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ABSTRACT | Brain–machine interface (BMI) systems convert

neural signals from motor regions of the brain into control

signals to guide prosthetic devices. The ultimate goal of BMIs is

to improve the quality of life for people with paralysis by

providing direct neural control of prosthetic arms or computer

cursors. While considerable research over the past 15 years has

led to compelling BMI demonstrations, there remain several

challenges to achieving clinically viable BMI systems. In this

review, we focus on the challenge of increasing BMI perfor-

mance and robustness. We review and highlight key aspects of

intracortical BMI decoder design, which is central to the

conversion of neural signals into prosthetic control signals,

and discuss emerging opportunities to improve intracortical

BMI decoders. This is one of the primary research opportunities

where information systems engineering can directly impact the

future success of BMIs.
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I . INTRODUCTION

Millions of people worldwide suffer from motor-related

neurological injury or disease, which in some cases is so

severe that even the ability to communicate is lost (e.g., [1]
and [2]). For people with lost motor function, brain–

machine interfaces (BMIs), also known as neural prosthe-

ses or brain–computer interfaces (BCIs), have the

potential to increase quality of life and enable greater

interaction with the world.

Over the last 15 years, significant progress has been

made toward realizing clinically viable BMI systems. As

illustrated in Fig. 1, BMI systems comprise three major
components: 1) sensors recording neural activity, typically

from motor cortical regions of the brain; 2) a decoder,

which translates the neural recordings into control signals;
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and 3) a prosthesis, such as a computer cursor on a screen

or a robotic arm, controlled by the decoder.

BMIs have been based on several different neural

information sources, including electroencephalographic
(EEG) and electrocorticographic (ECoG) technologies.

EEG and ECoG technologies measure average activity from

large numbers of neurons with electrodes that reside on

the scalp or surface of the brain, respectively (e.g., [3]–

[8]). In this work, we focus on another major information

source: intracortical neural signals. For modern BMI

systems, intracortical neural signals are measured from

electrodes that reside in the outer few millimeters of
motor cortical regions of the brain. These electrodes

measure action potentials from individual neurons and

local field potentials (LFPs), as shown in Fig. 2. Action

potentials, also known as ‘‘spikes,’’ are the fundamental

currency of information in the brain. Intracortical BMI

systems have demonstrated compelling levels of perfor-

mance in FDA phase-I clinical trials (e.g., [9]–[12]) as well

as higher performance than BMIs based on alternative
information sources (e.g., [13] and [14]).

Many challenges remain to achieving clinically viable

BMI systems, including: 1) increasing BMI performance and

robustness; 2) increasing the functional lifetime of im-

planted sensors; 3) replacing wires with wireless data
telemetry and wireless powering; and 4) improving BMI

ease of use, so that constant technician supervision is not

required. We primarily focus on the first of these challenges:

increasing BMI performance and robustness. The perfor-

mance and robustness of BMI systems depend greatly on the

decode algorithm (or ‘‘decoder’’), which converts spiking

activity from motor cortex into the kinematics of a prosthetic

device. Because the decoder is integral to BMI performance
and clinical viability, decode algorithm design must be

optimized to provide subjects with high-quality neural

control of a prosthetic device. To this end, the design of

modern BMI decoders requires multidisciplinary research

efforts which bring together a broad range of neuroscience,

including systems and cognitive neuroscience, and multiple

facets of information systems engineering, including statis-

tical signal processing, estimation theory, machine learning,
control theory, and information theory.

Fig. 1. BMI system overview. In an intracortical BMI system, neural signals are recorded from electrode arrays typically implanted in motor

cortical regions of the brain. The raw neural signals (also shown in Fig. 2) are then passed through a spike detection algorithm, such as

threshold detection, where a spike is detected if the measured electrode voltage crosses a preset threshold value. In the ‘‘spike detection’’ block,

a black dot denotes that an action potential was measured. The neural spiking data are then sent to a decode algorithm, which outputs control

signals (e.g., a digital signal) that guide a prosthetic device. The movement of the prosthetic device is observed by the subject, which closes a

feedback loop. Though in its infancy, it is also possible to ‘‘write in’’ somatosensory and proprioceptive information into the brain, which

may increase the controllability of the BMI system (e.g., [15] and [16]). This figure is adapted from [17] while the image of a BrainGate

participant controlling a prosthetic arm is from [10].
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In this review, we present aspects of BMI system
design that may be of particular interest and relevance to

information systems engineers. We first review decoder

design approaches over approximately the last 15 years. In

Section II, we discuss general classes of decode algorithms,

which have been guided by both a neuroscientific

understanding of motor cortex and statistical signal

processing techniques. In Section III, we discuss how

decode algorithms can be augmented by feedback control
approaches, and present future directions and opportuni-

ties in decoder design. In Section IV, we briefly review

recent BMI clinical studies and discuss challenges and

opportunities that will be important for furthering clinical

translation. While this review will present a particular

perspective on decode algorithm design, as well as

information systems opportunities that will be important

for improving decode algorithms, we note that other
review articles have also highlighted decoders, sensor

interfaces, clinical translation, and other important

challenges and opportunities facing BMIs (e.g., [16] and
[18]–[20]).

II . A VIEW OF DECODE
ALGORITHM DESIGN

The decode algorithm, which translates recorded neural

population activity into prosthesis control signals, is

essential for high-performance BMI systems. Historically,

decoder design has been inspired by neuroscientific views

of motor cortex as well as by linear estimation, statistical

inference, and neural network theory. BMI decode

algorithms are trained in a supervised fashion with
simultaneous observations of real arm or prosthesis

kinematics (e.g., [21]) and neural population activity. For

example, a subject with motor neurological disease or

injury may be asked to imagine mimicking the movements

of an automated computer cursor while neural activity is

recorded. A regression could then be performed to learn a

mapping from the subject’s recorded neural population

Fig. 2. Raw neural signals and feature extraction. (a) The raw neural signal voltage is measured from an electrode in motor cortex. From the

raw neural signal, two main signals can be extracted: action potentials (spikes) as shown in (b) and (c), and LFPs, as shown in (d)–(f). (b) For spikes,

the raw neural signal is high-pass filtered, and a threshold is set (depicted in red) so that any voltage deflection crossing the threshold is

counted as a spike. (c) It is occasionally the case that an electrode will measure spikes from different neurons simultaneously. A spike sorting

algorithm can be used to separate spikes from different neurons by differentiating their waveforms. For example, waveforms arising from action

potentials of two different neurons are shown in blue and orange, while gray represents activity that is not sorted. (d) For LFPs, the raw

neural signal is low-pass filtered to remove spiking activity. (e) and (f) Various features of the LFP signal can be used. For example, different

time-domain features of the LFP can be extracted, as in (e), or the spectral power in different frequency bands across time can be used, as in (f).

While state-of-the-art BMI systems have relied on spiking activity only (e.g., [10], [11], and [14]), recent work has demonstrated BMI control

using LFP activity, as further discussed in Section IV-B.
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activity to the kinematics of the automated computer

cursor. Then, during real-time BMI control, also called

‘‘online’’ or ‘‘closed-loop’’ control, the computer cursor

would be causally controlled by the decoder, which uses the

subject’s real-time neural population activity to predict the

prosthesis kinematics.

