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produces a saccade (GO process) and the other that prevents the GO process from finishing (STOP process;
Logan & Cowan, 1984, Psych Rev). An interactive race model was formulated to explore how the STOP process
can prevent GO from finishing through lateral inhibition, motivated by the finding that firing rates in presaccadic
movement cells in the saccadic generator network, including the frontal eye field (FEF), superior colliculus (SC),
basal ganglia, etc., which may instantiate the GO process, decline markedly when saccades are successfully
inhibited (Boucher et al. 2007, Psych Rev). However, the interactive race model did not take into account the
full temporal dynamics of fixation cells in the network, which may instantiate the STOP process. We incorporated
this aspect of physiological data in revised interactive race models and tested several reformulations to examine
core assumptions of the original model. We found that models that assumed an external inhibitory control (e.g.,
blocking input to the GO unit, boosting input to the STOP unit, or strengthening the inhibitory connection from
the STOP unit to the GO unit) after the presentation of a countermanding signal fit the behavioral data better
than models that did not. The former models also exhibited the activation functions of the GO and STOP units
that resembled the activities of the movement and fixation cells. We conclude that the source of inhibitory control
exists outside of the site (i.e., FEF, SC) of saccadic countermanding.
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During movement, neurons in motor cortex exhibit complex, time-varying response patterns. Yet while it has
been difficult to determine what movement variables are represented by these responses, it is relatively easier to
ask how many variables are encoded. This can be done by assessing dimensionality using principal component
analysis (PCA). We analyzed multi-electrode recordings from two monkeys performing a reaching task involving
several different arm movements (e.g. right versus left, curved versus straight). We first assessed dimensionality
across neurons—i.e., given the responses of k neurons, is the response of the k+1th neuron a linear combination
of the first k? We then assessed dimensionality across movements—i.e. given the population responses for k
movements, is the population response for the k+1th movement a linear combination of the first k? We first exam-
ined simulated data from a traditional model, where each neuron is tuned to reach end-point (during planning) and
velocity (during movement). These simulated data had firing rates / noise properties matched to the real data. For
both simulated data sets, the across-neuron and across-movement dimensionalities were low and nearly equal.
This is expected; the model neurons represent a modest number of movement parameters. However, the re-
sults from the experimental data differed strikingly from those of the model. The experimental data shows high
dimensionality across neurons, yet remarkably low dimensionality across movements. This asymmetry across
dimensionality measures is dramatic in the data, yet absent in the traditional model. Thus, the data differ in both
quantitative and qualitative ways from the predictions of a traditional model. Nevertheless, this result is compatible
with what is expected of many classes of dynamical systems. For example, a high-dimensional dynamical system
could show such an effect if its initial states (one per movement) lay on a low-dimensional manifold.
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