(6] + 1)}Jq+1(’)’2)7

h * . Z
mﬂoﬂ,l exp[]wa(t — V_g>i| + c.c..
)

The quantities 7y and ¢(0) are y = 2/|p(0)| and ¢(0) =
arg[p(0)]. Though the generated spectrum changes with
distance, the magnitude and phase of the density wave
p(t,z) are independent of z, and equal to their values
at z = 0. The reason for this is that the envelope of a
frequency-modulated signal is time independent, and it is
only the beat note between the two frequency-modulated
input frequencies that drives the atoms. Mathemati-
cally, the solution follows from the identities 2 %ix) =
[Jn—l(x) = Jn+1(x)] and Zn Jn+q(x)-]n+p(x) = 6pq- In
the more general case, where the dispersion is not linear
and Bessel function amplitudes are not obtained, the
acoustic density will vary not only as w,, but also at
harmonics of w,. Each spectral sideband is coupled to all
other sidebands and not only to its nearest neighbor.

If p is sufficiently small that only the first anti-Stokes
sideband has significant amplitude, the ratio of the gen-
erated anti-Stokes electric field ) to the pump field
is [Q41/Q0l = 2 (n — 1]p(0)|L. To observe the gener-
ated signal one might measure the photobeat at frequency
2w,. This beat varies as (1/V,)? and, at slow group ve-
locities and typical MOT conditions, should be readily
observable. It may be shown that the condition for the
pondermotive nonlinearity to exceed the y® nonlinearity
of the test atom is fAw > ng. Therefore, this type of
scattering is observable only with slow light.

It is of interest to compare the scattering amplitude of
Eq. (9) to that which is obtained with an acoustic wave
which has a phase velocity equal to the optical group ve-
locity. The atom density now satisfies the driven acoustic
wave equation, and the pondermotive nonlinearity is no
longer local. Following Ref. [3], with the acoustic wave-
length denoted by A,, and assuming that the group ve-
locity of the optical field equals the phase velocity of the
sound wave, the generated electric field is increased by a
factor of 27wL/\,. An example is provided by Bose con-
densation. As condensation occurs and the previously in-
dependent particles become coupled, the particle motion
changes from local to wavelike. By varying the acoustic
frequency within the transparency profile and thereby vary-
ing the acoustic wavelength from long to short as compared
to the healing length of the condensate, it may be pos-
sible to move continuously between the local and wave-
like regimes of the nonlinearity. Such experiments would

plt,z) =

be in the character of the recent work of Stamper-Kurn and
colleagues [9].

This work has shown how the steep linear dispersive
profile of EIT will increase the z-directed pondermotive
force so as to allow the observation of effects such as bal-
listic z-directed atom pumping, atom surfing, and a type of
local pondermotive light scattering which varies as 1/ ng.
Though we have assumed the use of test atoms in an EIT
medium, in practice, it is likely that a fourth state of the
EIT atom could replace the test atom.
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