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Abstract— The prospect of helping disabled patients by translating
neural activity from the brain into control signals for prosthetic
devices is currently being realized. Initial proof-of-concept systems
have demonstrated the need for faster and more accurate estimation
algorithms, without requiring unrealistically many neurons. To ad-
dress this need, we recently reported the plan-movement maximum
likelihood (PMML) algorithm. It combines plan activity, specifying
reach end-point, with movement activity, specifying instantaneous
direction and speed of the arm movement, to yield more accurate
estimates with fewer meurons. This approach could greatly benefit
from an improved ability to track the switching of plan activity, which
precedes movement onset, so that a more accurate plan estimate can
be incorporated into movement decoding. In this paper, we propose a
modified point-process filter, employing an adaptive parameter, that
is capable of more accurately tracking constant plan periods and
step changes than conventional methods. We also suggest that this
algorithm is more attractive than an alternate maximum likelihood
step tracking scheme. Ultimately, the adaptive algorithm is well-suited
for use with the PMML algorithm, or for directly controlling prosthetic
devices with plan activity, and should improve neural prosthetic system
performance,

Index Terms— Neural prosthetic systems, estimation algorithms,
decode algorithms, adaptive point-process filters, step tracking.

I. INTRODUCTION

ECENT progress on neural prosthetic systems has demon-

strated that monkeys [1], [2] and humans [3] can learn to
move a computer icon to various target locations simply by activat-
ing neural populations that participate in natural arm movements.
The discovery that neurons respond selectively to the direction and
speed of arm movements, combined with estimation algorithms for
translating this neural activity into computer-icon control signals,
has resulted in proof-of-concept neural prosthetic systems. While
these systems can perform quite well by recording from many tens
to hundreds of neurons simultaneously, there is intense interest
in increasing performance while simultaneously decreasing the
number of neurons required; decreasing the number neurons needed
reduces the number of electrodes that must be surgically implanted.
By improving system performance and reducing the number of
implanted electrodes it may be possible to deliver prosthetic arm
(or icon) systems to disabled patients sooner than would otherwise
be possible.

The key idea of our recently reported plan-movement maximum
likelihood (PMML) algorithm [4] is that plan activity indicates the
targeted end-point of the arm movement and can serve as a pow-
erful probabilistic constraint for decoding neural activity present
during movements. The performance of the PMML algorithm, as
well as the ability to control prosthetic devices directly with just
plan activity, depends on the ability to track neural plan activity
with high fidelity. In the case of the PMML algorithm, the quality
of the movement estimate relies on an accurate estimate of plan
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activity just before a movement begins. Since a movement “go”
signal may potentially arrive at any time {5], it is critical that
estimates of plan activity be accurate and track potentially rapid
switches as quickly as possible.

Many standard estimation algorithms (e.g., linear filters (6],
maximum likelihood [6], and especially point-process filters [71)
estimate constant or slowly varying neural activity quite well, but
to our knowledge an estimation algorithm specifically designed to
track constant hold periods as well as rapidly changing periods has
not been put forth. Here we propose a point-process filter with an
adaptive parameter that is typically set at a value (og) well-suited
for estimating constant hold periods, but can be briefly switched to
a value (o1) well-suited for tracking rapidly changing periods. The
switch to the alternate o, parameter is governed by a neural-plan-
activity edge detector algorithm running in parallel to the estimation
filter. The task consists of planning to locations in a 2-dimensional
workspace under some assumed plan switching statistics. The
result is that the adaptive point-process filter performs better in
simulation than the optimal fixed-parameter point-process filter.

II. METHODOLOGY
A. Neural Signal Model

It has been shown that modeling spike trains of individual
neurons as inhomogenous Poisson point-processes captures most
of the statistical variation of neural data [8]. In our model, the

instantaneous rate encodes the parameter of interest, namely target
location. Thus, the distribution of the number of spikes (or action

potentials), k;, observed from a cell indexed by j is given as
) k
pitkslx(t), 7) = PO oeien o

where the position x(t) and, consequently, the rate \;(x(t)) are
constant over some T' seconds preceeding ¢.

The relationship between firing rate and spatial position in plan
neurons has not been extensively investigated, though it has been
shown that the tuning varies with direction and extent of movement
[5], [9]. For simplicity, we model the tuning as Gaussian, where
the firing rate of the neuron decreases radially from a preferred
location. The functional form of mean firing rate is given as

2
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where \;(x(t)) is the instantaneous rate of the Poisson process at
the plan location x(t), Amar specifies the maximum mean firing
rate of the neurons, £ the standard deviation of the tuning, and u;
the location of maximal firing. The same values of A\pnax and £ are
taken for every simulated neuron in our population. The u; are
randomly chosen to lie within the workspace.