Closed-loop BMIs pose an additional challenge that
other applications in information systems engineering do

not routinely face. Consider training a supervised

algorithm that infers a variable x from an observed

variable y. To do so, one must learn a mapping fð�Þ so

that x̂ ¼ fðyÞ, where x̂ is the estimate of x. A common

approach is to learn f from observations of ðx; yÞ (‘‘training

data’’) such that a desired error metric "ðx; x̂Þ is minimized

when evaluated on data not in the training set (‘‘testing’’ or
‘‘cross-validation’’ data). In BMI settings, this approach can

lead to suboptimal decoders. One reason for this is because

the subject controlling the BMI system continuously

observes the movements of the prosthesis and can make

online corrections to compensate for inaccurately decoded

kinematics (e.g., [22]–[24]). From a systems perspective,

the subject closes the feedback loop, generating corrective

neural responses that are absent in the training data. Thus,
it is typically the case that BMIs running in closed-loop

operate on data distributions that differ substantially from

the data distributions of the training set (e.g., [25]). As a

result of this, it is difficult to evaluate the performance of a

putative decoder without running closed-loop experiments

(e.g., [22] and [24]). While this poses a challenge for

decoder design, there are opportunities to augment BMI

systems by incorporating concepts from feedback control
theory. Using feedback control approaches to increase the

performance of BMI systems will be further discussed in

Section III.

In this review, we will focus on decode algorithms

which have been evaluated in closed-loop experiments

using neural spiking activity. Although LFP activity is also

measured from intracortical electrodes, as shown in Fig. 2,

these signal sources have not been used in closed-loop BMI

systems until only recently; we reserve discussion of the

LFP signal to Section IV-B. A classification of BMI

algorithms is shown in Table 1, which highlights the

general categories of algorithms used in BMI systems.

Throughout this review, we will use the following

conventions: xk 2 RM denotes a column vector containing
the M observed prosthesis kinematic variables at time k, x̂k

denotes a vector containing the decoded prosthesis

kinematic variables at time k, and yk 2 RN denotes a

vector containing the recorded neural spiking activity of N
neurons at time k. As an example, if the kinematic

variables of interest are the position ðpkÞ and velocity ðvkÞ
of a robotic arm at time k, then xk would be the vertical

concatenation of vectors pk and vk. If yi
k is the neural

spiking activity of the ith neuron at time k, then

yk ¼ ½y1
k y2

k . . . yN
k �

T
is the activity of all the recorded

neurons at time k, where ½�� denotes horizontal concate-

nation and yT denotes the transpose of vector y. For

convenience, we also define matrices X ¼ ½x1 x2 . . . xK�
and Y ¼ ½y1 y2 . . . yK �, with K denoting the number of

observed time instances.

As this review focuses on spike-based decoders, the
neural spiking activity yi

k is typically the ‘‘binned spike

counts’’ of neuron i. This quantity is computed by counting

the number of times neuron i spikes in non-overlapping

intervals (or bins) of length Dt. The interval Dt tends to be

on the order of tens of milliseconds [22]. By binning time

and counting the number of spikes within those bins, one is

estimating an underlying neural firing rate. The time length

of the data sampled in matrices X and Y is T ¼ KDt.

A. Linear Vector Algorithms
An early BMI decoder algorithm proposed by

Georgopoulos et al. is the population vector (PV) algorithm,

which is based on a neurophysiological result: under

certain conditions, the cosine of the reach direction can, in

part, describe the firing rate of neurons in macaque motor

Table 1 A Categorization of BMI Algorithms
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cortex, as discussed further below [40]. The PV algorithm

has been used in several BMI systems (e.g., [13], [27], and

[41]). In the PV algorithm, xk is typically the velocity of the

prosthetic device, so that the goal of the decoder is to

estimate the direction and speed of movement. The PV

algorithm is based on a representational view of motor

cortex, in which the neural activity of individual neurons

represents kinematic variables (e.g., [40] and [42]).
According to this view, the activity of the ith neuron at

any time can be described as a function of the kinematic

variables: yi
k ¼ fiðxkÞ. In this manner, a ‘‘tuning curve’’ can

be built, where the average firing rate of a neuron is

computed for different reach directions. These firing rates

are subsequently interpolated (across reach directions)

with one period of a cosine wave [43], so that

yi
k / cosð�k þ �Þ, where �k is the angle of reaching and �

is a learned parameter. The direction in the kinematic

space for which the neuron i is modeled to fire most

strongly is called the preferred direction of neuron i,
denoted by a unit vector di 2 RM. The contribution of each

vector di to the decoded kinematics x̂k is linearly

proportional to the firing rate of the neuron. Hence,

x̂k ¼
c

N

XN

i¼1

yi
k � bi

�i
di (1)

where bi is an offset term (typically the mean firing rate of

neuron i) such that, when yi
kG bi, the neuron contributes

movement in the direction �di. The variable �i is a
weighting term, typically chosen to be the modulation

depth of the neuron, or a variance normalizing term. The

term c is a constant to make the sum proportional to speed.

If we define zi
k ¼ ðyi

k � biÞ=�i to be the normalized firing

rates, then the PV algorithm can be written as x̂k ¼
ðc=NÞ

PN
i¼1 zi

kd
i. For convenience, we also define vector

zk ¼ ½z1
k z2

k . . . zN
k �

T
and matrix Z ¼ ½z1 z2 . . . zK�. We

also note that in some studies, the neural data are
smoothed by low-pass filtering (e.g., [13]).

An algorithm which generalizes the PV algorithm,

known as the optimal linear estimator (OLE), similarly

takes a representational view of motor cortex, but does not

find the preferred directions di by computing the tuning

curve of each neuron. Instead, the vectors are found by

considering the correlations of the neurons and their cross

correlation to kinematics: di
OLE ¼

PN
j¼1 R�1

ij VT
j for

Rij ¼ E½zi
kz

j
k�, the ði; jÞ entry of the correlation matrix of

the normalized firing rates, and Vj ¼ E½zj
kx

T
k �, the jth row

of the cross-correlation matrix of the firing rates and

kinematics [26]. The expectations are evaluated over time.

If the distribution of the vectors di is uniform, then it can

be shown that di
OLE=kdi

OLEk ¼ di so that the OLE and PV

algorithms are equivalent. R and V are typically estimated

by their time-averaged estimates R ¼ ZZT and V ¼
ZXT. Thus, OLE corresponds to a least squares solution.

By defining LOLE ¼ R�1V, it is apparent that LOLE

minimizes the squared error of X� ðLOLEÞTZ. Here, the

ith row of LOLE corresponds to the preferred direction

di
OLE. In closed-loop control, the kinematics can be

decoded by calculating x̂k ¼ ðLOLEÞTzk. Typically, a

constant bias term bOLE is also included so that

x̂k ¼ ðLOLEÞTzk þ bOLE. Recently, a clinical demonstra-
tion [11] used a variant of OLE called indirect OLE [44], in

which a linear tuning model Z ¼ BTX was learned and

subsequently used to infer LOLE by setting LOLE ¼ ðByÞ
(e.g., [23], [24], and [44]) where By denotes the

pseudoinverse of B. It is worth noting that the perfor-

mance of PV and OLE decoders is comparable in closed-

loop systems (e.g., [23] and [24]).

Recent studies have noted that linear vector methods
have demonstrated poorer quality control than Bayesian

algorithms in closed-loop BMI systems (e.g., [24] and

[45]). Although it is difficult to compare the closed-loop

performance of decoders across experimental studies, Fitts

throughput [46] has been suggested as a potential metric to

perform this comparison (e.g., [14] and [47]). We note that

due to several factors, including the variability of tasks,

array quality, and subject skill across studies, these
comparisons cannot be exact. Fitts throughput is further

discussed in Supplementary Materials section 3.1 of the

study by Gilja et al. [14]. Using Fitts throughput, we note

that the performance of linear vector algorithms tends to

be lower than others reported in the literature, as shown in

Table 2. One reason for this performance difference may

be due to additional modeling assumptions in other

Table 2 Performance of BMI Algorithms
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algorithms that are not present in linear vector techniques,
such as smoothness in the decoded kinematic variables or

the incorporation of noise models. Another potential

reason for this performance difference may result from the

static ‘‘preferred direction’’ assumption, where each

neuron only encodes velocity in a single direction. Indeed,

recent studies report that motor cortical neuron responses

cannot be explained by static preferred directions alone.

