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Leveraging neural dynamics to 
extend functional lifetime of brain-
machine interfaces
Jonathan C. Kao1,2, Stephen I. Ryu2,7 & Krishna V. Shenoy2,3,4,5,6

Intracortical brain-machine interfaces (BMIs) aim to restore lost motor function to people with 
neurological deficits by decoding neural activity into control signals for guiding prostheses. An 
important challenge facing BMIs is that, over time, the number of neural signals recorded from 
implanted multielectrode arrays will decline and result in a concomitant decrease of BMI performance. 
We sought to extend BMI lifetime by developing an algorithmic technique, implemented entirely in 
software, to improve performance over state-of-the-art algorithms as the number of recorded neural 
signals decline. Our approach augments the decoder by incorporating neural population dynamics 
remembered from an earlier point in the array lifetime. We demonstrate, in closed-loop experiments 
with two rhesus macaques, that after the loss of approximately 60% of recording electrodes, our 
approach outperforms state-of-the-art decoders by a factor of 3.2× and 1.7× (corresponding to a 
46% and 22% recovery of maximal performance). Further, our results suggest that neural population 
dynamics in motor cortex are invariant to the number of recorded neurons. By extending functional BMI 
lifetime, this approach increases the clinical viability of BMIs.

Intracortical brain-machine interfaces (BMIs) record patterns of action potentials from many neurons in motor 
cortex and translate them, through a decode algorithm, into control signals to guide prosthetic devices such 
as computer cursors and robotic arms. These neural signals are recorded via chronic multielectrode arrays 
implanted into areas of the brain associated with movement generation and planning. An important concern 
regarding microelectrode arrays is their longevity: as the number of recorded neural signals inevitably decreases 
through time, BMI performance also declines (e.g., refs 1–3). Hence, a central design goal that is critical to BMI 
clinical viability is to maximize the functional lifetime of the BMI in the face of worsening multielectrode array 
recordings. While this concern has implications on the functional lifetime of the BMI, we emphasize that chronic 
electrode arrays, including the Utah electrode array (Blackrock Microsystems) employed in this study, last long 
enough to be highly appropriate for nonhuman primate research (e.g., refs 4–9) and for use in clinical trials (e.g., 
refs 10–16). The Utah array, in particular, has been documented to last for months to years17–19. Further, we note 
that other electrode array technologies have also been successfully employed in non-human primate research 
(e.g., refs 20–25) but are not currently approved for use in clinical trials. Irrespective of the type of microelectrode 
array used, we sought to extend the functional lifetime of the BMI beyond when it would have normally failed due 
to the inevitable decline in multielectrode array recording quality. Our approach to achieve this is to augment the 
decode algorithm, an intervention implemented entirely in software, and is therefore generally applicable to BMI 
systems regardless of the specific hardware being used.

Our algorithmic approach capitalizes on prior information, which is readily available soon after the electrode 
array is initially implanted when many, or even most, electrodes record from one or more neurons. This concept 
is illustrated in Fig. 1a, where the hypothetical performance of a BMI is plotted as a function of the number of 
recorded neurons. As time passes and neurons are lost, current practice is to re-learn decoder parameters with the 
remaining available neurons, a procedure termed “retraining” (Fig. 1a, blue trace). However, a critical oversight 
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with the standard practice of retraining is that it ignores historically-recorded neural data from earlier in the 
array’s lifetime, when more neurons were available. Although lost neurons are no longer recorded at present, 
this historical data may nevertheless provide additional information for present decoder training. Specifically, if 
this historical prior information is invariant to the number of neurons recorded and thus applicable even when 
few neurons remain, then it may be possible to use this information to beneficially improve decoder parameter 
estimation. This would amount to using a historical dataset to increase BMI performance at present (Fig. 1a, red 
trace).

To investigate this concept, we need to determine what this prior information should be and how we can 
incorporate it into the decoder. We reasoned that two key principles should be embraced. First, this prior infor-
mation must capture structure in the neural population, so that historically-recorded neurons are informative of 
the activity of the remaining recorded neurons. Importantly, recent evidence suggests that network structure and 
correlated behavior in the neural population play an important role in motor control26–30 and BMI control31–33. 
This first principle rules out decoders where parameter inference assumes neuron independence, including 
maximum-likelihood approaches to train velocity Kalman filters34, 35 and the state-of-the-art FIT Kalman filter6, 36.  
Because historically-recorded neurons are no longer observed today, the neuron independence assumption 
implies that once neurons are lost, they are uninformative of the remaining neural signals. The second principle 
embraced is that this prior information should be invariant to the number of neurons being recorded. Of the mil-
lions of neurons participating in any motor behavior, an electrode array merely eavesdrops on tens to hundreds 
of neurons, which is an extremely small sampling of the involved neurons. This prior information should not 
capture dramatically different views of underlying structure as a result of sampling. If these principles hold, then 
it is possible that this prior information can beneficially improve decoder parameter inference even after many 
neurons have been lost from view.

Based on these principles, we propose that this prior information should reflect neural population dynamics 
during reaching7, 30, 37–39. Neural population dynamics capture network structure by describing how populations 
of neurons modulate their activity through time in lawful ways to generate motor behaviors. Specifically, neural 
dynamical rules describe how the neural population activity at time k is informative of the population activ-
ity at time k + 1. Studies have demonstrated that these neural population dynamics exhibit similar structure 
across many different monkeys and humans7, 40, can better explain the heterogeneity and correlated behavior 
in neural populations than traditional models26, 30, 41, 42, are good predictors of motor reaction time43, 44, and 
can be incorporated into BMIs to substantially increase performance32, 33. Further work has also demonstrated 
that similar dynamics arise in recurrent neural networks trained to generate hand kinematics or EMG30, 38, 39. A 
key consequence of hypothesizing motor cortex to be a dynamical system for movement generation is that the 
neural dynamics, if lawful, should be invariant under the same motor behaviors no matter the quality of experi-
mental neural observations. Although inference of these neural dynamics will vary depending on the quality of 
neural observations, our estimate of these neural dynamics should be statistically consistent, converging to the 

Figure 1. Decoder hysteresis and exploiting neural dynamical invariance. (a) Illustration of the decoder 
hysteresis concept. The blue curve represents the hypothetical drop off in performance in the scenario where 
neural recording electrodes are lost and a decoder is retrained naïvely with the remaining neurons. The red 
curve illustrates the idea of using prior information regarding motor cortex, specifically knowledge about neural 
dynamics, to augment the decode algorithm and mitigate the loss of performance as neurons are lost.  
(b) Block diagram for retraining with remaining neural signals. The present neurons are used to retrain a 
decode algorithm, which involves neural systems identification and decoder parameter learning to predict 
kinematics. When decoding withheld testing data to reconstruct a monkey’s hand velocity in the horizontal 
direction (gray trace), the retrained decoder (blue trace) poorly reconstructs the hand velocities. (c) Block 
diagram for decoder hysteresis. A historical dataset is used to identify neural dynamics of motor cortical 
activity. These dynamics are remembered and constrain the learning of decoder parameters with the present 
neural signals. With this approach, the decoded velocity (red) better reconstructs the hand velocities.
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underlying neural dynamics as more neural data is available29. Based off the finding that modeling neural popula-
tion dynamics increases BMI performance32, 33, we hypothesize that using our “best estimate” of neural dynamics, 
inferred from an earlier point in the array lifetime when more neurons were observed, should result in superior 
BMI control at present when fewer neurons are available. We infer neural dynamics using expectation maxi-
mization, which finds locally optimal maximum-likelihood neural dynamics. Thus, when few neurons remain, 
this approach rejects locally optimal maximum-likelihood neural dynamics inferred from a small population of 
neurons in favor of neural dynamics learned from a larger set of neurons in the past.