B. Statistical Distributions on Plan Sequences

When attempting to characterize plan dynamics there are three
major variables: switching speed of a plan, distribution of plan hold
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times, and distribution of plan change distances. A first pass might
involve quantifying these variables through observations of the
human motor system performing daily tasks. However, the plan and
movement subsystems need not have the same characteristics. For
example, individuals plan movements to many objects even though
only a few movements are ultimately executed. Furthermore,
plans of limb movements could have much more rapid switching
dynamics than actual movements which involve mass and inertia.
These questions are still to be investigated experimentally.

In this study, we choose the limiting case of instantaneous
switching speeds. This scenario makes the task of decoding most
important since it emphasizes the error between the estimate and
the intended plan location around the time of a switch. The hold
times are assumed to be uniformly distributed between 100ms and
500ms. The plan activity will switch from one location to another
with each location kept constant for a randomly drawn hold time.
Finally, the incremental distance between the pre-switch and post-
switch plan location is uniformly distributed between 0.25% and
0.75%, where | is the edge length of the workspace. After first
drawing the step distance, a direction is picked uniformly. This
angle is redrawn if the increment vector takes the new plan location
outside of the workspace.

C. Adaptive Point-Process Filter

The point-process (PP) filter as described in [7] is a promising
candidate for continuously estirnating the planned end-point. The
key similarity between the step tracking problem and the estimation
task in [7] lies with the neural response being described as a PP
whose mean firing rate is a Gaussian function of position. The
filter uses a recursive algorithm, similar to the Kalman time and
measurement updates, to incorporate the previous sample estimate
with spike data from the current time point. The previous estimate
is first modified by the time update, with the upcoming move-
ment increment vector stochastically distributed as a 2-dimensional
Gaussian centered at the past estimate. The constraint is known
here as the “random walk” parameter since the concept was first
used to describe the seemingly random movement statistics of a
free foraging rat. The measurement update adjusts the estimate by
the latest point-process observations. The new estimate is spatially
continuous. A variance is calculated with each estimate, thereby
allowing the current estimate to be used to form a prior distribution
for the next estimate.

Equations (3)~(5) constitute the one-step prediction (or time
update) phase of the PP filter. The measurement update equations
for %(tx|tr) and posterior variance W (tk|tx) equations are not
included here. These and further details of the filter derivation can
be found in [7].

X(tk) — X(tn-1) ~ N(0, Wx(A) 3)
R (telte—1) = X(to—1lte—1) @
W(tk|te—-1) = Wa(Ar) + W(th—1tr—1) &)

Equation (3) describes the prior on x(t)) given x(tx—1). In (4), the
vector X(tp|te) is the position estimate at time t,, given all the infor-
mation until the ¢" time step. Equation (5) relates W{tx|tx—1), the
variance in the position after the time update, 10 W{tx—1|tx—1), the
variance of the preceeding estimate X(tx—1ltx—1). The Gaussian
distribution of the “random walk” in (3) is described by its
covariance matrix Wi (Ag); this matrix is constant throughout the
operation of the filter. If the diagonal elements of this matrix are

small, the prior estimate will be very influential when computing
the next estimate. Conversely, the prior estimate will have a smaller
effect on the next estimate if the diagonal elements are large. This
allows the filter to be nimble when the plan position changes; it
will place more importance on the latest vector of spikes at the
cost of increasing sensitivity to noise present in the spike train.

The optimal choice for Wx(Ay) is dictated by the statistics of
the movement. Consider a simplified version of the random walk
covariance where Wix(Ay) = o21. If the number of steps per
second is reduced (or, equivalently, hold times lengthened) the
optimal choice of o would decrease. Similarly, a distribution that
favors larger step sizes would prefer a larger value of o than a
sequence that has smaller step distances on average. The optimal
value of o is termed oqpr.

To achieve better performance, we can adapt o as follows: use
a small random walk parameter (og) during hold periods and use
a larger parameter (o1) to transition between regions of constant
plan activity. In this manner, we are able to exploit the benefits of
0o < oopr Without suffering from its corresponding slow switching
rate. On the flip side, o1 > ogp provides a faster switching rate
without the penalty of high noise during the constant hold regions.