For example, studies demonstrated that the preferred
direction of a neuron can change significantly based on the

speed of a reach [48], or even over the course of a reaching

movement [49]. Furthermore, learning the tuning curve of

a neuron requires an approach where the neural data are

modeled to be a function of the kinematic variables (e.g.,

[40]) or intended kinematic variables (e.g., [50]) so that

yi
k ¼ fiðxkÞ. However, the temporal responses of the neural

activity may potentially be far more complex than the
kinematics used to describe them, which would pose a

limitation for this model (e.g., [49]). Some recent studies

put forward a model with opposite causality, where

kinematic variables are modeled to be functions of the

neural population activity in motor cortex (e.g., [42], [51],

and [52]) so that xk ¼ gðyk;yk�1; . . .Þ. Depending on

these assumptions, decoder implementations will be

somewhat different.
Interestingly, the linear vector methods, while inspired

from a neurophysiological approach, have a natural and

standard interpretation from an engineering viewpoint.

The OLE method, which generalizes the PV algorithm, can

be viewed as the least squares regression between a

sequence of kinematic data and a corresponding sequence

of neural data. While least squares has been standard in

estimation literature as far back as Gauss and Legendre,
linear estimation has developed significantly since that

time [56]. We next review more recent BMI decoders

stemming from advances in linear estimation theory.

B. Wiener Filters
The Wiener filter was a seminal contribution in

estimation theory, helping to bring a statistical point of
view into communication and control theory [57]. Both

Wiener [58] and Kolmogorov [59] independently devel-

oped filtering theory in which a noisy sequence of

observations y1; . . . ;yk is used to calculate a linear

estimate of a signal xk, given by x̂k ¼
Pk

j¼1 LT
j yj, where

Lj 2 RN�M. In the Wiener–Kolmogorov filtering theory,

the goal is to learn parameters L1; . . . ;Lk such that the

squared error in predicting xk is minimized. A major
distinction of the Wiener–Kolmogorov approach, in

contrast to linear vector techniques, is the incorporation

of neural history ðyk�1;yk�2; . . .Þ into the regression

problem. In this section, we will describe the implemen-

tation of the Wiener filter by referring to the binned spike

counts yk, but the Wiener filter could also be implemented

using normalized spike counts zk.

In BMI systems, the Wiener filter (e.g., [9], [25], and
[32]) is typically implemented in the following fashion: for

a history of length pDt, the decoded kinematics are

x̂k ¼
Xp�1

j¼0

LT
j yk�j: (2)

(As in the OLE case, a constant bias term can also be

included.) By defining LW ¼ ½LT
0LT

1 . . . LT
p�1�

T
, the verti-

cal concatenation of the matrices L0;L1; . . . ;Lp�1, the

Wiener filter solution can be obtained by solving

LW¼

Ryyð0Þ Ryyð1Þ . . . Ryyðp�1Þ
Ryyð1Þ Ryyð0Þ . . . Ryyðp�2Þ

..

. ..
. . .

. ..
.

Ryyðp�1Þ Ryyðp�2Þ . . . Ryyð0Þ

2
666664

3
777775

�1

�

Ryxð0Þ
Ryxð1Þ

..

.

Ryxðp� 1Þ

2
666664

3
777775

(3)

where RyyðjÞ ¼ Eðyky
T
kþjÞ and RyxðjÞ ¼ Eðykx

T
kþjÞ for all

j ¼ 0; . . . ; p� 1. The index j refers to autocorrelations

ðRyyðjÞÞ or cross-correlations ðRyxðjÞÞ at a lag of time j. We

note that when p ¼ 1 (i.e., no neural history), this

approach reduces to the OLE method, since LOLE ¼
R�1

zz ð0ÞRzxð0Þ, where Rzzð0Þ and Rzxð0Þ are the normal-

ized firing rate analogs of Ryyð0Þ and Ryxð0Þ. The

autocorrelations and cross-correlations are typically esti-
mated by their time-averaged estimates. We let X½i:j�
denote ½xi xiþ1 . . . xj� for i G j, and define the following

matrix:

~Y ¼

yp ypþ1 � � � yK

yp�1 yp � � � yK�1

..

. ..
. . .

. ..
.

y1 y2 . . . yK�pþ1

2
6664

3
7775: (4)

Then, the time-averaged estimate of LW can be calculated
as LW ¼ ð ~Y ~YTÞ�1ð ~YXT

½p:K�Þ. For correlation-ergodic sig-

nals, as K approaches infinity, this formulation converges

to the solution in (3) [60]. Several studies have used this

approach for BMI decoding (e.g., [9], [25], and [28]).

An important parameter to choose in fitting the Wiener

filter is p. If the time required to make a reach with the

prosthesis is approximately � , then choosing p such that
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pDt > � is illogical, since the regression would be
considering autocorrelations at lags longer than the

timescale of the reach. Rather, p should be chosen so as

to match the timescales at which the neural data are

informative of the kinematics while not contributing

significant lag to the system. Assigning significant weight

to neural data relatively far into the past will likely cause

the decoder to have significant lag in responding to the

subject’s changing intention. Hence, one approach to
choose p is to evaluate Wiener filters for varying p in

closed-loop BMI control. In this manner, the potential to

overfit coefficients Lj for large j (corresponding to neural

data further in the past) is minimal. Another approach to

avoid overfitting the large number of coefficients is to

regularize the regression using a technique such as ridge

regression (e.g., [37]).

An interpretation of the Wiener–Kolmogorov filtering
approach is that it provides optimal smoothness over a

history of neural data of length pDt that is least squares

optimal. While, at first, the Wiener filter may seem to be

an extension of OLE to neural data with multiple time lags,

there is a distinct difference between Wiener filter

techniques and linear vector methods: with Wiener filters,

the preferred directions associated with a neuron can be

different at distinct time lags. This is apparent when
considering that the ith rows (i.e., the ‘‘preferred

directions’’) of Lj and Lk can be different for j 6¼ k.

Therefore, the Wiener filter is not built in a framework

that assumes static preferred directions. A consequence of

this filtering framework is that because movements in

different directions will have different temporal neural

responses, the direction that a neuron drives the prosthesis

can differ for different targets. This is a departure from
linear vector methods, where a neuron can only move the

prosthesis along a single direction. To our knowledge,

no closed-loop comparisons within the same study have

been performed between decoders using the Wiener–

Kolmogorov approach and the linear vector approach. We

note that across closed-loop studies in the literature,

decoders using the Wiener–Kolmogorov approach have

achieved higher Fitts throughput than linear vector
methods, as shown in Table 2. The Wiener–Kolmogorov

approach was used in the first BMI clinical studies with

intracortical electrode arrays, demonstrating that a human

could control a computer cursor and perform rudimentary

actions with a multijointed robotic arm [9].

C. Kalman Filters
In 1960, Kalman introduced the state–space frame-

work to filtering, which was a crucial and enabling insight

facilitating finite-time and nonstationary analyses [61],

[62]. The Kalman filter is a recursive algorithm that

estimates the current state of a dynamical system given an

observation of the output of the dynamical system and the

previous state estimate. In general, state-of-the-art BMI

systems using Kalman filtering model the prosthesis

kinematics as the state of a linear dynamical system with
certain dynamical update laws. In this dynamical model-

ing, it is typically assumed that the kinematics obey

physical laws and are smooth over time (e.g., [10], [14],

[32], and [63]).

