
II-32 – II-33

II-32. Multimap formation in the Visual Cortex

Rishabh Jain RISHABH@USC.EDU
Bartlett Mel MEL@USC.EDU

University of Southern California

Cells in V4 and IT respond selectively to a wide variety of moderately complex object features [1], [2], perhaps
numbering in the hundreds or thousands or more. Given that object recognition is location-invariant, it follows
that, (1) every location in the visual field is analyzed in parallel by a large number of different feature types, which
implies that (2) every feature type forms its own retinotopic map coarsely tiling the visual field. The physical
interdigitation of neurons participating in a potentially large number of distinct feature maps covering the visual
field, each of which must develop separately and unsupervised, presents a significant challenge for conventional
map-formation algorithms. In particular, within such a “multimap”, a neuron is surrounded by other neurons coding
many feature types different from its own and from each other (see [4] [5] and [3] for data suggestive of this),
preventing neurons from co-training, i.e. sharing sensory data, within cohorts defined by a purely spatial criterion.
Co-training during development must therefore depend both on the spatial proximity of two neurons as well as their
functional similarity. In this work, we have developed a new self-organizing map formation algorithm derived from
a Kohonen-style SOM but that uses a hybrid spatial-functional similarity criteria for determining which neurons
wire and learn together. Preliminary results show that pure spatial algorithms confronted with multi-feature-type
data tend to produce a patchwork of relatively large regions of tissue containing neurons of a single feature type
(Figure panel A), whereas the hybrid learning rule produces multiple, finely interdigitated smooth feature maps in
which neurons are in general surrounded by cells of other types (Figure panel B). Multimap learning algorithms
also have the potential to help explain species-specific differences in the fine-scale smoothness vs. roughness of
feature maps in primary sensory areas [4].
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Dimensionality reduction techniques such as PCA are a cornerstone of analyzing high dimensional data. PCA in-
volves an eigenvalue decomposition of the data covariance matrix, which produces ranked orthogonal dimensions
that can be used to linearly project the data to lower dimension. The covariance matrix is but one choice of sum-
mary matrix that can be used for linear projections. When the data are time series, the same decomposition can
be used on a linear description of the dynamics (instead of the data covariance) to obtain a different projection.
This ‘dynamical PCA’ produces projections representing the largest eigenvalues of the linear dynamical system.
Linear dynamical systems capture scaling and rotational aspects of the data (and combining scalings/rotations
yields familiar features such as shear, projection, reflection, etc.). Dynamical PCA makes no distinction between
scaling and rotation, seeking only directions of largest and most consistent dynamical activity. However, in some
settings, one may hypothesize the existence of certain types of dynamics, and thus an algorithm is desired that
can verify those dynamics. For example, it is common for neural circuits to generate oscillations (or rotations),
and we seek projections that best capture these fundamental aspects of the neural response. Here we introduce
jPCA, which specifically extracts projections of largest rotational dynamics. Using skew-symmetric matrices, the
jPCA algorithm is an extension of fitting a linear dynamical system. It has a unique, closed-form solution that
can be quickly computed. Importantly, like PCA and dynamical PCA, jPCA produces simple projection vectors -
orthogonal linear directions - and so the interpretation of jPCA is identical to PCA or any other linear projection of
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the data. We motivate and present details of the method, and we discuss its importance in extracting rotational
structure from electrophysiological data recorded from primate motor cortex.
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Kalman filtering is a workhorse of statistical time series analysis: it is computationally tractable in many real-world
settings and implements the optimal Bayesian filter in the linear-Gaussian setting. However, the state variable
in many problems is very high-dimensional. Standard implementations of the Kalman filter require O(N3) time
and O(N2) space, where N is the dimensionality of the state variable, and are therefore impractical. In this
paper we note that if a relatively small number of low-SNR observations are available per time step, the Kalman
equations may be approximated in terms of a low-rank perturbation of the steady-state (zero-SNR) solution. In
many cases this approximation may be computed and updated very efficiently (often in just O(N) or O(N logN)
time and space), using fast methods from numerical linear algebra. This opens up possibility of real-time adaptive
experimental design and optimal control in systems of much larger dimensionality than was previously possible.
We detail an application to smoothing high-dimensional neuroscience data.
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To make optimal use of experimental data on the anatomy and physiology of cortical circuits and to account for the
effects of plasticity and neuromodulation, we must understand the relationship between the synaptic and neuronal
properties of a network, and the activity that it produces. Given detailed knowledge of the properties of a complex
network, can we predict what it will do? If we know how plasticity mechanisms or modulators change those
properties, can we predict how the activity will change? In this work, we develop a mean-field theory to analyze
input-driven responses in networks of neurons with changing connectivity patterns – from uniform synapses to
synapses drawn from different probability distributions. We study stimulus-evoked responses in model networks in
which only a fraction of the neurons within the network receive the external drive directly. We measure the signal
power in the neurons linked to the input only through recurrent polysynaptic connections in the network. This
power has a unique dependence on different synaptic parameters and as a result, on the different activity patterns
in the network (as a specific example, the synaptic variance at which the signal power is maximally amplified
corresponds to chaotic spontaneous activity in the network, but strengthening the mean synaptic strength does
not have the same effect.) Generally as networks progress from weak to stronger synapses, we find that stimulus-
evoked responses describe a trajectory in the two-dimensional space composed of the mean and the variance of
synaptic strengths. The shape and orientation of the trajectory consequently informs us of the regimes in which
meaningful responses can be most efficiently extracted from network activity, and how this feature changes as a
function of the spatiotemporal properties of the stimulus.
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