Supplemental Information

Causal Role of Motor Preparation during Error-Driven Learning

Saurabh Vyas, Daniel J. O'Shea, Stephen I. Ryu, and Krishna V. Shenoy
Causal role of motor preparation during error-driven learning
Saurabh Vyas1,9,*, Daniel J. O’Shea2,3, Stephen I. Ryu2,8, Krishna V. Shenoy1,2,4,5,6,7

1Department of Bioengineering, Stanford University, Stanford, CA 94305
2Department of Electrical Engineering, Stanford University, Stanford, CA 94305
3Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
4Department of Neurobiology, Stanford University, Stanford, CA 94305
5Bio-X Program, Stanford University, Stanford, CA 94305
6Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
7Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
8Palo Alto Medical Foundation, Palo Alto, CA, 94301

*Corresponding author: smvyas@stanford.edu

9Lead contact

Supplemental Figures S1 - S3
Figure S1. Related to Figure 4: Microstimulation is subthreshold and does not affect current trial behavior.

A. Histogram of forces measured at the hand and wrist using a load cell attached to the handle of the haptic device. Force is measured during a 200ms window around ICMS (including the 60ms of ICMS). The p-values were obtained from two-tailed Student’s t-tests.

B. For each reach condition (top row, black circle shows condition) velocity profiles (mean and standard error of the mean) in the X and Y direction intra-trial. Red shows ICMS trials, black shows non-ICMS trials. No statistically significant differences are noted across groups.

C. Same as (B) but positions over time intra-trial.

D. Same as (B) but mean peak (i.e., maximum) speed plotted across trials for ICMS (red) and non-ICMS (black) conditions during a block of baseline (no VMR) trials.
Figure S2. Related to Figure 4: Reaction time is slowed more by ICMS early versus late in learning.
Cumulative reaction time distributions (pooled across all sessions in PMd) for the ICMS (red) and non-ICMS (black) trials for Monkey P. Dotted red lines denote data from ICMS early (first 3 blocks) during adaptation compared to dotted black, which are the same number of non-ICMS trials early during adaptation. Solid red lines denote data from ICMS late (last 3 blocks) during adaptation compared to solid black, which are the same number of non-ICMS trials late during adaptation. ICMS was performed for an identical number of trials on all sessions. ICMS was performed either early or late during learning, never both. The p-values were obtained from the Wilcoxon rank-sum test and compare early ICMS (dotted red) with late ICMS (solid red), and early no-ICMS (dotted black) with late no-ICMS (solid black).
Figure S3. Related to Figure 4: Learning is disrupted following ICMS trials.

A. Error angle plotted a function of trials for ICMS (red) and non-ICMS (black) for all sessions for both animals.

B. Same as (A) but for one single representative session from Monkey P. Here, ICMS is magenta, and non-ICMS is in blue.

C. Trials from (B) are sub-selected such that red denotes ICMS trials following a non-ICMS trial, and black denotes non-ICMS trials following a second non-ICMS trial.

D. Data from (C) analyzed. Black dots show differences in errors between pairs of adjacent trials that are both non-ICMS. Red dots show differences in errors between pairs of adjacent trials, where the first trial (K) is ICMS, and the second trial (K+1) is non-ICMS. Red and black dotted lines are the means. The green dotted line is the mean trial-by-trial difference if all possible pairs of trials are considered (e.g., here we do not consider pairs of the form: ICMS & ICMS, no-ICMS & ICMS, etc.). This green dotted line matches the trial-by-trial difference for the data in (B) if condition is ignored. The red and black data are one session for the analysis from Figure 4E.