In 2003, Wu et al. proposed a Kalman filter technique to

estimate the kinematics of a prosthetic device given

observations of the neural population activity yk [31]. The

dynamical model proposes that the kinematics of the
prosthesis xk are the state of a linear time-invariant

dynamical system, while the neural activity yk is the output

of the dynamical system. The state and output process are

both modeled to have Gaussian noise. Therefore, the system

can be written as

xkþ1 ¼Axk þwk (5)

yk ¼Cxk þ qk (6)

with wk � Nð0;WÞ and qk � Nð0;QÞ. Because se-

quences fxkgk¼1;...;K and fykgk¼1;...;K are observed in the

training set while wk and qk are zero mean terms, A and

C can be learned via least squares regression:

A ¼ X½2:K�X
T
½1:K�1�ðX½1:K�1�X

T
½1:K�1�Þ

�1
a n d C ¼

YXTðXXTÞ�1
. After learning A and C, W is calculated

as the sample covariance of the residuals X½2:K� �AX½1:K�1�
while Q is analogously the sample covariance of the residuals
Y�CX. Given A;W;C;Q as well as an initial state
condition, x0 (often set to be zero), the Kalman filter
recursively estimates the current state x̂k, given the current
neural observation yk, and the previous state estimate x̂k�1

[64]. Several laboratory and clinical demonstrations have used
these kinematic-state Kalman filters in closed-loop BMI
systems (e.g., [10], [14], and [32]).

A benefit in modeling a dynamical update law for the

kinematic variables is the ability to enforce that the

prosthesis movements obey physical kinematic laws. For

example, if xk ¼ ½pT
k vT

k �
T

, then the A matrix can be
additionally designed such that the position obeys
pkþ1 ¼ pk þ vkDt. Further, the A matrix provides a
measure of smoothing or low-pass filtering over the
kinematic variables. This is important for ensuring that
the kinematics are not discontinuous or jarring to the
subject controlling the prosthesis. The Kalman filter also
casts BMI systems into a Bayesian framework, where it is
now possible to model noise processes, effectively
weighting neurons based on modeled noise properties.
However, one potential limitation of Kalman filtering is
that the state and observation noise processes are typically
modeled to be Gaussian, which is an oversimplified
assumption. We also note that the output model of the
linear dynamical system (6) is inherently a representa-
tional approach, where the kinematics are generative of
the neural data, as shown in Fig. 3(c).
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Kalman filters with time-invariant parameters, such as

those used in BMI applications, converge to a steady-state

form, typically in a matter of seconds [63]

x̂k ¼M1x̂k�1 þM2yk (7)

and, therefore, the Kalman filter can be interpreted

analogously to the Wiener–Kolmogorov filtering approach.

To make the correspondence, we note that the Kalman

filter can be approximated in the form of (2) with certain

structure: LT
j ¼M

j
1M2 for j ¼ 0; . . . ; p� 1. While such

structure may be beneficial to the decoder, providing a

form of regularization, it also imposes constraints that

have important consequences. For example, in velocity

Kalman filters (where xk ¼ vk, e.g., [32]), matrix M1 is of

the form M1 � �I with � G 1, since BMI training

paradigms tend to sample kinematic velocities uniformly

in all directions. Therefore, the velocity Kalman filter is

Fig. 3. Schematic of BMI algorithms. The spikes on N channels (left) are binned, and subsequently used by a decode algorithm. (a) The population

vector/optimal linear estimator algorithm. The binned spike counts for each of N neurons are modeled to encode directions of movement in

the workspace. The amount the neuron fires indicates the speed of movement along a certain direction. These vectors are then summed to give a

final decoded velocity. (b) The Wiener filter algorithm. The neural activity (including neural history up to p� 1 bins in the past) is weighted and then

linearly summed to give decoded kinematics. The decoded kinematics need not be velocity, but could also be, for example, position.

(c) Recursive Bayesian algorithms. The neural spiking activity is the output of a dynamical system model where the prosthesis kinematics are the

underlying state. A recursive Bayesian algorithm (e.g., the Kalman filter) is used to infer the kinematic state x̂k, given the current neural

observation yk and the previously predicted kinematic state x̂k�1. (d) Echo state network algorithm. The neural spiking activity drives a recurrent,

randomly connected, neural network. The kinematics v̂k ¼ ½ v̂ x
k v̂

y
k �

T
and p̂k ¼ ½ p̂ x

k p̂
y
k �

T
are decoded by linear readout and fed back into the

network through the coefficients WF.
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analogous to a linear vector method with smoothing of past
neural data, since each neuron will contribute velocities in

approximately the same direction over all time. Kim et al.
[32] demonstrated that a VKF performs superiorly to a

Wiener filter with pDt ¼ 1 s. However, other studies have

commented or shown that a Wiener filter outperforms

Kalman filter techniques in offline simulations (e.g., [25]).

Additionally, the Fitts throughput of BMI systems using

Wiener filtering techniques tends to be higher than those
of BMI systems using velocity Kalman filtering, as shown

in Table 2.

D. Nonlinear Bayesian Algorithms
While linear vector, Wiener filter, and Kalman filter

techniques have resulted in respectable performance, their
modeling power and computational capacity are limited by

their linearity. Neural computation is nonlinear, suggest-

ing that BMI performance may be improved by using

nonlinear decoding techniques. A benefit of using a

Kalman filter approach is the incorporation of noise

models and dynamical modeling, providing a Bayesian

framework for BMI systems. However, while allowing the

modeling of noise parameters, the linear dynamical system
assumptions underlying Kalman filters may be over-

simplified. For example, the output process of the linear

dynamical system cannot model neural activity as a

nonlinear function of the kinematics. To address this

limitation, Li et al. implemented an unscented Kalman

filter with a quadratic dynamical output process and

demonstrated higher closed-loop performance than a

Kalman filter [37]. Other studies have proposed particle
filtering and point process based approaches (e.g., [33]–

[36] and [65]) as well as Laplace–Gaussian filtering (e.g.,

[24] and [38]). Studies have reported that decoders using

nonlinear Bayesian approaches achieved higher closed-

loop performance than a population vector decoder (e.g.,

[24] and [45]).

E. Nonlinear Recurrent Neural Networks
One particular nonlinear modeling tool, the recurrent

neural network (RNN), has seen much development over

the last decade. In particular, the echo state network

(ESN) [66] has seen wide spread application and has been

investigated in both offline demonstrations (e.g., [67]) and

closed-loop BMI systems (e.g., [39]). An ESN is an RNN
with learning limited to the output weights. Specifically,

the continuous-time ESN is defined by

�_sk ¼ �sk þ Jrk þWIyk þWFx̂k (8)

where sk is the hidden state of the recurrent network. The

hidden units interact through matrix J. The continuous

variable rk is the ‘‘instantaneous firing rate’’ and is defined

as ri
k ¼ tanhðsi

kÞ. Interesting dynamics arise in the

network due to this nonlinear coupling. The inputs yk

enter the system through weights WI while a linear

readout of the kinematics x̂k ¼WOrk is fed back to the

hidden units through feedback weights WF.

Typically, training an RNN uses an algorithm called

‘‘backpropagation through time.’’ Due to limitations in this

algorithm [68], alternative network architectures and

training methods have been developed to sidestep back-

propagation through time. One such architecture is the
ESN. The defining features of the ESN are a randomized

J matrix and limited supervised training of only the output

weights WO. Because the output is fed back to the hidden

state, modifying the output weights additionally modifies

the network dynamics, essentially driving a nonlinear

spatio–temporal kernel with signal x̂k (along with input

yk). Because learning is focused exclusively on WO, ESN

training methods can be as simple as linear regression. Thus,
the ESN architecture allows for powerful nonlinear modeling

while sidestepping the full learning problem in RNNs.

We applied the ESN, as shown in Fig. 3(d), to the

closed-loop BMI reaching task [39]. For the input, we used

spiking activity (threshold crossings; see Section IV-B)

from motor cortex, while for the training signal, we used

the velocity and position of the reaching arm. We trained

WO with the FORCE learning rule [69]. We found that in
a closed-loop BMI, the ESN performed over twice as well

as a velocity Kalman filter across two test subjects [39].

Moreover, as shown in Table 2, the RNN is able to achieve

higher Fitts throughput than linear vector techniques,

Wiener filters, and velocity Kalman filters. Furthermore,

we observed that the prosthesis kinematics decoded by the

ESN were more like the hand kinematics than the

prosthesis kinematics decoded by the velocity Kalman
filter [39]. This study indicates that nonlinear RNNs merit

further investigation as a viable BMI decode methodology.