We implemented this concept algorithmically to extend BMI functional lifetime. In our implementation, 
instead of retraining a decoder with the remaining neurons available today (Fig. 1b), we “remember” neural 
dynamics inferred from historically-recorded neural data, and learn new decoder parameters subject to the con-
straint that the neural population activity evolves according to the remembered dynamics (Fig. 1c). By doing 
so, we assume that neurons recorded in the past are informative of the neural dynamics in motor cortex, and 
that the remaining neurons are described by these dynamics. We found that this approach rescues BMI per-
formance following severe channel loss, thereby extending the BMI functional lifetime. We call this applica-
tion of neural dynamical invariance to a BMI task “decoder hysteresis,” because neural dynamics from a prior 
state (historically-recorded data) is used to augment BMI performance at the present state (when fewer neurons 
remain).

We note that our approach is fundamentally different from other approaches where BMI performance is 
increased via adaptation of neural responses. The neural adaptation approach improves poorly performing BMIs 
that are characterized by a mismatch in the neural-to-kinematic mapping, as may arise due to several factors 
including sub-optimal decoder weights23, 31, 45, 46 or unexpected neuron loss47. Further, the neural adaptation 
approach differs from the biomimetic decoder design approach, which seeks to minimize the need for learning 
and adaptation by building a decoder whose control strategy is similar to that of the native arm36, 48, 49. The bio-
mimetic design approach thus takes corresponding observations of neural and kinematic data, and attempts to 
mimic the native neural-to-kinematic mappings as closely as possible. Importantly, the performance of decoders 
leveraging neural adaptation to increase performance have not yet been demonstrated to exceed the performance 
of biomimetic decoders50. Further, BMI users do not demonstrate substantial neural adaptation36 or performance 
improvements through time associated with learning when using biomimetic decoders across days51. As we 
sought to maximize usable BMI performance in the scenario where one knows what neurons have been lost, we 
compared performance to the biomimetic approach; concretely, this means that we compared performance to 
a supervised decoder trained with the remaining neurons rather than training a sub-optimal decoder that then 
leverages neural adaptation to improve performance. We also note that our approach also differs from a recent 
study that made decoders robust to future unexpected neural variability by training recurrent neural networks 
with months-to-years of data52. This work utilizes historical datasets to improve decoder robustness by sampling 
neural variability so that when similar neural variability is encountered in the future, it is better able to decode 
such activity. When few neurons remain, these approaches do not incorporate any historical prior information in 
a different way to increase performance.

Finally, in designing this study, we compared the performance of our approach to two state-of-the-art biomi-
metic decoders at the time of our study because we sought to demonstrate an improvement over highly performing 
decoders in the literature. First, we chose to compare performance to the neural dynamical filter (NDF)32, which 
has been demonstrated in direct closed-loop experiments to outperform the optimal linear estimator12, 20, 22, 53, 54,  
the position-velocity Kalman filter11, 55, and the Wiener filter5, 10, 23, 56. This comparison also allows us to evaluate 
whether it is better to re-learn new dynamics for a given subset of neural signals (NDF) or remember dynamics 
from a historical dataset (decoder hysteresis). We also compared performance to a state-of-the-art decoder incor-
porating a kinematic dynamical model, the feedback-intention trained Kalman filter (FIT-KF)36. The FIT-KF is a 
variant of the ReFIT-KF, which increased performance over the velocity Kalman filter by a factor of approximately 
2×6. A decoder outperforming the NDF and FIT-KF at low neuron count regimes would, by transitivity, be 
expected to also outperform population vector decoders, kinematic-state Kalman filters, Wiener filter decoders, 
and neural adaptation approaches.

Results
We tested the decoder hysteresis idea by having monkeys perform a BMI task where they controlled a 
neurally-driven cursor to acquire targets presented in a virtual environment. We recorded neural activity 
(threshold crossings at −4.5× root-mean-square voltage) from electrode arrays implanted in dorsal premotor 
cortex (PMd) and primary motor cortex (M1) as the monkey performed a center-out-and-back reaching task 
(Methods). Monkey J had two 96-electrode arrays, one implanted in caudal PMd and one in gyral M1, while 
Monkey L had one array implanted at the border of caudal PMd and gyral M1. We then trained and evaluated 
the performance of decoders in both offline simulations and closed-loop experiments. We call the novel decoder, 
which remembers neural dynamics from when more neurons were available, the hysteresis neural dynamical 
filter (HNDF). Training the HNDF involves remembering the matrices describing the dynamical state-update 
equation of a linear dynamical system, which is further detailed in the Methods. In offline experiments, we used 
dynamics inferred from all available neural data collected on March 5, 2011 (January 28, 2013) in Monkey J (L) 
for use in HNDF decoders built between March 3, 2014 to April 9, 2014 (January 28, 2013 to May 31, 2013). To 
demonstrate a consistency in the neural dynamics across time, we also performed an additional offline experi-
ment using dynamics inferred from data collected on March 4, 2011 for Monkey L. In closed-loop experiments, 
we used dynamics inferred from data collected on December 11, 2012 (January 28, 2013) for Monkey J (L) for 
experiments performed between May 18 to 21, 2015 (May 28 to June 4, 2015). These dates were chosen because 
they correspond to among the earliest dates during which we built and evaluated an NDF in closed-loop control 
for each monkey. Thus, the inferred dynamics were from datasets recorded at least two years prior to closed-loop 
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experiments. In closed-loop experiments, we compared HNDF performance to two state-of-the-art decoders: (1) 
the neural dynamical filter (NDF decoder)32 and (2) the FIT-Kalman filter (FIT-KF decoder)36, which assumes a 
velocity tuning model57.

Remembering neural dynamics when more neurons are available increases BMI perfor-
mance. To evaluate if remembering neural dynamics can help mitigate performance loss, we performed an 
offline simulation of a worst-case neuron loss scenario and evaluated the performance of the NDF vs HNDF 
decoders. We artificially removed the most informative electrodes based on the mutual information between 
the electrode’s spiking activity and reach direction (Methods). Monkey J had 192 total electrodes, while Monkey 
L had 96 total electrodes. We note that although we are strictly simulating electrode loss, the loss of electrodes 
corresponds to a loss of neurons; for the rest of the manuscript, we will refer to the loss of electrodes as the loss 
of neurons. On 16 (18) experimental datasets where Monkey J (L) performed a center-out-and-back reaching 
task with the native arm, we trained an NDF and HNDF decoder with the remaining neurons and evaluated its 
cross-validation performance in reconstructing the monkey’s hand velocity. We confirmed that, as expected, per-
formance substantially declines as neurons are lost. In contrast and as desired, we found that the HNDF decoder 
(red) achieved significantly better velocity reconstruction than the NDF decoder (blue) at low neuron counts 
(more than 90(40) electrodes dropped for Monkey J (L), Wilcoxon signed-rank test, p < 0.01). These results are 
shown in Fig. 2a,b, where the HNDF decoder mitigates performance loss as the number of neurons decreases, 
showing a similar trend to Fig. 1a. Another common offline metric, mean-square-error in decoded position, also 
demonstrated better performance on average with the HNDF decoder than the NDF decoder (Supplementary 
Fig. 1). The same results, using a remembered dynamical system from approximately three years before offline 
experiments (from March 4, 2011), led to the same qualitative results in Monkey L (Supplementary Fig. 2). 
Further, we performed an offline analysis comparing the dropoff in performance to the optimal linear estimator53 
as well as the velocity Kalman filter58 (Supplementary Fig. 3). In both cases, we found that the HNDF had a shal-
lower decline in relative performance as the number of neurons decreased. These results demonstrate that, fol-
lowing severe neuron loss in offline simulations, the HNDF decoder is able to decode significantly more accurate 
velocities from motor cortical spiking activity than a state-of-the-art NDF decoder retrained on the remaining 
signals. The HNDF decoder achieves this performance improvement by remembering neural dynamics from 
when more neurons were observed.