Therefore, we run two PP filters in parallel and employ an
edge detector. By default, the estimator uses the PP filter with
parameter oo. When the detector finds an edge, the prior estimate
and varjance of the oy filter is switched to that of the o3 filter. This
operation need only be performed for a single time step. It has the
effect of reseeding the slower slewing filter to a position closer to
the actual plan position. Given that the estimate is coming from
another filter with higher o2, the reseeded position is naturally
noisy. This is not a problem — the prior variance is also reseeded,
allowing for large corrections until the variance naturally relaxes
with the accumulation of enough post-edge data.

D. Maximum Likelihood Expanding Filter

Alternatively, one intuitive technique for tracking step changes
in the plan activity would be to employ an expanding maximum
likelihood (ML) filter. A traditional ML approach would first
consider, for each cell, only the neuvral firings over a fixed width,
sliding window. At each time step, the estimator picks the
position that maximizes the joint probability distribution, across
the cell population, given the neural data in the window [6]. A
well-known fact is that the variance of the ML estimate of the
parameter of a Poisson process varies inversely with the length of
the estimation window [10]. Thus, a natural improvement to the
standard approach is to expand the window during hold periods
rather than slide it at each time step. If the time locations of the
edges are known perfectly, one could reset the filter’s window after
each edge to eliminate any bias from data before the edge. It is
important to note, however, that the ML estimate will be rather
noisy for a short time after the reset operation as there is very
little data in the filter after the edge.

We can write the mathematical description of the ML filter as

M
LL(x(t)) = log [Hw(ka‘IX(t),T)} O]
%(t) = argmax [LL(x(t))] @)
x(t)

where T is the duration of time since the last edge as reported by
an edge detector, k; is the total number of spikes observed in T,
and %(¢) is the ML estimate of the plan location.
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E. Edge Detection

In order to test our point-process step tracking algorithms, we
require an edge detector. The goal should be to implement a
strategy that detects edges with a short latency and minimizes false
negatives'. It is also beneficial to reduce false positives since these
errors can introduce excessive noise into the system.

The method used for edge detection is a simple threshold
detector. The algorithm is characterized by the parameter tuple
(too:tgap,tay). At any instant in time there is toy + tgap + Loy
amount of history in the detection filter. When checking for an
edge, the algorithm averages the last ¢,, samples from the oo
PP filter and averages the first t,, samples from the the o1 PP
filter. An edge is declared if the average from the faster response
filter exceeds the average from the slower filter by a threshold.
After the edge detection, the adaptive point-process algorithm acts
as previously described. The parameters for the edge detector,
including the threshold, were fixed after some hand optimization.

FE. Simulation Architecture

The simulations were performed on populations of 100 neu-
rons with preferred locations chosen uniformly randomly in the
workspace. The maximal firing rate of each cortical neuron is set
to 100 spikes per second. The workspace is a 10 by 10 square of
arbitrary units (a.u.) and £ in (2) is chosen so that the area with
Aj(x) > 0.5\max covers approximately 40% of the workspace.
For our models, there is no apparent closed-form solution for the
maximum-likelihood filter. Thus, we discretized the workspace
into a grid to simulate the maximum-likelihood expanding filter.
The following results are from a uniformly spaced 400 point grid.

Each trial Jasts two seconds in which step sequences are gener-
ated as per the described assumptions. The error metric is the
average Euclidean distance of the estimate from the true plan
position over the entire trial. This is appropriate since we assume
that the “go” signal can appear at any time within the trial. Finally,
we averaged the trial-by-trial error over 500 iterations to guarantee
consistent convergence.

III. RESULTS
A. Non-Adaptive Point-Process Filter

We first ran simulations to understand the limitations of the non-
adaptive PP filter. Fig. 1A shows two simulation sweeps of the PP
filter. One simulation was conducted without any step sequences
(i.e., the plan distance was drawn for only a single reach from the
origin and it was held constant throughout the two-second trial).
The PP filter’s initial position was seeded at the origin. Clearly
the noise drops with lower o parameters; without any steps, there
is no penalty for slower slew rates. Furthermore, this curve is a
lower bound on the average error. The addition of steps can only
add error in the vicinity of each switch time. Next, the inclusion
of steps in the plan sequence yields the convex curve in Fig. 1.
As expected, very low values of o incur large error due to the
inability to slew quickly to new plan locations while higher values
of o suffer from noise during the hold regions. The optimal point
based on the plan sequence statistics is denoted as a,%,,, on the plot.

IFalse negatives can be tolerated as long as the misses are on smaller
step distances. Although the filter may be slow to recover to the new hold
location, the estimate will not have to slew far.
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Fig. 1. Comparison of baseline cases. (A) Performance of the PP filter
as a function of a single, fixed random walk parameter. (B) Analogous
performance curves for ML filters. Note that the filter is not a function of
window size; its error is simply repeated across the x-axis for comparison
purposes. Error bars indicate standard deviation.