III . EMERGING OPPORTUNITIES IN
DECODER DESIGN

A design philosophy in machine learning and supervised
classification is to design algorithms that capitalize on

aspects or features specific to the system and data being

analyzed. While the population vector algorithm was

inspired from neurophysiological results, other techniques

such as recursive Bayesian filtering are applied to BMI

systems in a standard fashion without addressing unique

aspects of BMI systems or motor cortical neural data. Hence,

there is the potential to further increase BMI performance by
augmenting decode algorithms with techniques that account

for unique features in BMI systems.

We specifically focus on two opportunities where

taking into account aspects of BMI systems and motor

cortical neural data may further increase the performance

of BMI systems. The first opportunity is to address the

closed-loop nature of BMI systems: the subject controlling
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the BMI continuously observes how the prosthesis is
moving. As a result, the user of the BMI may adopt novel

strategies to control the prosthesis in addition to making

online adjustments and corrections based on visual

observations of the prosthesis movements. Hence, by

augmenting decode algorithms with ideas from feedback

control theory, it may be possible to increase the

performance of BMIs, potentially irrespective of the

specific type algorithm being used. The second opportu-
nity is to incorporate recent neurophysiological evidence

regarding the dynamical behavior of neural population

ensembles. Designing decode algorithms that incorporate

neuroscientific findings regarding motor cortex function

has the potential to further increase BMI performance.

A. Decoder Retraining and Intention Estimation
As early as 1969, it was demonstrated that a monkey

could modulate the activity of a particular neuron using

operant conditioning (where the activity of the neuron is

shown to the monkey, and a specific change in firing is

rewarded) [70]. More recently, such neural adaptation has

been demonstrated in BMI systems, where the properties

of some neurons may change while the subject controls a

closed-loop BMI (e.g., [27], [53], and [71]). For example, a

recent study demonstrated that neurons which do not
contribute to the decoder have a relative decrease in

modulation compared to neurons that contribute to the

decoder [72]. In these cases, the feedback component of

the BMI, whereby the subject of the BMI observes how the

prosthesis responds to user intention, leads to neural

adaptation. This adaptation may reflect, for example, the

adoption of a cognitive strategy to move the prosthesis.

When coupled with the fact that the subject makes real-
time adjustments to guide the prosthesis in a desired

fashion, it is clear that the distribution of neural data

during closed-loop BMI control is different than the

distribution of the neural data used in training sets.

Because the distributions of neural data in the training

set and closed-loop control are different, evaluating

decoders on withheld ‘‘offline’’ data is not a reliable

indicator of closed-loop performance (e.g., [23] and [24]).
In addition to this, decoder parameter optimization

through offline cross validation may result in parameters

that are suboptimal for closed-loop control [22]. One

method to better match the distributions between the

training data and subsequent closed-loop BMI control data

is to retrain the decoder with data from a closed-loop BMI

control session. This approach, called decoder retraining

(e.g., [73]–[75]), is a multistage process. In the first stage,
a decoder is learned from training data with natural

reaching or imagined movements. In the second stage, the

learned decoder is used in closed-loop control, and these

data subsequently serve as a training set for the learning of

a new decoder (e.g., [10], [11], [13], [14], [27], and [73]–

[75]). The second stage can be repeated, so that the

decoder parameters continue to be updated based off of the

most recently collected closed-loop BMI data. Decoder
retraining in part accounts for potential neural adaptation

that may result from being in the closed-loop control

context (e.g., [53] and [72]–[75]) and was shown to

decrease changes in neural preferred directions between

the training set and closed-loop BMI control [73].

However, merely retraining the decoder with data from

a closed-loop BMI session does not necessarily result in

superior decoder performance. Indeed, we found that
decoder retraining alone decreased decoder performance,

in part because the closed-loop training set contains

several instances where the prosthesis movements con-

trolled by the decoder are discordant with the subject’s

intentions [73]. For example, when controlling an

imperfect decoder, the subject may intend to move the

prosthesis to the right, but the decoder instead moves the

prosthesis to the left. This weakens the training set
correlations between the neural data and the kinematics.

Hence, an important technique to augment decoder

retraining is intention estimation, which can help to

improve the kinematic-neural data correlations [14],

[73]. With intention estimation, the training set kinemat-

ics are modified to reflect the intent of the subject [14],

[76]. As an example, our recent decoder, the ‘‘ReFIT–KF’’

algorithm, utilizes an intention estimation modification
where it is assumed that the subject is always intending to

move a computer cursor to the prompted target (goal) [14].

In this fashion, any observed training set velocities, which

may even move the cursor away from the goal, are rotated

to point toward the goal. We note that this modification is

only performed on the training set, and no goal

information is made available to the algorithm when

used in closed-loop control. By combining decoder
retraining and intention estimation, the performance of

a BMI can be significantly increased [14]. Most of the

performance improvement is a result of intention estima-

tion rather than decoder retraining [73]. Recently, it was

demonstrated that repeatedly updating decoder para-

meters with decoder retraining and intention estimation

causes the performance of the decoder to increase until a

steady-state convergence of decoder parameters [74], [75].
Another variant of this approach has the subject

perform closed-loop BMI control with assistance, where

the prosthesis movements are partially controlled by the

decoder as well as by an automated controller that guides

the prosthesis to the target (e.g., [11] and [13]). The

amount of assistance provided is decreased as the subject

learns to use the BMI well. Subsequently, these data

constitute a new training set for decoder calibration [13].

B. A Feedback Control Intervention
Another innovation of the ReFIT–KF algorithm is to

incorporate feedback control assumptions to model the

visual feedback component of the BMI system. The

ReFIT–KF algorithm makes the assumption that the user

of the BMI observes and internalizes the decoded position
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of the cursor with complete certainty. Therefore, any

uncertainty in the decoded position, which would other-

wise arise from propagated uncertainty in the decoded

velocity, is set to zero. This is demonstrated in the

graphical model of Fig. 4. The position at time k is

observed by the user, as set by the decoder (which is called

a causal intervention [77], highlighted in green) and
incoming arrows to pk are removed, indicating that no

uncertainty is propagated to pk. The ReFIT–KF algorithm

also estimates the contribution of position to the neural

activity by finding the matrix Cp that minimizes the

squared error yk �Cppk. Given the assumption that

there is no uncertainty in the decoded position p̂k, the

ReFIT–KF algorithm subtracts the position contribution to

the neural signal by calculating ~yk ¼ yk �Cpp̂k. Subse-
quently, the position subtracted neural data ~yk are used as

a neural observation of the Kalman filter. Combined with

decoder retraining and intention estimation, the ReFIT–

KF algorithm increased the performance of state-of-the-art

BMI systems by approximately twofold [14].

Feedback control approaches can increase the perfor-

mance of BMI systems while being somewhat agnostic to

the type of algorithm being used. For example, intention
estimation modifications and decoder retraining can be

applied to most decoders. Therefore, developing techni-

ques that account for the feedback aspect of BMI systems

may further increase the performance of BMI systems.

C. Future BMIs: A Neural Dynamical Perspective
Whereas the linear vector techniques described in

Section II-A were informed by a neuroscientific perspec-

tive, much of recent BMI algorithm development has
relied on linear estimation and neural network theory. We

therefore ask: What is the place of neuroscience in decoder

design?

Over the past decade, a line of scientific evidence has

proposed a dynamical perspective of motor cortex (e.g.,

[51], [52], and [78]–[80] and reviewed in [42]). In this

perspective, motor cortex is described as a dynamical

machine that generates movements. A key component of
this theory is that the neural population activity at time k is

informative of the neural population activity at time kþ 1.