Given these offline results, we next asked if the HNDF decoder could increase closed-loop BMI control 
performance after substantial neuron loss. Evaluating decoders in closed-loop experiments is critical as BMIs 
are closed-loop feedback systems where the subject can adjust his or her neural activity as a result of visual 
feedback of the decoder output59–61. To this end, we compared the performance of the HNDF and NDF decod-
ers in a closed-loop BMI center-out-and-back cursor control task. We also compared performance to the 
FIT-KF decoder, which is a state-of-the-art decoder based on velocity-Kalman filtering6, 36. We simulated the 
loss of 110 (60) electrodes in Monkey J (L) to substantially cripple the BMI. We intentionally operated in this 
difficult-to-control BMI regime so as to best mimic a clinical BMI system on the verge of completely failing, as 
would be encountered prior to needing to surgically replace a microelectrode array. At this level of electrode loss, 
offline decode results indicated the HNDF decoder achieved significantly higher performance than the NDF 
decoder. To keep the monkey engaged in the task, as performance had substantially worsened (Supplementary 
Movie 1), we made the center-out-and-back task easier by making: the radial targets closer (6 cm away from the 
center), the acceptance windows larger (width 6 cm), and the hold time shorter (300 ms) (Methods). Even with 
this easier task, both monkeys were often unable to perform the task with the FIT-KF decoder, failing to control 
the cursor on 19 of 20 sessions (14 out of 16) in Monkey J (L). We found that both monkeys were able to control 
the NDF decoder and HNDF decoder to perform the task, and further found that the HNDF decoder achieved 
substantially higher performance than the NDF decoder. Specifically, while the NDF decoder acquired 6.0 (8.0) 
radial targets per minute in Monkey J (L), the HNDF acquired 19.4 (13.9) radial targets per minute (Fig. 2c,d, 4 
(5) experimental days comprising 7,545 (9,214) trials in Monkey J (L)). At these levels of electrode loss, this cor-
responds to an increase in the proportion of radial targets acquired by a factor of 3.2× (1.7×). Assuming a peak 
acquisition rate of 35 targets per minute, typical for modern high-performance systems, the HNDF recovered 
46% (22%) of the peak performance. We also observed that the HNDF decoder was able to acquire targets at a 
higher success rate than the NDF decoder (Fig. 2e,f). Specifically, the HNDF decoder achieved a success rate of 
83% (76%) in radial target acquisition, which was significantly higher than that of the NDF decoder 48% (52%) 
(p < 0.01 in both monkeys, Wilcoxon signed-rank test). Of successfully acquired targets, the target acquire time 
of the HNDF decoder, 1150 ms (1544 ms), was on average faster than that of the NDF decoder, 1314 ms (1627 
ms), as shown in Supplementary Fig. 4a,b. This acquire time difference was significant in Monkey J (p < 0.01, 
Wilcoxon signed-rank test) but not in Monkey L. Movies of Monkey J controlling the NDF and HNDF decoders 
on this task are shown in Supplementary Movies 1 and 2, respectively. Together, these results demonstrate that by 
remembering neural dynamics from a time when the electrode array afforded measurements from more neurons, 
BMI control and performance can be substantially increased.

Remembering neural dynamics can rescue lost degrees-of-freedom of control. An important 
qualitative observation is that, following severe neuron loss, the HNDF decoder was able to span more of the 
task workspace than the NDF decoder. The NDF decoder consistently displayed significant anisotropy in velocity 
control, whereas the HNDF decoder was able to more uniformly generate velocities in all directions. In offline 
simulations, we found the NDF decoder sometimes lacked the ability to generate velocities in certain directions 
(Fig. 2a,b, blue traces in inset), essentially losing a degree-of-freedom of control that would incapacitate it in 
closed-loop settings. On the other hand, we found that the HNDF decoder was capable of generating velocities 
in directions where the NDF decoder was deficient, essentially recovering the lost degree-of-freedom of control 
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(red traces in the Fig. 2a,b inset). These control anisotropies in the NDF decoder were similarly reflected in 
closed-loop BMI experiments. Monkey J had difficulty reaching the upper left part of the workspace using the 
NDF decoder, although he was capable of acquiring all targets with the HNDF decoder (Fig. 2g). Monkey L had 
difficulty reaching in the horizontal direction with the NDF decoder, but was capable of reaching all targets with 
the HNDF decoder (Fig. 2h). One way to view these results is in a dynamical systems perspective. In the NDF and 
HNDF decoders, we are using a dynamical system to infer a neural population state, which is a low-dimensional 
projection of the neural activity that summarizes the correlated activity across the population (see Methods). 
Critically, each decoder’s neural dynamical model influences the trajectory of the neural population state32. 
Hence, these observations imply that the remembered dynamical model (HNDF decoder) drives the neural state 
to traverse regions of state-space that are more informative of BMI kinematics. In contrast, the re-learned dynam-
ical model (NDF decoder), while locally optimal in explaining the neural activity in a maximum-likelihood sense, 
drives the neural population state in subspaces that are less informative of BMI kinematics.

Figure 2. Offline and online evaluation of decoder hysteresis. (a) An offline simulation with Monkey J, where 
electrode loss is simulated and offline decode performance (mean correlation in reconstructing hand velocity) is 
measured. When 90 or more neural electrodes were lost, the HNDF achieved significantly higher offline decode 
performance than the NDF (denoted by *p < 0.01, Wilcoxon signed-rank test). The inset shows an example of 
decoded x-velocity (true hand velocity in gray, NDF decoded velocity in blue, and HNDF decoded velocity in 
red) when 140 electrodes were lost. In this example, the NDF essentially loses a degree-of-freedom of control, 
being unable to generate velocities in the x-direction, while the HNDF rescues the BMI by recovering the lost 
degree-of-freedom. (b) Same as (a) but for Monkey L. When 40 or more neural electrodes were lost, the HNDF 
achieved significantly higher offline decode performance than the NDF (p < 0.01, Wilcoxon signed-rank test). 
The inset shows an example of decoded x-velocity when 50 electrodes were lost. (c) The performance of the 
HNDF, NDF, and FIT-KF in closed-loop experiments for Monkey J, with the simulated loss of 110 electrodes. 
The HNDF performs significantly better (19.4 radial targets per minute) than the NDF (6.0 radial targets per 
minute) and FIT-KF, which was uncontrollable on 19 out of 20 sessions. Datasets J_2015-05-18, J_2015-05-
19, J_2015-05-20, J_2015-05-21 comprising 3,642 NDF trials and 3,903 HNDF trials. (d) Same as (c) but for 
Monkey L, with the simulated loss of 60 electrodes. The HNDF performs significantly better (13.9 radial targets 
per minute) than the NDF (8.0 radial targets per minute) and the FIT-KF, which was uncontrollable on 14 out of 
16 sessions. Datasets L_2015-05-28, L_2015-05-29, L_2015-06-02, L_2015-06-03, L_2015-06-04 comprising 
4,568 NDF trials and 4,646 HNDF trials. (e) Success rate of radial target acquisition for Monkey J. The HNDF 
acquired targets at far higher success rates (83%) than the NDF (48%). (f) Same as (e) but for Monkey L. The 
HNDF acquired targets at far higher success rates (76%) than the NDF (52%). (g) Target success rate to each 
center-out target in the workspace averaged over all sessions for Monkey J. There was a deficiency in the NDF 
to the upper and left parts of the workspace. (h) Same as (g) but for the Monkey L. There was a deficiency in the 
NDF along the x-axis.
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The HNDF utilizes higher-frequency dynamical modes for decoding. What, then, enables decod-
ers using remembered neural population dynamics to achieve superior performance compared to decoders that 
re-learn dynamics from fewer available recorded neurons? To address this question, we investigated key differ-
ences in the neural dynamics between the HNDF and NDF decoders. We empirically observed that as neuron 
counts decreased, systems identification with expectation maximization identified neural dynamics with rota-
tional modes having smaller natural frequencies in the NDF (Fig. 3a–d). This phenomenon may result from 
the neural population activity being more poorly described by rotational dynamics as neuron counts decrease 
(Fig. 3e,f). Hence, a key difference between the NDF and the HNDF at lower neuron counts is that the HNDF, by 
remembering a historical neural dynamical model, will drive the neural population state along rotational modes 
that, on average, have higher natural frequencies. However, do these remembered higher frequency rotational 
modes meaningfully contribute to the decoded output? For example, it could be that even if higher natural fre-
quencies are present in certain modes, these modes do not contribute to the decoded kinematics at low neuron 
counts. To evaluate this, we calculated the contribution of all eigenmodes to the decoded output (Methods). We 
found that, as neuroun counts decreased, rotational modes (i.e., eigenmodes characterized by complex eigenval-
ues rather than purely real eigenvalues) contributed less to the decoded output in both decoders (negative slopes 
in Fig. 4a,b, significantly different than 0 at p < 0.01). However, the HNDF decoder had a significantly shallower 
decrease than the NDF (significantly different slopes, p < 0.01), indicating that the HNDF utilized a greater con-
tribution from rotational modes to the decoded output at lower neuron counts. When decomposing this contri-
bution by the frequency of the rotational mode, we observed that at lower neuroun counts, the NDF’s decoded 
output was driven primarily by eigenmodes at DC and low frequencies (Fig. 4c,d, white arrows) and less so by 
higher frequency rotational modes (Fig. 4c,d, gray arrows). This contribution from DC and low frequencies at low 
neuron counts from the NDF is qualitatively distinct from how the NDF operates at higher neuron counts, where 

