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We show that polarization entangled photons at x-ray energies can be generated via spontaneous

parametric down-conversion. Each of the four Bell states can be generated by choosing the angle of

incidence and polarization of the pumping beam.

DOI: 10.1103/PhysRevLett.106.080501 PACS numbers: 03.67.Bg, 03.65.Ud, 42.50.Dv, 42.65.Lm

Spontaneous parametric down-conversion at hard x-ray
energies was first proposed by Freund and Levine in 1969
[1], and first demonstrated experimentally by Eisenberger
and McCall about two years later [2]. In that work a hard
x-ray tube was used as the pump, and coincidence counts
at the signal and idler were measured at the rate of a few
counts per hour. The first experiment using a synchrotron
was done in 1997 by Yoda et al. [3] with a counting rate of
6 counts per hour. During the years 1998–2003, Adams and
collaborators conducted a series of experiments and im-
proved the coincidence count rate to about 1 count per
13 s [4]. Recent and expected improvements in brilliance
and beam quality of synchrotron x-ray sources, together
with new facilities such as the x-ray free electron laser and
energy recovering linacs [4], offer the possibility of ex-
tending the concepts of quantum optics as developed in the
visible portion of the electromagnetic spectrum [5] to x-ray
wavelengths.

As a step toward this extension, this Letter describes a
method for generating polarization entangled photons, in
pure Bell states, at x-ray wavelengths. The technique is
straightforward and makes use of the selection rules that
are associated with a phase matched plasmalike x-ray
nonlinearity [4]. In the following paragraphs we will
show that by choosing the polarization and angle of inci-
dence of the pumping beam, and working off of the degen-
erate frequency, that each of the four Bell states may be
generated. A consequence of this work is that, in each of
the previous x-ray down-conversion experiments men-
tioned above, the generated photon pairs were polarization
entangled, but in no case were they in a pure Bell’s state.

Before proceeding we note two previous suggestions for
generating entangled photons at x-ray energies. The first is
a proposal by Schützhold et al. who have suggested the use
of ultrarelativistic electrons accelerated by a strong peri-
odic electromagnetic field (for example, a laser or undu-
lator) to create entangled photon pairs in the multi-keV
regime [6]. The second is a proposal by Pàlffy et al. who
suggest generating single-photon entangled states by con-
trol of nuclear forward scattering [7].

We start by discussing the nonlinearity. The central
concept of the nonlinearity at x-ray energies is that, since
x-ray photons have energies that are large as compared to

the electron binding energy of low-Z atoms, that the x-ray
nonlinearity of an element such as diamond may be calcu-
lated by treating all of the electrons in the atom as free
particles, and therefore treating the nonlinear medium as a
very dense cold plasma [1,2]. This x-ray nonlinearity is of
second order so that two frequencies may add or subtract to
generate a third frequency. Three processes that are at first
glance seemingly different contribute to the x-ray nonline-
arity. These are (1) a Lorentz force term where the electron
velocity caused by an incident electric field at frequency
!1 mixes with the magnetic field of frequency !2 to
generate a force and current at frequency !3 ¼ !1 þ!2,
(2) a term that depends on the spatial variation of charge
density, and (3) a term that depends on the spatial variation
of velocity. Each of these processes produces a driving
current with a k vector that is the sum of the k vectors of the
applied fields and of the lattice.
In order to satisfy permutation symmetry and to con-

serve photons in a three-frequency nonlinear optical pro-
cess, it is essential that the three processes of the previous
paragraph all be retained in the calculation of the nonline-
arity [8]. It is easily shown that each of the above pro-
cesses, for example, the Lorentz force process, does not in
its own right satisfy permutation symmetry.
A typical phase matching diagram for parametric down-

conversion is shown in Fig. 1. With the k vectors ~ks, ~ki, ~kp
denoting the k vectors of the signal, idler, pump fields and