This is captured by introducing a ‘‘neural state.’’ The

neural state, which can be inferred from observations of

motor cortical activity, summarizes the neural population

activity, and is governed by a dynamical model that

describes the neural state at time kþ 1 as a function of the

neural state at time k. Several studies have investigated the
characteristics of these dynamics (e.g., [52], [79], and

[81]), while other studies have demonstrated that the

trajectories of the neural state are informative of

behavioral correlates (e.g., [78] and [82]). At the crux of

the dynamical perspective is a departure from modeling

single neuron tuning to modeling population-level neural

interactions and dynamics.

Current techniques in the BMI literature do not
incorporate dynamical models of the neural population

activity. For example, the Kalman filter incorporates a

dynamical model, but it is only a model of the physical

kinematic laws of the prosthesis (resulting in temporal

smoothing of the kinematics) which are learned without

neural data (e.g., [10], [14], [31], and [32]). While these

models are able to capture how neural activity is externally
driven by kinematic activity, they do not capture how the
neural activity has its own internal drive, with rules that

govern how the neural population modulates itself over

time. If one can learn an adequate dynamical model of the

neural population activity, modeling this temporal struc-

ture has the potential to increase BMI performance. One

reason to expect improvement is because a prediction of

future neural population activity (obtained through a

dynamical model) can be used to augment noisy observa-
tions of the neural activity. Our recent study demonstrates

that modeling even a simple linear time-invariant approx-

imation of the neural dynamics can significantly increase

the performance of a BMI system [83]. Therefore,

incorporating ideas from recent studies of neural dynamics

may be important for enabling next-generation, high-

performance BMI systems.

IV. TOWARD CLINICAL TRANSLATION

The ultimate goal of BMI systems is to improve the quality

of life for people with paralysis. To this end, many of the

design choices in BMI systems are guided by a motivation

to increase the clinical viability of BMI systems. While

increasing decoder performance is essential to clinical

Fig. 4. Feedback control causal intervention. This is the linear

dynamical model used in Kalman filter decoders, where xk

encompasses both position pk and velocity vk of the prosthesis. The

position at time k is given by pk ¼ pk�1 þ vk�1Dt. Therefore, uncertainty

in both pk�1 and vk�1 should propagate to uncertainty in pk. However,

because the subject observes the position of the prosthesis at

time k (as indicated by the green shading), an assumption is made

that the subject has no uncertainty in position pk. Therefore, the

uncertainty from pk�1 and vk�1 is not propagated to pk. Figure

from [14].
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translation, other important challenges remain that will be
essential for bringing BMI systems to clinical viability. In

this section, we describe a brief history of BMI clinical

translation, and discuss three additional opportunities in

BMI systems that may be of interest to information

systems engineers.

A. A Brief History of Clinical Translation
Until recently, progress in BMI technology has largely

come from advances in statistical signal processing and

motor neuroscience based on preclinical nonhuman

primate studies [21]. However, the field’s driving motiva-

tion has always been to move toward creating clinically

viable prostheses to restore movement to people with

paralysis. The first intracortical BMI tested in a person

consisted of just two chronically implanted electrodes, and

gave the subject basic control of a computer cursor
following extensive training [84], [85]. In 2004, the first

participant in the BrainGate FDA phase-I clinical trial was

implanted with a 96-electrode Utah array, similar to the

one used in many previous monkey studies. This study

provided critical evidence that movement intention-

related signals persist in motor cortex even many years

after paralysis-causing injury. Today there are multiple

ongoing clinical trials of investigatory closed-loop intra-
cortical BMI systems, with compelling demonstrations of

individuals with tetraplegia using these devices to more

accurately control a computer cursor [9], [32], [86]–[88]

and use a robotic arm to manipulate objects in their

environment [10], [11]. While there remain a number of

challenges to be solved on the way to clinical translation,

here we will focus on recent progress made toward

increasing the longevity of BMI system use as well as low
power implementations of BMI systems.

B. Maintaining BMI Performance in the Face of
Signal Loss

A particularly pressing challenge is to develop neural

prostheses that will sustain high performance for many

years after device implantation, with the ultimate goal

being lifetime functionality [16], [89]. The number of
discriminable neurons recorded by an implanted array

degrades over time (e.g., [86] and [90]–[93]) due to

several factors. These factors include biological failures

such as gliosis and meningitis, material failures such as

insulation leakage, and electrode mechanical failure (e.g.,

[92] and [93]). The risks and costs of sensor reimplanta-

tion in a human patient are quite real; thus, their usable

lifespan must be maximized.
Throughout this review, we have referred to the neural

observations of BMIs being the spikes of individual

neurons measured from electrodes. However, the electri-

cal voltages recorded on these electrodes tend to attenuate

over time, making the detection of spiking activity from

individual neurons more difficult. Recent studies have

demonstrated that one way of maintaining performance in

the face of degrading electrode recording quality is to
measure activity derived from multiunit spiking threshold

crossings, rather than single neuron spiking activity. These

threshold crossing events are measured by counting the

number of times the voltage on an electrode falls below a

predetermined value (e.g., some multiple of the root mean

square voltage on the channel) regardless of whether the

activity is from a single neuron. For example, one could

measure action potentials from two neurons on a single
electrode, as shown in Fig. 2(b) and (c), but the threshold

crossing observation would not differentiate between

spikes coming from one neuron or the other. A concern

in using threshold crossings is the loss of information

incurred from not separating out distinct neural sources;

one could easily imagine the deleterious effect of

combining activity from two neurons with opposite tuning.

However, previous studies have demonstrated that these
effects do not significantly decrease BMI performance.

Indeed, the performance of BMIs using threshold cross-

ings is comparable to those using single unit activity [45],

[91]. Moreover, a potential loss in performance is out-

weighed by the ability of threshold crossings to mitigate

decoder performance drop-off in the presence of decreas-

ing signal-to-noise ratio. It was reported that as long as the

neural signal is above the noise floor, BMI performance
based on threshold crossing activity is largely indepen-

dent of action potential voltage [91]. As a manifestation of

this result, several studies have demonstrated that BMIs

which decode threshold crossing activity can perform at

a consistently high level even when the arrays are

multiple years post implantation [14], [86]. This approach

has successfully translated to human clinical studies

(e.g., [10] and [12]). An example plot of performance
of the ReFIT–KF algorithm, retrained daily using threshold

crossings, is shown in Fig. 5. For multiple years, across two

macaques, the decoder performance remained approxi-

mately constant. By using threshold crossings, the neural

signals measured from these arrays continue to result in

comparable BMI performance to this day, surpassing the

six-year mark in Monkey L.

A different and complimentary method to maintain
performance in the face of degrading electrode recording

quality is to make use of additional types of neural signals

that may be available from the same sensor. As shown in

Fig. 2, spiking activity is extracted by high-pass filtering

the raw voltage signal coming off of the electrode, but

there is also information in the low-frequency component

of the signal (up to several hundred hertz). This signal is

called the local field potential and is the superposition of
extracellular electrical currents resulting from action

potentials, postsynaptic potentials, and other membrane

currents of cells in the vicinity of the recording electrode

(e.g., [94]–[97]). Several reports have conjectured that

LFP may be more stable than spikes over time (e.g., [98]

and [99]) and have shown that LFP can be measured even

in the absence of spikes (e.g., [100]). A number of studies
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have examined the LFP recorded during natural reaches

and shown that this signal contains considerable informa-

tion about the movement (e.g., [98] and [101]–[109]).