Figure 3. Eigenspectrum and rotational modes. (a) Eigenvalue spectrum of the remembered dynamics matrix 
used for decoder hysteresis (red) and an example eigenvalue spectrum of re-learned neural dynamics (blue) 
with the simulated loss of 140 electrodes in Monkey J. The frequencies used by the re-learned dynamics are 
smaller than those of the remembered dynamics. (b) Eigenvalue spectrum of the remembered dynamics matrix 
used for decoder hysteresis (red) and an example eigenvalue spectrum of re-learned neural dynamics (blue) 
with the simulated loss of 60 electrodes in Monkey L. (c) The max frequency of the dynamical system versus 
the number of electrodes used to infer the dynamics in Monkey J. We only considered oscillation frequencies 
for modes which had a time constant of decay greater than 20 ms, since the timescale of the exponential decay 
would be faster than any oscillation. The oscillation frequencies of the neural dynamics decrease as the number 
of electrodes decreases (linear regression r2 = 0.59, slope significantly different than 0 at p < 0.01). This trend 
also held up using the average frequency of the eigenvalues of the dynamical system. (d) Same as (c) but for 
Monkey L (linear regression r2 = 0.48, slope significantly different than 0 at p < 0.01). (e) The R2 ratio quantifies 
the ratio in describing the neural population activity with a skew symmetric dynamics matrix (having purely 
imaginary eigenvalues) vs the least-squares optimal dynamics matrix (having complex eigenvalues) as further 
described in the Methods. If the R2 ratio is large, it signifies that much of the dynamical variance can be captured 
by a purely rotational dynamics matrix. As electrodes are lost in Monkey J, the R2 ratio significantly declines 
(linear regression r2 = 0.13, slope significantly different than 0 at p < 0.01), indicating that the neural activity 
is less well-described by rotational modes. (f) Same as (e) but for Monkey L (linear regression r2 = 0.43, slope 
significantly different than 0 at p < 0.01).
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more data was available for neural dynamical systems identification. In contrast to the NDF decoder, we found 
that the HNDF decoder maintained a qualitatively similar contribution across all neuroun counts (Fig. 4e,f). That 
is, following severe neuron loss, the HNDF decoder still utilized the same rotational modes in approximately sim-
ilar contribution as used when many neurons were available. This consistent contribution across neuron counts 
was not trivially a result of remembering dynamics, since we allowed the observation process of the dynamical 
system (and its noise) to be re-learned (Methods). Examples of the velocities decoded by each eigenmode follow-
ing severe neuron loss are shown in Supplementary Fig. 6. We observe in these examples that the remembered 
rotational modes of the HNDF supported decoded velocities in directions not accounted for by DC modes (e.g., 
plane 5 in Monkey J’s HNDF, and plane 3 in Monkey L’s HNDF in Supplementary Fig. 6). Together, these results 
demonstrate that a key difference in the HNDF is the contribution of rotational modes to decoding, even at low 
neuron counts, in a fashion consistent with how the NDF operates during high-neuron count BMI use. As the 
neural dynamics influence the trajectory of the neural state, this observation, coupled with the HNDF achieving 
better decoding performance than the NDF, suggest that the rotational modes play an important role in driving 
the neural state along trajectories that aid kinematic decoding.

Discussion
We demonstrated that, by remembering dynamics learned from an earlier point in an array lifetime, it is possible 
to increase BMI performance at low neuron counts, extending the functional lifetime of the BMI. This approach 
relies on the assumption that neural dynamics in PMd and M1 are invariant to the number of neurons being 
recorded, so that neural dynamics learned when more neurons were available are applicable when few neurons 
remain. These results therefore suggest that, for a given task, neural dynamics recorded from PMd and M1 are not 
specific or limited to the exact set of neurons being measured at a given time. If neural population dynamics in 
a cortical area were specific to the neurons being measured, then the optimal approach to systems identification 
(and BMI decoder design) would be to re-learn maximum-likelihood dynamics for each specific neural popu-
lation being recorded. Rather, our results demonstrate that, for decoding kinematics, it is better to instead use 
the neural population dynamics inferred with as many neurons as possible. Our results are consistent with the 
hypothesis that, for a given task, there are lawful neural population dynamics that govern the evolution of popu-
lation neural activity for producing motor behavior. Under this hypothesis, the neural dynamics are statistically 
consistent, so that they are better inferred as the population size grows larger. We note that an additional analysis, 
shown in Supplementary Fig. 5, found that in the scenario where the same population of neurons is recorded 
over time (e.g., as in an optical imaging BMI62, 63), remembering the observation process of the dynamical system 
(Methods), in addition to the dynamics process, resulted in superior offline decoding performance.

Figure 4. Contribution of rotational modes to decoding. (a) Contribution of rotational modes (versus purely 
exponentially decaying modes) to the decoded speed (Methods) in Monkey J. Error bars denote standard 
deviation. While both decoders demonstrate a decrease in contribution from rotational modes as electrodes are 
lost (slopes significantly different than 0, p < 0.01), the trend in the HNDF is substantially shallower than in the 
NDF (difference in slopes, p < 0.01). (b) Same as (a) but for Monkey L. (c) Contribution of rotational modes in 
Monkey J to the NDF, decomposed by frequency of the mode. Contribution from higher frequencies decreases 
as electrodes are lost (gray arrow) while contribution from lower frequencies and DC modes increases (white 
arrow). (d) Same as (c) but for Monkey L. (e) Same as (c) but for the HNDF decoder. The contributions from 
rotational modes is more consistent when dynamics are remembered, even as electrodes are lost. (f) Same as  
(e) but for Monkey L.
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We observed that one key difference between the remembered dynamics and the re-learned dynamics was 
that, at lower neuron counts, the re-learned dynamics did not use higher-frequency rotational modes for decod-
ing. However, the HNDF decoder still reliably decoded using the neural state in these rotational modes in a 
manner similar to when many neurons remained, suggesting that these dynamical modes play an important role 
in decoding. These results open the possibility of rescuing decoder performance in scenarios where electrode 
arrays record few neurons even upon implantation. In these scenarios, when historical data is not available, it 
may be possible to incorporate a prior that regularizes the neural dynamics to use rotational modes with natural 
frequencies that are close to those empirically observed in motor cortical activity.