FIG. 1 (color online). Phase matching diagram for x-ray spon-

taneous down-conversion. ~ks, ~ki, and ~kp are the wave vectors of

the signal, idler, and pump fields. ~G is the reciprocal lattice
vector of the diamond crystal.
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~G denoting the reciprocal lattice vector, the phase match-

ing condition for parametric down-conversion is ~ks þ ~ki ¼
~kp þ ~G. With the unit vectors êj denoting the polarization

of the respective electric fields, these fields are written

as ~Ejð ~r; tÞ ¼ Ej

2 exp½�ið!jt� ~kj � ~rÞ�êj þ c:c: Working in

the cold plasma approximation, we perturbatively calculate

the nonlinear current density ~Jsð ~r; tÞ ¼ �sð~r; tÞ ~vsð ~r; tÞ at
the signal frequency [2,9,10] to obtain

~J sð~r; tÞ ¼ i
q2

m2

�
� �0ð~rÞ
!s!i!p
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� 1
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: (1)

Here q andm are the electron charge and mass, and �0ð~rÞ is
the electron density in the absence of the pumping beam.
We substitute the expressions for the electric fields into
Eq. (1) and project the nonlinear current density against the
direction of the signal electric field. We assume phase

matching [1,10] with the reciprocal lattice vector ~G so
that the unperturbed electron charge density is taken as

�0ð~rÞ ¼ �g exp½i ~G � ~r�. The envelope of the nonlinear

current density is then

Js¼�q2�g!sEpE
�
i

4m2!2
p!

2
i !

2
s

½!i!pð ~G � êsÞðêp � êiÞ

�!s!ið ~G � êpÞðêi � êsÞþ!s!pð ~G � êiÞðêp � êsÞ�: (2)

As shown in Fig. 1 we define the scattering plane as the
plane containing the k vector of the pumping beam and the
lattice k vector, and assume that the k vectors of the signal
and idler beams are also in this plane. From Eq. (2) we find
the following selection rules [4]: (1) If the polarization of
the pump is in the scattering plane, the polarizations of the
signal and the idler photons must both be either in the
scattering plane or must both be normal to the scattering
plane; (2) if the polarization of the pump is normal to the
scattering plane, then either the signal polarization is in
the scattering plane and the idler polarization is normal to
the scattering plane or vice versa. Polarization entangle-
ment requires that the polarization of the idler is uniquely
determined by the polarization of the signal. For the pump
polarized either in, or orthogonal to, the scattering plane
the down-converted signal and idler photons are therefore
entangled.

The polarization of the entangled photon pairs is deter-
mined by the driving current as described by Eq. (2) and is
not influenced by the temporal or angular dispersion of the
system. To calculate Glauber correlations and the biphoton
generation rate, we work in the Heisenberg picture and
write a pair of coupled equations for each of the biphoton

pairs [11]. For example, for the entangled state j�i ¼
ðjHs; Vii þ jVs;HiiÞ=

ffiffiffi
2

p
, we write a pair of coupled equa-

tions for the state jHs; Vii and a second set of coupled
equations for the state jVs;Hii. It is critical that the depen-
dence on frequency and angle of emission of the k-vector
mismatch function is the same in each pair of coupled
equations. Each of the biphoton wave packets jHs; Vii ,
or jVs;Hii has significant dispersion and the temporal and
spatial correlations between these packets will vary with
position and angle. But because the k-vector mismatch is
independent of polarization and is the same for each
packet, the polarization correlations are determined by
the selection rules associated with Eq. (2), and do not
vary with propagation.
We next describe how to generate the four maximally

entangled 2-qubit Bell states. We denote jHi as the polar-
ization of the x-ray electric field in the scattering plane
(i.e., the plane containing the incident k vector and the

lattice k vector ~G), and jVi as the polarization orthogonal
to the scattering plane. With the pump polarization in the
scattering plane, the polarization of the emitted photon
pair is

jc i ¼ 1ffiffiffi
2

p ½Að�pÞjHs;Hii þ Bð�pÞjVs; Vii� (3)