Only very recently have these offline studies been

followed up by closed-loop demonstrations with macaques

controlling a BMI using LFP signals [75], [110]. Because

continuously controlling a BMI cursor using LFP signals is

only in its infancy, there may be room to improve LFP
decoding performance. For example, a fundamental

difference between LFP and spiking signals is that LFP is

an analog signal and is thus subject to a variety of analysis

techniques. While point-process spiking activity is typical-

ly preprocessed to form an estimate of the firing rate

through binning or smoothing, there are a myriad of

choices of possible time-domain and frequency-domain

LFP features that can be derived from the raw recorded
LFP voltage, as shown in Fig. 2. Hence, algorithmic

investigations (as discussed in Section II) may have to be

revisited to delineate how various aspects of the LFP, such

as different time- and frequency-domain features, can

result in effective high-performance decoders. While one

study has demonstrated that decoding from threshold

crossings leads to better performance than decoding from

various LFP features [110], it remains to be seen whether
incorporating the LFP signal into a spike-based BMI can

improve performance or robustness over a system driven

solely by spiking activity. Importantly, developing deco-

ders that beneficially combine these signals would be a

major step toward increasing the clinical viability of BMI

systems.

C. Decoder Longevity Without Retraining
Another important challenge facing BMI systems is

that recorded neural signals can be nonstationary from one

day to the next, so that a decoder trained on a previous day

may not be effective on a subsequent day. While current
clinical studies have been instrumental in demonstrating

the capabilities of BMI systems, they have always required

constant expertise and supervision by trained technicians.

In particular, the technicians, among other tasks, must

daily collect a training set, which is used to subsequently

train a decode algorithm. However, to facilitate wide-

spread BMI use, it would be useful for BMI systems to be

autonomous, capable of running for days without recali-

bration or technician supervision.

To this end, some recent work has been devoted to

building robust decoders that are capable of being used for
multiple weeks without the need for retraining sessions or

recalibration by a technician. Encouragingly, it has been

shown that LFP and threshold crossing activity provide a

level of robustness for decoding not previously afforded by

single units [55], [110]. In these studies, a static decoder

was used for extended periods of time (up to a year)

without retraining. These studies demonstrate a stabilizing

of the relationship between neural activity and cursor
movement during online BMI control [110] and suggest

that BMIs may be capable of robust performance over long

timescales. However, more extensive experimentation is

warranted over longer periods of time and with more

subjects.

D. Low-Power Neuromorphic Implementations
Clinical and laboratory studies currently require

multiple computers and recording systems to function,

which result in bulky and significant hardware infrastruc-

ture. However, for clinical use, BMI systems should be

portable, low power, and ideally implantable without
significant burden on the subject. The two approaches to

this problem are differentiated based on where the neural

decode occurs: remotely or locally. In remote decode

systems, the neural data is measured, amplified, and

optionally thresholded before being transmitted wirelessly

to a receiver which performs the rest of the processing and

decoding [111]–[113]. An alternative approach is to

perform the decode locally, with transmission of only the
low data rate kinematic information. Conventional digital

hardware systems, including ASICS, may still require too

much power, and could lead to excessive heating of the

Fig. 5. Robustness of threshold crossings across years. The performance, measured as Fitts throughput (bits per second), is shown for the

ReFIT–KF algorithm using threshold crossings across years. Each dot corresponds to the performance as measured on an experimental day, and

the different colors correspond to different subjects. Each day, the ReFIT–KF was trained using the recorded neural threshold crossings measured

on that day. There is no observed decline in performance of the ReFIT–KF algorithm across approximately four years, as indicated by the

regression lines. Figure from [14].
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brain and surrounding tissue. The limit for power dissipation
set by the American Association of Medical Instrumentation

is 10 mW within a 6� 6 mm2 area [114], [115]. This power

constraint may be met with a neuromorphic approach [116],

which uses analog hardware modeling neural architectures

to perform computations. The advantage of this approach is

that the decode could be performed locally on a neuro-

morphic chip with no need for broadband neural data

transmission, cutting down the wireless data rate by
approximately four orders of magnitude to 3 kb/s [17]. In

this approach, standard algorithms, such as the Kalman filter,

are translated into spiking neural network implementations.

For example, a recent study shows that a 2000-artificial

neuron spiking neural network can adequately mimic a

Kalman filter decoder in closed-loop BMI control [17], [117].

In neuromorphic chip implementations, an artificial neuron

spiking at 100 Hz dissipates approximately 50 nW of power,
which could lead to significantly lower power implementa-

tions that may potentially be fully implantable. Fully

implantable chips (e.g., [118] and [119]) may be important

for reducing infection risks and mechanical forces that may

cause electronic and array failure. Combined with the neu-

romorphic approach, BMI systems may be safely implanted

while drawing very little power, making them more accessible
for clinical use.

V. CONCLUSION

In the past 15 years, great strides have been made to bring

intracortical BMI systems from concept, to laboratory

implementation, and finally to clinical studies. In partic-

ular, information systems engineering has played a

significant role in the design of decode algorithms, which

are at the core of BMI systems. These designs have resulted

in compelling laboratory and clinical studies, and continue

to march us toward the goal of bringing BMIs to clinical
viability. As reviewed here, there are numerous informa-

tion systems engineering challenges and opportunities that

will be important to achieving this goal. h
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N. R. Anderson, E. C. Leuthardt,
J. G. Ojemann, D. Limbrick, D. W. Moran,
L. A. Gerhardt, and J. R. Wolpaw, ‘‘Decoding
two-dimensional movement trajectories
using electrocorticographic signals in
humans,’’ J. Neural Eng., vol. 4, no. 3,
pp. 264–275, Sep. 2007.

[7] G. Schalk, K. J. Miller, N. R. Anderson,
J. A. Wilson, M. D. Smyth, J. G. Ojemann,
D. W. Moran, J. R. Wolpaw, and
E. C. Leuthardt, ‘‘Two-dimensional
movement control using
electrocorticographic signals in humans,’’
J. Neural Eng., vol. 5, no. 1, pp. 75–84,
Mar. 2008.

[8] Z. Wang, A. Gunduz, P. Brunner,
A. L. Ritaccio, Q. Ji, and G. Schalk,
‘‘Decoding onset and direction of movements
using electrocorticographic (ECoG)
signals in humans,’’ Front. Neuroeng.,
vol. 5, p. 15, Jan. 2012, DOI: 10.3389/fneng.
2012.00015.

[9] L. R. Hochberg, M. D. Serruya, G. M. Friehs,
J. A. Mukand, M. Saleh, A. H. Caplan,
A. Branner, D. Chen, R. D. Penn, and
J. P. Donoghue, ‘‘Neuronal ensemble control
of prosthetic devices by a human with
tetraplegia,’’ Nature, vol. 442, no. 7099,
pp. 164–171, Jul. 2006.

[10] L. R. Hochberg, D. Bacher, B. Jarosiewicz,
N. Y. Masse, J. D. Simeral, J. Vogel,
S. Haddadin, J. Liu, S. S. Cash,
P. van der Smagt, and J. P. Donoghue,
‘‘Reach and grasp by people with tetraplegia
using a neurally controlled robotic arm,’’
Nature, vol. 485, no. 7398, pp. 372–375,
May 2012.

[11] J. L. Collinger, B. Wodlinger, J. E. Downey,
W. Wang, E. C. Tyler-Kabara, D. J. Weber,
A. J. C. McMorland, M. Velliste,
M. L. Boninger, and A. B. Schwartz,
‘‘High-performance neuroprosthetic control
by an individual with tetraplegia,’’ Lancet,
vol. 381, no. 9866, pp. 557–564, Feb. 2013.

[12] B. Jarosiewicz, N. Y. Masse, D. Bacher,
S. S. Cash, E. Eskandar, G. Friehs,
J. P. Donoghue, and L. R. Hochberg,
‘‘Advantages of closed-loop calibration in
intracortical brain-computer interfaces for
people with tetraplegia,’’ J. Neural Eng.,
vol. 10, no. 4, Aug. 2013, 046012.

[13] M. Velliste, S. Perel, M. C. Spalding,
A. S. Whitford, and A. B. Schwartz, ‘‘Cortical
control of a prosthetic arm for self-feeding,’’
Nature, vol. 453, no. 7198, pp. 1098–1101,
Jun. 2008.