A natural question, given these results, is how many neurons are necessary to infer the underlying neural 
dynamics? This question is tied to the dimensionality of the neural data and is expected to vary under different 
task conditions29. However, for the purposes of 2D cursor control in our specific experimental setup, our results 
suggest that as long as approximately 100 electrodes are available, it is possible to reliably infer a dynamical system 
that achieves relatively good performance in decoding hand velocity (Fig. 2a). These results are reasonable given 
the observation that the dimensionality of motor cortical activity during 2D reaching spans approximately 10–20 
dimensions7, 26, 64. Further, with training dataset sizes of 500 trials, lasting approximately 500 s, our result that 100 
neural electrodes are enough to reliably infer the dynamics of 2D reaching are consistent with a neural theory of 
dimensionality and dynamics29. As we used neural dynamics inferred approximately two and a half years before 
the experiments, this suggests that the neural dynamics for our 2D reaching task are fairly stationary through 
time. This is further supported by an offline analysis of decode performance with dynamical systems remembered 
from different points in time, going back 3 years in Monkey J and 2 years in Monkey L (Supplementary Fig 7). In 
addition to being stationary through time, other studies have demonstrated evidence that neural dynamics are 
similar across several different monkeys7 as well as humans40.

However, neural dynamics are likely to differ from task-to-task. We consider two examples here. First, in 
scenarios where the BMI is not controlled in a biomimetic fashion, the BMI user may engage “neural adaptation” 
to increase BMI performance23, 24, 46, 50. Importantly, neural population activity is observed to change during 
the learning process31, 65. Given that neural population activity changes during BMI learning, it is likely that the 
neural population dynamics also change to support this adaptation. Second, neural populations have empirically 
been observed to increase in dimensionality as tasks become more complex29. Hence, it is likely that in more 
difficult BMI tasks, such as controlling a multi-degree of freedom robotic arm, the dimensionality of the neural 
population activity will increase. As neural populations explore new dimensions, the neural dynamics underlying 
this activity may potentially increase in complexity. In these scenarios, performance may drop off more rapidly 
with electrode loss, and so remembering the complex dynamics may be especially important in mitigating per-
formance loss. Further, our results suggest that remembering neural dynamics may also be able to rescue lost 
degrees-of-freedom of control (Fig. 2a,b, insets, and Fig. 2g,h). It is also important to note that this approach relies 
on having sampled the dynamics of the task before neuron loss. If the BMI task is altered following neuron loss, 
and the dynamics of the new BMI task are substantially different than in prior tasks used, the hysteresis approach 
may not generalize. Therefore, it may be beneficial to record during a diversity of relevant and complex clinical 
tasks soon after array implantation to sample neural dynamics in each of these tasks.

A further observation was that the NDF performed better than the FIT-KF at lower neuron counts. Although 
prior studies have not directly compared the performance of the NDF and FIT-KF, both decoders achieve com-
parable bitrates on the grid task, using the same monkeys and the same arrays32, 36, 66. Thus, it appears that the 
performance drop-off as neurons are lost is different for both decoders. This is further supported by the offline 
simulation in Supplementary Fig. 3, whereby the velocity Kalman filter is shown to degrade in performance at a 
faster rate in Monkey J. Investigating the key factors in closed-loop control that account for this difference may 
shed insight into how to further mitigate performance loss. We additionally note that our approach differs from 
decoders leveraging neural adaptation, where performance can be improved through time as the monkey adapts 
the firing rate statistics of neurons that control the decoded output23, 24, 46, 67. However, these neural adaptation 
techniques are most appropriate when the decoder is not biomimetic, and have not been demonstrated to exceed 
the performance of biomimetic decoding. Nevertheless, it may be possible, in the scenario where biomimetic 
performance is especially poor, that decoder design and neural adaptation may be combined to result in even 
higher performance50. Understanding how neural adaptation may augment biomimetic decoding performance 
may further rescue performance under neuron loss.

Because our technique is implemented entirely in software, it can be combined with other multielectrode array 
technologies (aside from the Utah array). Further, we note that the lifetimes of these technologies may be highly 
variable. For example, in a study with 62 implanted Utah electrode arrays, 56% of arrays had no recordable action 
potentials within the first year of implantation, while 11% of arrays lasted longer than the approximately two-year 
long duration of the study17, consistent with studies demonstrating usable BMI performance for years18, 19, 51.  
As long as a sufficient number of neurons remain, our technique would increase BMI performance over cur-
rent decoding approaches. Thus, for failure modes where enough information persists (i.e., non-catastrophic 
failure), our technique effectively extends the usable lifetime of the array beyond when it would have normally 
failed. Moreover, this algorithmic technique may be combined with other approaches that are aimed at extend-
ing the usable lifetime of a BMI. For example, it should be possible to combine our approach with local field 
potential decoding when action potentials are no longer recorded on electrodes2, 3, 68–70. It will be important to 
assess the extent to which these complementary approaches may further increase the usable lifetime of elec-
trode arrays. Further, while we demonstrated these results using linear dynamical systems, the dynamics under-
lying motor behaviors for BMI may be nonlinear (e.g., ref. 71). Therefore, it may be possible that techniques for 
nonlinear systems identification (e.g., refs 71–73) would not only increase decoder performance32, but may also 
strengthen the decoder hysteresis effect. Nevertheless, even in the linear regime, we have shown that it is possible 
to extend the usable lifetime of the BMI through software interventions at the algorithmic level. In particular, at 
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the performance levels reported in this manuscript where state-of-the-art decoders failed, it would have been 
possible for human participants to use the HNDF to type on a radial keyboard74, 75. Thus, this approach increases 
BMI functional lifetime, thereby increasing BMI clinical viability.

Methods
Electrophysiology and experimental setup. All surgical and animal care procedures were performed 
in accordance with National Institutes of Health guidelines and were approved by the Stanford University 
Institutional Animal Care and Use Committee. All experiments reported were conducted with adult male rhesus 
macaques (J & L) implanted with 96-electrode Utah arrays (Blackrock Microsystems Inc., Salt Lake City, UT) 
using standard neurosurgical techniques. Monkey J (L) was 13 (19) years old at the time of experimentation. 
Electrode arrays were implanted in dorsal premotor cortex (PMd) and primary motor cortex (M1) as visually 
estimated from local anatomical landmarks. Monkey J had two arrays, one in M1 and one in PMd, while Monkey 
L had one array implanted on the M1/PMd border.

The monkeys made point-to-point reaches in a 2D plane with a virtual cursor controlled by the contralateral 
arm or by a brain-machine interface (BMI). The virtual cursor and targets were presented in a 3D environ-
ment (MSMS, MDDF, USC, Los Angeles, CA). Hand position data were measured with an infrared reflective 
bead tracking system (Polaris, Northern Digital, Ontario, Canada). Spike counts were collected by applying a 
single threshold, set to −4.5× the root-mean-square of the spike voltage per neural electrode. The raw neural 
observations used for all analyses and closed-loop BMI experiments were binned threshold crossings counted 
in non-overlapping 15 ms bins. Behavioral control and neural decode were run on separate PCs using Simulink/
xPC platform (Mathworks, Natick, MA) with communication latencies of 3 ms. This enabled millisecond timing 
precision for all computations. Neural data were initially processed by the Cerebus recording system (Blackrock 
Microsystems Inc., Salt Lake City, UT) and were available to the behavioral control system within 5 ms ± 1 ms. 
Visual presentation was provided via two LCD monitors with refresh rates at 120 Hz, yielding frame updates of  
7 ms ± 4 ms. Two mirrors visually fused the displays into a single three-dimensional percept for the user, creating 
a Wheatstone stereograph59.

All tasks performed in this manuscript were variants of a 2D center-out-and-back task. In all offline analyses 
as well as when training decoders, each monkey performed a center-out-and-back task where the virtual cursor 
was controlled with his contralateral arm. In this center-out-and-back task, eight targets are placed with uniform 
spacing on the circumference of a 12-cm radius circle. In polar coordinates, these eight targets are positioned at 
0°, 45°, 90°, and so on. The task begins with prompting a target, positioned at the center of the circle. After suc-
cessful acquisition of the center target, one of the eight radial targets would be randomly chosen and prompted. 
After successful acquisition of a radial target, or following the failure to acquire any target, the center target was 
prompted again. The inter-trial time between successful target acquisition and the next target being prompted was 
40 ms. The monkey had to acquire the prompted target by bringing the cursor within a 4 cm × 4 cm acceptance 
window centered on the target within 2 seconds and hold the cursor within the target acceptance window for 500 
contiguous milliseconds. After the successful acquisition of any target, the monkey was given a liquid reward.