B. Maximum Likelihood Expanding Filter

The traditional ML sliding window approach results are analo-
gous to the non-adaptive PP filter. Fig. 1B presents results from two
ML algorithms. The sliding window variant also shows a convex
shape. The small integration windows show large error due to their
susceptibility to noise. The larger windows perform poorly due to
a slow slew rate resulting from the large amount of pre-edge data
in many post-edge estimates. The performance of the alternate
maximum likelihood expanding filter is also plotted on the same
figure. This filter must be reset after each edge and, to simplify
the analysis, we did so by using a perfect edge detector with 15ms
latency. We expect the filter to only do worse with a true edge
detection algorithm.

C. Adaptive Point-Process Filter

Lastly, we investigated the adaptive PP filter and the results are
shown in Fig. 2. We did not perform an exhaustive search of
the high-dimensional space of algorithm and model parameters.
However, in the regime we tested, there is a marked improvement
of our algorithm over the non-adaptive filter. We chose o1 by hand
optimization near the point ogp; in Fig. 1. Then, we swept oo and
found that the error is lower with smaller values of oo (Fig. 2).
The difference in error between very low values of oo is not well-
differentiated because, after each edge, the injected variance from
filter o1 does not decay sufficiently by the time of the next edge.
The best value of oo is tightly coupled with the success statistics of
the edge detector since the cost of missing an edge will eventaully
become more significant to the overall error as oo decreases.

The asymptotic error of 0.37 a.u. at low oo is approximately
16% better than the average error of 0.44 au. from the optimal
oopr non-adaptive filter. In a trial-by-trial comparison, 99.2% of all
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Fig. 2. Response of adaptive PP filter. The highest error curve is
repeated from Fig. 1A for comparison. For both adapting filters, o1 is
fixed to 0.015 a.u.? and o is swept along the x-axis. The lowest curve
corresponds to the adaptive point-process filter with a perfect edge detector
that has fixed latency of 15ms. The curve simply labeled “Adaptive” shows
simulations that instead wvse the edge detector algorithm described earlier.
The parameters for the edge detection are (£gq,tgap,to,) = (50,10,15)ms
and the threshold is set at 1.25 a.u.
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Fig. 3. Single trial responses. (A) IMustration of the trade-off between low
noise and fast slew rate across different o values. (B) The ML expanding
filter looks to be performing well but it suffers from snap-to-grid effects. (C)
The asymptotically optimal adaptive PP filter performs much better in terms
of slew rate than the non-adaptive filter with ¢ = ¢¢. (D) Furthermore, the
adaptive filter outperforms a fixed ¢ = o3 counterpart due to less noise in
the hold periods.

trials show a performance improvement with the adaptive filter. It
is also informative to visually inspect the output estimates of these
various filters in a single trial (Fig. 3). These plots conveniently
summarize the concepts aforementioned in this paper.

IV. CONCLUSIONS

Both the adaptive PP filter and ML expanding filter perform
significantly better than their traditional counterparts. These two
filters also have similar performance when compared against each
other. However, the PP filter is a more attractive alternative for this
class of problems. Theoretically, in the limit of an infinitesimal
grid spacing, the maximum likelihood expanding filter is an ideal

strategy for plan step sequences, but finer grid spacings increase
the compute time of the ML filter estimate. In fact, the compute
time was seen to be a constraining factor in our study. For example,
we would require 1600 grid points with the ML filter to obtain an
error equivalent to that of the adaptive PP filter (both using perfect,
15ms latency, edge detection). On a moderately equipped present-
day PC, a C++ implementation of this ML filter runs about half
as fast as real-time while the equivalent PP filter runs considerably
faster than real-time. This performance gap could be improved by
rigorously optimizing the algorithm, but ML estimation compute
time will degrade (increase linearly) as more neurons are added to
the population.

Ultimately, the proposed adaptive PP filter appears to have
considerable promise. Its compute time is low enough that it
should perform in real-time even as hundreds of neurons are added
to the data set. The addition of neurons can only improve the
step tracking; the filter will generally be less noisy and the edge
detector will be more accurate. Qur approach also allows for
the pi‘ospect of incremental performance improvement. As more
sophisticated edge detectors are designed to provide consistent
low-latency estimates of switching points, such algorithms can be
mated with the adaptive point-process filter to yield more accurate
estimates of the plan location. By improving step sequence decod-
ing by approximately 16%, the adaptive point-process algorithm,
working in conjunction with PMML or PMML-like algorithms,
could substantially improve the performance of neural prosthetic
systems.
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