[14] V. Gilja, P. Nuyujukian, C. A. Chestek,
J. P. Cunningham, B. M. Yu, J. M. Fan,

M. M. Churchland, M. T. Kaufman,
J. C. Kao, S. I. Ryu, and K. V. Shenoy,
‘‘A high-performance neural prosthesis
enabled by control algorithm design,’’
Nature Neurosci., vol. 15, no. 12, pp. 7–10,
Nov. 2012.

[15] J. E. O’Doherty, M. A. Lebedev, P. J. Ifft,
K. Z. Zhuang, S. Shokur, H. Bleuler, and
M. A. L. Nicolelis, ‘‘Active tactile exploration
using a brain-machine-brain interface,’’
Nature, vol. 479, no. 7372, pp. 228–231,
Nov. 2011.

[16] V. Gilja, C. A. Chestek, I. Diester,
J. M. Henderson, and K. V. Shenoy,
‘‘Challenges and opportunities for
next-generation intracortically based neural
prostheses,’’ IEEE Trans. Biomed. Eng.,
vol. 58, no. 7, pp. 1891–1899, Jul. 2011.

[17] J. Dethier, P. Nuyujukian, S. I. Ryu,
K. V. Shenoy, and K. Boahen,
‘‘Design and validation of a real-time
spiking-neural-network decoder for
brain-machine interfaces,’’ J. Neural Eng.,
vol. 10, no. 3, Apr. 2013, 036008.

[18] R. E. Kass, V. Ventura, and E. N. Brown,
‘‘Statistical issues in the analysis of neuronal
data,’’ J. Neurophysiol., vol. 94, pp. 8–25,
2005.

[19] A. M. Green and J. F. Kalaska, ‘‘Learning to
move machines with the mind,’’ Trends
Neurosci., vol. 34, no. 2, pp. 61–75, 2011.

[20] M. L. Homer, A. V. Nurmikko,
J. P. Donoghue, and L. R. Hochberg,
‘‘Sensors and decoding for intracortical brain
computer interfaces,’’ Annu. Rev. Biomed.
Eng., vol. 15, pp. 383–405, Jan. 2013.

[21] P. Nuyujukian, J. M. Fan, V. Gilja,
P. S. Kalanithi, C. A. Chestek, and
K. V. Shenoy, ‘‘Monkey models for
brain-machine interfaces: The need for
maintaining diversity,’’ in Proc. 33rd Annu.

Kao et al. : Information Systems Opportunities in Brain–Machine Interface Decoders

Vol. 102, No. 5, May 2014 | Proceedings of the IEEE 679



Conf. IEEE Eng. Med. Biol. Soc., Jan. 2011,
vol. 2011, pp. 1301–1305.

[22] J. P. Cunningham, P. Nuyujukian, V. Gilja,
C. A. Chestek, S. I. Ryu, and K. V. Shenoy,
‘‘A closed-loop human simulator for
investigating the role of feedback control in
brain-machine interfaces,’’ J. Neurophysiol.,
vol. 105, pp. 1932–1949, 2011.

[23] S. M. Chase, A. B. Schwartz, and R. E. Kass,
‘‘Bias, optimal linear estimation, and the
differences between open-loop simulation
and closed-loop performance of
spiking-based brain-computer interface
algorithms,’’ Neural Netw., vol. 22, no. 9,
pp. 1203–1213, 2009.

[24] S. Koyama, S. M. Chase, A. S. Whitford,
M. Velliste, A. B. Schwartz, and R. E. Kass,
‘‘Comparison of brain-computer interface
decoding algorithms in open-loop and
closed-loop control,’’ J. Comput. Neurosci.,
vol. 29, no. 1–2, pp. 73–87, Aug. 2010.

[25] J. M. Carmena, M. A. Lebedev, R. E. Crist,
J. E. O’Doherty, D. M. Santucci,
D. F. Dimitrov, P. G. Patil, C. S. Henriquez,
and M. A. L. Nicolelis, ‘‘Learning to control a
brain-machine interface for reaching and
grasping by primates,’’ PLoS Biol., vol. 1,
no. 2, Nov. 2003, E42.

[26] E. Salinas and L. F. Abbott, ‘‘Vector
reconstruction from firing rates,’’ J. Comput.
Neurosci., vol. 1, no. 1–2, pp. 89–107,
Jun. 1994.

[27] D. M. Taylor, S. I. H. Tillery, and
A. B. Schwartz, ‘‘Direct cortical control of 3D
neuroprosthetic devices,’’ Science, vol. 296,
no. 5574, pp. 1829–1832, Jun. 2002.

[28] N. G. Hatsopoulos, J. Joshi, and J. G. O’Leary,
‘‘Decoding continuous and discrete motor
behaviors using motor and premotor cortical
ensembles,’’ J. Neurophysiol., vol. 92, no. 2,
pp. 1165–1174, Aug. 2004.

[29] J. C. Sanchez, D. Erdogmus, Y. N. Rao,
S.-P. Kim, M. A. L. Nicolelis, J. Wessberg,
and J. C. Principe, ‘‘Interpreting neural
activity through linear and nonlinear models
for brain machine interfaces,’’ in Proc. 25th
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
2003, no. 2, pp. 2160–2163.

[30] J. C. Sanchez, J. C. Principe, J. M. Carmena,
M. A. Lebedev, and M. A. L. Nicolelis,
‘‘Simultaneous prediction of four kinematic
variables for a brain-machine interface
using a single recurrent neural network,’’ in
Proc. 26th Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc., 2004, pp. 5321–5324.

[31] W. Wu, M. J. Black, Y. Gao, E. Beinenstock,
M. D. Serruya, A. Shaikhouni, and
J. P. Donoghue, ‘‘Neural decoding of cursor
motion using a Kalman filter,’’ Advances
in Neural Information and Processing
Systems 15. Cambridge, MA, USA: MIT
Press, 2003, pp. 133–140.

[32] S.-P. Kim, J. D. Simeral, L. R. Hochberg,
J. P. Donoghue, and M. J. Black, ‘‘Neural
control of computer cursor velocity by
decoding motor cortical spiking activity in
humans with tetraplegia,’’ J. Neural Eng.,
vol. 5, no. 4, pp. 455–476, Dec. 2008.

[33] A. E. Brockwell, A. L. Rojas, and R. E. Kass,
‘‘Recursive Bayesian decoding of motor
cortical signals by particle filtering,’’ J.
Neurophysiol., vol. 91, no. 4, pp. 1899–1907,
Apr. 2004.

[34] Y. Gao, M. J. Black, E. Bienenstock,
S. Shoham, and J. P. Donoghue,
‘‘Probabilistic inference of hand motion from
neural activity in motor cortex,’’ Advances
in Neural Information and Processing
Systems 14. Cambridge, MA, USA: MIT
Press, 2002, pp. 213–220.

[35] Y. Gao, M. J. Black, E. Bienenstock, W. Wu,
and J. P. Donoghue, ‘‘A quantitative
comparison of linear and non-linear models
of motor cortical activity for the encoding
and decoding of arm motions,’’ in Proc.
1st Int. IEEE EMBS Conf. Neural Eng., 2003,
pp. 189–192.

[36] S. Shoham, L. M. Paninski, M. R. Fellows,
N. G. Hatsopoulos, J. P. Donoghue, and
R. A. Normann, ‘‘Statistical encoding model
for a primary motor cortical brain-machine
interface,’’ IEEE Trans. Biomed. Eng., vol. 52,
no. 7, pp. 1312–1322, Jul. 2005.

[37] Z. Li, J. E. O’Doherty, T. L. Hanson,
M. A. Lebedev, C. S. Henriquez, and
M. A. L. Nicolelis, ‘‘Unscented Kalman filter
for brain-machine interfaces,’’ PLoS ONE,
vol. 4, no. 7, Jan. 2009, e6243.
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