When the virtual cursor was controlled by the BMI, a center-out-task with different parameters was used. 
Because we simulated the loss of many electrodes, following severe array degradation, we had to make the task 
easier to perform to both keep the monkey engaged in the task and to convey meaningful information through 
the task. We note that even for these simpler center-out-and-back task parameters, a human capable of perform-
ing this task would be able to use a radial keyboard to type74, 75. Under BMI control following severe neuron loss, 
the radial targets were moved closer to the center target, being 6 cm apart. The acceptance window was widened 
to 6 cm × 6 cm, and the hold time to signal target acquisition was shortened to 300 contiguous milliseconds. The 
monkeys were given 5 seconds to acquire each target before the trial was failed.

For BMI control, we chose an animal model where the monkey is free to move the contralateral arm3, 6, 32, 51, 74, 76, 77.  
We recognize that a limitation of this model is that proprioceptive feedback is present in the neural activ-
ity78, 79. However, the major motivation for this animal model is that the neural dynamics we are modeling are 
related to reach generation and movement. Restraining both arms would constrain the neural activity to evolve 
along dimensions that do not cause overt movement. As these “output-null” dimensions are orthogonal to the 
“output-potent” dimensions used for movement generation, the dynamics of output-null activity may differ 
greatly from output-potent activity80. This model is consistent with the observation that a human subject using a 
BMI would be capable of generating neural activity that lives in output-potent dimensions, although this activity 
would not cause overt movement due to motor injury. We recognize that future studies should better characterize 
the dynamics of imagined movements in humans with motor injury.

Decoder algorithms. Neural dynamical filter. The neural dynamical filter (NDF) is described in more 
detail in our previous report32. To train the NDF decoder, we perform systems identification to learn a linear 
neural dynamical system describing population activity. The NDF uses the neural dynamical system to filter the 
neural observations. It then decodes kinematics linearly from the neural-dynamically filtered activity. The NDF is 
capable of achieving state-of-the-art levels of performance on 2D cursor control tasks32.

Concretely, the NDF models the neural observations of spikes via an autonomous latent-state linear dynamical 
system (LDS). In the LDS, the observed neural spike counts on each electrode at a time k, given by yk, are inter-
preted as a noisy observation of a low-dimensional and dynamical neural state, sk. The neural state, sk, is a contin-
uous variable that summarizes the activity of the neural population by capturing the correlated structure in the 
activity. Each dimension of sk, in the case of the LDS, can be inferred as a linear combination of all the observed 
neurons. The neural state is also dynamical, in the sense that knowledge of sk−1 is informative of what sk will be. In 
this work, the yk are the spike counts on each electrode in non-overlapping 15 ms bins. We chose the neural state 
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to be 20-dimensional as to be sufficiently high enough to capture a substantial proportion of the neural variance 
during reaching26. We modeled the LDS in the linear Gaussian form as:

= +−s Ms n (1)k k k1

= +y Ps r (2)k k k

where nk and rk are zero-mean Gaussian noise terms with diagonal covariance matrices N and R.
We refer to equation (1) as the dynamics process and the equation (2) as the observation process. The 

dynamics process describes how the previous neural state, sk−1, is informative of the current neural state, sk, 
through the matrix M. The observation process describes how the observed neural activity, yk, arises from the 
low-dimensional neural state, sk. Because the covariance matrix R is diagonal, the correlated activity in yk results 
exclusively from the neural state, sk. If the parameters M, N, P and R are known, then the neural state sk can be 
inferred from the prior neural state sk−1 and the newly observed neural activity, yk, with the Kalman filter, which 
is a minimum mean-square error estimator of a Gaussian LDS. This entails a solution of the form:

= + −− −s Ms K y PMs( ), (3)k k k k k1 1

where Kk is called the Kalman gain, and the term yk − PMsk−1 is typically referred to as the innovation, or what in 
the neural activity cannot be explained by the neural state. It is possible to derive a recursion for the Kalman gain, 
Kk, the solution of which is:

Σ= + Σ +−
− −

−
−K I M M N PR P M M PR( ( ) ) ( ) , (4)k k k1

T 1 T 1
1

T 1

where Σk−1 is the covariance of the estimate sk−1. The derivation of this result can be found in ref. 81. Whenever 
we performed Kalman filtering to arrive at the neural state, we used the steady-state form of the Kalman filter. We 
found that the Kalman filter converged to its steady-state form on the order of seconds, so that the two decoders 
were equivalent after a few seconds.

To infer the parameters M, N, P and R from experimental training data, we used expectation maximization 
(EM), which is a maximum-likelihood approach that seeks to maximize the log-likelihood of having observed the 
neural activity. EM infers parameters in an unsupervised fashion from the sequence of observed neural activity. 
The time-series of neural observations {y}k=1, 2, …, K were treated as the observed output of a latent state linear 
dynamical system (LDS). We did not perform any pre-processing steps on the binned spike counts, yk. Briefly, the 
E-step involves computing the expected joint-log likelihood of the neural state and the neural observations, which 
can be deduced from the graph structure of the linear dynamical system:

∑= −


 − −



 −… …

=

−p Ks y y Ps R y Ps Rlog ( , ) 1
2

( ) ( )
2

log
(5)K K

k

K

k k k k1, , 1, ,
1

T 1

∑−


 − −



 −

−

=
−

−
−

Ks Ms N s Ms N1
2

( ) ( ) 1
2

log
(6)k

K

k k k k
2

1
T 1

1

π π π− − − − −
+− K N ds S s S1

2
( ) ( ) 1

2
log ( )

2
log2 , (7)1 1

T
1

1
1 1 1

where  π∼s S( , )1 1 1  and N and d are the number of electrodes and the dimensionality of the latent state, respec-
tively. The joint log-likelihood, given all parameters, can be computed via Kalman smoothing. The M-step then 
involves maximizing the parameters (M, P, N, R, π1, S1) with respect to the joint log-likelihood. We note that 
while we computed π1 and S1, they were of no practical consequence when running in closed-loop after several 
seconds. The E-step and M-step alternated to increase the log likelihood of the observed data. More details can be 
found in the reference by Ghahramani and Hinton82. When performing EM, we utilized an approximation in the 
E-step: we assumed that the Kalman smoothing parameters remained constant after convergence of the estimated 
state covariance matrix within reasonable tolerance. When not using hysteresis, the EM algorithm was initialized 
with factor analysis. The initial P and R were the factor loadings and uniqueness matrix, respectively. We subse-
quently reduced the dimensionality of the spike count data via factor analysis to arrive at a sequence of 
low-dimensional neural states. The initial π1 was the mean of the neural states. The initial S1 and N was the covar-
iance of the neural states. The initial M was the maximum-likelihood matrix mapping the neural states inferred 
via factor analysis forward one time step.

After learning the parameters (M, N, P and R) via EM, we decoded a sequence of neural states from the train-
ing set neural observation. We thus had a sequence of decoded neural states, S = [s1, s2, …, sK] and a correspond-
ing sequence of observed training set kinematics, X = [x1, x2, …, xK], where xk contains the position and velocity 
of the hand-controlled cursor at time k. We then found the matrix Ls which minimizes the mean squared error, 
||X − Ls[S; 1]||2, where 1 refers to a row of 1’s appended to the bottom of S to allow for a bias to be learned. After 
defining Sb = [S; 1], the solution is = −L XS S S( )s b

T
b b

T 1.
Consistent with our prior study using this decoder, the decoded kinematics are the 2D position (p̂k) and 2D 

velocity (v̂k) of a computer cursor. Given that the decoded position and velocity of the cursor at time k were p̂k and 
v̂k respectively, the decoded position shown to the subject, pk, was calculated as:
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α α= − + + Δ− −ˆ ˆ tp p p v(1 ) ( ) (8)k k k k1 1

with α = 0.975 and Δt being the bin width of the decoder. This indicates that the final decoded position 
is a weighted sum, with 2.5% contribution from the decoded position, and 97.5% contribution from the 
integrated velocity. The small position contribution in part stabilizes the position of the decoder in the 
workspace32, 76. Other work has noted the importance of taking into account the position contribution of 
the signal6.