Here �p, is the angle of the pump k vector with regard to

the atomic planes that are normal to ~G. The coefficient
Að�pÞ is the nonlinear current density when the polariza-

tion of both signal and idler are in the scattering plane, and
the coefficient Bð�pÞ is the current density when the po-

larization of both signal and idler are normal to the scat-
tering plane. Similarly, when the pump polarization is
normal to the scattering plane

j�i ¼ 1ffiffiffi
2

p ½Cð�pÞjHs; Vii þDð�pÞjVs;Hii�: (4)

The coefficientCð�pÞ is the current density when the signal
is polarized in the scattering plane and the idler is polarized
normal to the scattering plane. The coefficientDð�pÞ is the
current density when the signal is polarized normal to the
scattering plane and the idler is polarized in the scattering
plane. The quantities Að�pÞ, Bð�pÞ, Cð�pÞ, and Dð�pÞ are
real functions of �p. This is different than conventional

spontaneous parametric down-conversion in the optical
regime where the equivalent coefficients are generally
complex [12,13].
The implication of Eqs. (3) and (4) is that the probabil-

ities for generating the states jHs;Hii and jVs; Vii are
jAð�pÞj2 and jBð�pÞj2, respectively, and the probabilities

for generating the states jHs; Vii and jVs;Hii are jCð�pÞj2
and jDð�pÞj2. Consequently, unless either jAð�pÞj2 ¼ 0 or

jBð�pÞj2 ¼ 0, Eq. (3) describes an entangled state. A maxi-

mally entangled state is obtained when jAð�pÞj ¼ jBð�pÞj.
Similarly, Eq. (4) describes an entangled state which is
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maximally entangled when jCð�pÞj ¼ jDð�pÞj. As we will
show below, to produce all four of the Bell states, it is
required that !s is not equal to !i.

The procedure that we use to determine the Bell states
is to first plot the square of the current density (Fig. 2) for
each component of the Bell states. The intersections of the
component curves determine the pump angles at which the
magnitudes of the components of each Bell state are equal.
We then, numerically, by simultaneous solution of the
phase matching and current density equations, determine
the sign of the components at the intersection.

Consider a specific example: We choose diamond for
the nonlinear medium and use the (111) lattice k vector
for phase matching. We take the pump photon energy as
25 keV, and first consider the frequency-degenerate case
where both the signal and idler energies are 12.5 keV. We
solve the phase matching equations for the angles of the
signal �s and idler �i with regard to the atomic planes,
and substitute the related electric fields into Eq. (2). With
the polarization of the pump, signal, and idler chosen, the

current density is a function of �p only. We calculate jJsj2
for each of the polarization states and plot the results in
Fig. 2. Figures 2(a) and 2(b) show jAð�pÞj2 and jBð�pÞj2,
and jCð�pÞj2 and jDð�pÞj2, respectively, all as function of

�p. From Fig. 2(a) we see that jAð�pÞj2 ¼ jBð�pÞj2 only

when the nonlinearity is zero. Therefore at the degenerate
frequency, and with the pump polarized in the scattering
plane, the generated photon pairs are polarization en-
tangled, but a pure Bell’s state cannot be produced.
On the other hand, the solutions for jCð�pÞj2 ¼ jDð�pÞj2

are obtained at finite nonlinearity therefore allowing the

FIG. 2 (color online). Polarization entanglement at degener-
acy: (a) Square of the current density for the states jHs;Hii (solid
green) and jVs; Vii (dashed red), i.e. jAð�pÞj2 and jBð�pÞj2 as

function of the pump angle �p. (b) Square of the current density

for the states jHs; Vii (solid green) and jVs;Hii (dashed red), i.e.,
jCð�pÞj2 and jDð�pÞj2. The inset in (a) shows the intersection of

the states jHs;Hii and jVs; Vii. The inset in (b) shows the region
containing the two intersection points on the left-hand side of
curves of the states jHs; Vii and jVs;Hii. A similar region exists
on the right-hand side.