Hysteresis and memory neural dynamical filter. The hysteresis neural dynamical filter (HNDF) is a variant of the 
NDF decoder. It utilizes a similar training approach, with a key fundamental difference: with the HNDF, a dataset 
from an earlier point in the array lifetime is used to infer the dynamics process of the LDS. Concretely, this 
involves accessing a historically recorded dataset with neural observations = …

∼
  Y y y y[ , , , ]K1 2 . Note that we do 

not require the kinematic information (i.e., xk) from the historical dataset. We then perform EM to infer param-
eters (Mhyst, Nhyst, Physt, Rhyst) from the neural data ∼Y.

In the HNDF, we remember the parameters of the dynamics process, which are (Mhyst, Nhyst). With neural 
observations recorded today, Y = [y1, y2, …, yK], we perform a constrained EM algorithm, where we fix M = Mhyst 
and N = Nhyst. In this fashion, the dynamics process is constrained to be identical to the dynamics process inferred 
from the historical dataset. The constrained EM differs in that (1) M is initialized to Mhyst, (2) N is initialized to 
Nhyst, and (3) in the M-step, we only update parameters for (P, R, π1, S1). After performing EM, we arrive at a new 
dynamical system, (Mhyst,  Nhyst,  P ,  R), which we use to decode a sequence of neural states, 

= …S s s s[ , , , ]K
hyst

1
hyst

2
hyst hyst . This sequence of neural states are then used along with the kinematics to infer the 

mapping Ls in the same way as in the NDF.
For Monkey J’s offline simulations, we used dynamics inferred from data collected on March 5, 2011 for use 

in HNDF decoders built between March 3, 2014, to April 9, 2014. For Monkey L’s offline simulations, we used 
dynamics inferred from data collected on both January 28, 2013, as well as March 4, 2011, for use in HNDF 
decoders built between January 28, 2013 to May 31, 2013. The results of the HNDF simulations using dynam-
ics inferred from all the neural data on January 28, 2013, are shown in Fig. 2, while the HNDF using dynam-
ics inferred using all the neural data on March 4, 2011, are shown in Supplementary Fig. 2. For Monkey J’s 
closed-loop experiments, we used dynamics inferred from data collected on December 11, 2012, for experiments 
performed between May 18 to 21, 2015. For Monkey L’s closed-loop experiments, we used dynamics inferred 
from data collected on January 28, 2013, for experiments performed between May 28 to June 4, 2015.

The memory neural dynamical filter (MNDF) uses an approach similar to the hysteresis neural dynami-
cal filter. The MNDF is used in scenarios when the identity of the observations is the same throughout time. 
That is, even though neurons will be lost, the remaining neurons were recorded historically, and their identi-
ties are known. In these scenarios, it is also possible to remember the observation process from the past, (Physt, 
Rhyst). Therefore, the MNDF uses the historically inferred dynamical system, (Mhyst, Nhyst, Physt, Rhyst) to decode 
a sequence of neural states. Thus, the MNDF does not require an additional EM optimization. After inferring a 
sequence of neural states, a new Ls matrix is learned for the remaining electrodes in the same way as in the NDF. 
We note that the MNDF approach is in general implausible for multielectrode data, since over time it is not pos-
sible to ensure that the same neurons are measured on each electrode.

Feedback-intention trained Kalman filter. The state-of-the-art feedback-intention trained Kalman filter (FIT-KF) 
is a variant of the recalibrated feedback-intention trained Kalman filter (ReFIT-KF)6, 36. The main difference 
between the FIT-KF and the ReFIT-KF is that the FIT-KF is trained from a reaching dataset, whereas the 
ReFIT-KF is trained from a dataset under BMI control. We demonstrated that the FIT-KF can achieve the same 
level of performance as the ReFIT-KF without requiring the collection of an additional BMI control dataset36. The 
major innovation of the FIT-KF relates to an intention estimation intervention performed on the kinematics36. 
Specifically, it is assumed that at every point in the trial, the monkey intends to reach directly to the target, even 
while his native arm may make a curved reach. Further, it is assumed that once the monkey is within the target 
acceptance window, he intends to command a zero velocity, even though there may be residual movement in the 
acceptance window. These assumptions cause the training set kinematics to be altered. Specifically, all velocities 
during the course of a reach are rotated so that they point directly to the prompted target, and all velocities in the 
acceptance window of the target are set to zero6, 36. We denote these altered kinematics at time k as xk. We note 
that, as in ref. 36, the FIT-KF kinematics incorporate the x− and y− positions and velocities of the cursor, as well 
as a bias term.

The FIT-KF is a kinematic-state Kalman filter6, 34–36 with the following underlying dynamical system:

= +− x Ax w (9)k k k1

= +y Cx q , (10)k k k

where wk and qk are zero-mean Gaussian noise terms with covariance matrices W and Q. It is worth noting that 
the A and W matrices here only model the evolution of the kinematics, and do not capture any information about 
the neural population activity. The matrices (A, W, C, Q) are fit by maximum-likelihood approaches. Given 

= …
∼

  X x x x[ , , , ]K1 2  and Y, it can be shown that:
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∼ ∼ ∼ ∼
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T
:,1:end 1 :,1:end 1

T 1

=
−

− −
∼ ∼ ∼ ∼

− −K
W X AX X AX1

1
( )( ) (12):,2:end :,1:end 1 :,2:end :,1:end 1

T

=
∼ ∼∼ −C YX X X( ) (13)

TT 1

= − −
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K
C CQ Y X Y X1 ( )( ) , (14)

T

where the matrix ∼X:,a:b refers taking columns a to b of the matrix ∼X.

Optimal linear estimator. The optimal linear estimator53 (OLE) was fit by solving the least-squares regression 
problem between the sequence of observed kinematics in the training set, X, and the corresponding sequence of 
observed neural data, Y = [y1, y2, …, yK]. Analogous to the NDF case, we solved for the matrix Ly minimizing the 
mean squared error ||X − Ly[Y; 1]||2. We then defined Yb = [Y; 1], so that a row of 1’s was appended to the bottom 
of the matrix to account for a bias term. The solution is = −L XY Y Y( )y b

T
b b

T 1. As pre-processing on the neural data, 
Y, we convolved the activity of each channel with a causal Gaussian kernel having standard deviations 100 ms.

Mutual information for electrode dropping. When performing electrode dropping experiments, we 
dropped electrodes according to the mutual information between each electrode’s spiking distribution and the 
prompted target (i.e., reach direction). For a given electrode, we define the following probabilities.

•	 pY(y): the probability of observing y spikes in a 15 ms window.
•	 pX(xi): the probability of target xi being prompted on a given trial.
•	 pY|X(y|xi): the probability of observing y spikes in a 15 ms window when the monkey is reaching to target xi.

In addition to this, we let   denote the set of values y can take on, which for our experiments was the set {0, 1, 
2, 3, 4, 5+}. The element 5+ indicates instances where 5 or more spikes occurred in the 15 ms window. We also 
define Nx to be the number of targets. Then, the mutual information between the electrode’s spiking distribution 
and the prompted target is:

= −I X Y H Y H Y X( , ) ( ) ( ), (15)

where

∑= −
∈

H Y p y p y( ) ( )log ( )
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We calculated the mutual information for each electrode separately. We then ranked electrodes in terms of 
their mutual information to reach direction. We dropped the most informative electrodes first to simulate a sce-
nario where valuable electrodes were lost early.