TABLE I. Angles of the k vectors of the pump, signal, and
idler for producing maximally entangled states at the degenerate
frequency.

Bell’s state �p �s �i

ðjHs; Vii þ jVs;HiiÞ=
ffiffiffi
2

p
0:1208 �0:1208 �0:1208
0:2434 �0:2434 0:2434
2:898 19 2:898 19 3:385
3:020 79 3:262 39 3:262 39

ðjHs; Vii � jVs;HiiÞ=
ffiffiffi
2

p
�
2 2:2798 0:8617

FIG. 3 (color online). Polarization entanglement at 20% off of
the degenerate frequency. (a) Square of the current density for
the states jHs;Hii (solid green) and jVs; Vii (dashed red), i.e.,
jAð�pÞj2 and jBð�pÞj2 as function of �p. (b) Square of the current
density for the states jHs; Vii (solid green) and jVs;Hii (dashed
red), i.e., jCð�pÞj2 and jDð�pÞj2 as function of �p. The inset in (a)
shows the intersection of the states jHs;Hii and jVs; Vii.
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Bell states 1ffiffi
2

p ðjVs;Hii � jHs; ViiÞ to be generated. As

shown in Fig. 2(b), the equation jCð�pÞj2 ¼ jDð�pÞj2 has

five solutions; i.e., there are five intersections between the
dashed and solid curves. One solution is obtained at �p ¼
�
2 and corresponds to the state 1ffiffi

2
p ðjVs;Hii � jHs; ViiÞ. The

other four solutions correspond to the state 1ffiffi
2

p ðjVs;Hii þ
jHs; ViiÞ. The Bell states and the corresponding angles of
the pump, signal, and idler are determined by numerically
solving the phase matching and current density equations.
The results are summarized in Table I.

Next, we analyze a case where the signal frequency is
20% off degeneracy as is shown in Fig. 3. In this case
it is possible to generate each of the four Bell states.
The corresponding angles of the pump, signal, and idler
are summarized in Table II. We note that in contrast to the
degenerate configuration, when off of degeneracy there is
only one solution for each of the Bell states. That is, the
angles of pump, signal, and idler fields with regard to the
atomic planes are uniquely defined by the Bell state.

To estimate the efficiency for the generation of Bell
polarization states we solve the coupled Heisenberg-
Langevin equations for each of the biphoton pairs, and
numerically calculate the generation and coincidence

count rates. For diamond, for the state ðjHs; Vii �
jHs; ViiÞ=

ffiffiffi
2

p
with the signal frequency 20% above the

degenerate frequency, a crystal length of 2 mm, a pump
flux of 1013 photons=s (available at the brightest synchro-
tron facilities), and detector apertures of 5 mrad� 5 mrad,
the estimated coincidence count rate is about 1 count per
15 s. This count rate is comparable to the count rate of
previous experiments [4].

At x-ray wavelengths a polarizer may be constructed
by Bragg scattering with a Bragg angle of �B ¼ 45�. When
this is the case, the coefficient for scattering at 2�B is
(ideally) zero when polarized in the plane of incidence

and unity when polarized perpendicular to the plane of
incidence. Bragg polarizers with an energy bandwidth of
�E=E� 10�2 might be constructed using mosaic crystals
such as pyrolytic graphite [14].
In summary, this work has described a technique for

using parametric down-conversion at x-ray wavelengths to
generate each of the four Bell polarization states. When
off-degenerate this is done by choosing the angle of inci-
dence of the pumping beam and polarizing it either in, or
out, of the plane of incidence. When at degeneracy, the
pump must be polarized out of the plane of incidence, and
only two of the four Bell states may be obtained.
The authors thank Jerry Hastings for suggesting the

x-ray polarizer, as above. This work was supported by
the U.S. Air Force Office of Scientific Research and the
U.S. Army Research Office.
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