Offline decoding and analysis. The goal of offline decoding is to use a decoder to predict the monkey’s 
hand velocity from corresponding neural activity. Offline decoding performance is not a reliable predictor of 
closed-loop performance, where the monkey receives visual feedback of the decoder’s output and can alter his 
motor response59–61. However, it demonstrates the ability of the decoder to reproduce kinematics from the neural 
activity that generated the observed movements.

For all offline decoding experiments, we used datasets of approximately 500 trials where the monkey per-
formed a center-out-and-back reaching task with the native arm. Of these datasets, 80% of contiguous trials were 
used for decoder training and the remaining 20% of trials were reserved as held-out testing data.

We measured two metrics when quantifying offline decoder performance: (1) velocity correlation and (2) 
mean-square error in position. The velocity correlation was calculated as the Pearson correlation coefficient 
between the recorded hand velocity during reaching and the decoded hand velocity. We calculated the Pearson 
correlation coefficient separately for the x- and y-velocities and reported the average of these correlation coeffi-
cients. We evaluated the velocity correlations at fixed temporal offsets (or lags) and chose the maximal velocity 
correlation. The evaluated temporal lags ranged from 15 ms to 90 ms in 15 ms increments. The mean-square error 
(MSE) was calculated as the average of the norm of the position decode error (defined as the vector from the true 
hand position to the decoded hand position). As in the velocity correlation, we evaluated the MSE at fixed tempo-
ral lags and chose the lag that minimized MSE. To not accumulate position error as a result of previous trials, we 
reset the decoded cursor position to the hand position at the start of each trial.
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Frequency analysis of neural dynamics. Evaluating the eigenvalue spectrum and maximal frequen-
cies. To generate the eigenvalue spectrum shown in Supplementary Fig. 6a,b, we performed an eigenvalue 
decomposition on the matrix

=
−

Δ
∼

t
M M I , (18)

where Δt is the bin width used for the decoder (in this work, 15 ms). The matrix, ∼M represents the first-order 
approximation of the dynamics process

= + .
∼


s Ms noise (19)k k

Note that here, 

sk is defined as −+ dts s( )/k k1 , i.e., the first-order Euler approximation of velocity. In this fash-

ion, an eigenvalue with a real part 0 indicates that there is no decay along the eigenmode.
The imaginary component of the eigenvalues of ∼M denote the frequency of each eigenmode. When finding the 

maximal dynamical frequency used by each dynamics matrix, ∼M, we only considered eigenvalues with time con-
stants greater than or equal to 20 ms. Eigenvalues with smaller time constants would decay so quickly that an 
oscillation would not persist.

Characterization of rotational dynamics via jPCA. To calculate how well the neural population activity could 
be described by rotational dynamics, we performed jPCA7. When performing jPCA7, we condition-averaged 
the neural activity by aligning to the start of a trial. This resulted in the peri-stimulus time histogram (PSTH) 
for reaches of 16 different conditions (8 center-to-radial conditions, and 8 radial-to-center conditions). Each 
PSTH was smoothed by convolution with a Gaussian kernel with standard deviation 25 ms and then binned at 
15 ms resolution. We performed jPCA by analyzing a robust reaching epoch during the reach (200 ms to 500 
ms). We specified 3 jPCA planes, which are a rotation of the top 6 principal components of the neural activity. 
We calculated the maximal dynamical frequency as the largest frequency used in the matrix Mskew (see ref. 7). We 
calculated the R2 ratio, describing how well the neural population activity could be described by purely rotational 
dynamics, as the ratio of R2 between the least-squares optimal skew-symmetric dynamics matrix, Mskew and the 
least-squares optimal dynamics matrix, Mbest. We note that all analyses with jPCA are performed on specific time 
points on condition-averaged data, where as the dynamical systems found via EM (as in the NDF and HNDF 
decoders) are inferred from all available single-trial data.

Contribution of eigenmodes to decoded output. To calculate the contribution of the dynamical eigenmodes to the 
decoded output, we decomposed the neural dynamics matrix as:

= Λ .−M U U (20)1

We then performed a change of basis for the dynamical system by defining = −s̃ U sk k
1 . In this manner, the ith 

dimension of s̃k corresponds to the evolution of the neural state along the ith eigenvector with eigenvalue Λi i, . The 
dynamical system under this change of basis is,

= Λ ++
−˜ ˜s s U n (21)k k k1

1

= +~y CUs r , (22)k k k

and the kinematics are decoded as,

= + ˜x L s b , (23)k s k s

with = .L L Us s
With this dynamical system, we next inferred a sequence of neural states from the neural activity, S = [s1, s2, …,  

sK], and then rotated the neural states via = −
S U S1 . We calculated the contribution of purely decaying eigen-

modes (real eigenvalues) or complex planes (paired eigenvalues σ ± jω) by taking the corresponding modes of s̃k 
and decoding velocity. For example, if we wanted to calculate the contribution of a complex plane corresponding 
to paired eigenvalues i and j, we would calculate =  ˜ ˜x L s s[ ; ]k

i j
s
i j

k
i

k
j, , , where Ls

i j,  corresponds to the ith and jth columns 
of Ls , ˜ ˜s s[ ; ]k

i
k
j  is the vertical concatenation of the rotated neural states in dimensions i and j, and xk

i j,  is a 
2-dimensional vector containing the decoded velocities in the horizontal and vertical directions at time k. We 
then calculated the average magnitude of the decoded velocity across all time for this eigenmode, = ∑ =r xv

i j
k
K

k
i j,

1
, . 

The contribution to the decoded velocity of an eigenmode is its contribution, rv
i j,  divided by the sum contribution 

of all eigenmodes plus a regularization term of 10 cm/s to deal with small overall speeds at low neuron counts.

Closed-loop performance evaluation. In closed-loop experiments, we primarily evaluated three metrics 
of performance. They are summarized as follows.

 1. Targets per minute. Targets per minute denotes, over the course of a 200-trial block, the average acqui-
sition rate of radial targets. The acquisition of a radial target involves (a) successfully acquiring the center 
target and (b) moving the cursor successfully from the center of the workspace to the prompted radial 
target, and acquiring it by holding within the prompted target’s acceptance window for 300 ms. As such, 

http://6a,b
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targets per minute reflects both the accuracy of the decoder as well as the speed of the decoder.
 2. Success rate. Success rate is the percentage of correctly acquired radial targets in a 200-trial block. This 

metric reflects the ability of the monkey to span the workspace. A higher success rate indicates that the 
monkey is able to reach more areas in the workspace.

 3. Acquire time. Acquire time is the time it takes from the target being prompted to when the monkey 
successfully acquires the target (not including the 300 ms hold time). This metric reflects the speed of the 
decoder. A decoder with a shorter acquire time is able to move more quickly to the desired target.

To evaluate the performance of online decoders, we had the monkey control all decoders on the same experi-
ment experimental day. We evaluated decoders in an A-B-A-B-A-… fashion, where each letter refers to a decoder. 
In this fashion, the decoders are repeatedly tested on the center-out-and-back task for 200 trials one after each 
other. We call each ‘A-B’ segment an experimental block. The experimenter knew the identity of each decoder 
being evaluated, and all fully completed experimental blocks were included in analysis. The online performance 
metrics were evaluated for each decoder in each experimental block, and these performance metrics were paired 
for statistical testing within the same block. We did not use formal effect size calculations to make data sample 
size decisions, but did perform a variety of experiments with large numbers of decoder comparison trials so as 
to be able to detect substantial decoder performance differences. To test for a significant difference in each of 
these metrics, we performed a non-parametric Wilcoxon signed-rank test. The null hypothesis in the Wilcoxon 
signed-rank test is that the difference in performance amongst the pairs follows a symmetric distribution around 
zero. Therefore, a significant p-value indicates it is likely that the decoders achieved significantly different perfor-
mance distributions according to the chosen metric.

Data availability. Relevant data and analysis code can be made available from the authors upon request.
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