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Computation by symmetry operations in a structured model of the brain:
Recognition of rotational invariance and time reversal

(Received 24 September 1993)

Symmetries have long been recognized as a vital component of physical and biological systems. What
we propose here is that symmetry operations are an important feature of higher brain function and result
from the spatial and temporal modularity of the cortex. These symmetry operations arise naturally in
the trion model of the cortex. The trion model is a highly structured mathematical realization of the
Mountcastle organizational principle [Mountcastle, in The Mindful Brain (MIT, Cambridge, 1978)] in
which the cortical column is the basic neural network of the cortex and is comprised of subunit min-
icolumns, which are idealized as trions with three levels of firing. A columnar network of a small num-
ber of trions has a large repertoire of quasistable, periodic spatial-temporal firing magic patterns (MP’s),
which can be excited. The MP’s are related by specific symmetries: Spatial rotation, parity, “spin” re-
versal, and time reversal as well as other ‘“‘global” symmetry operations in this abstract internal language
of the brain. These MP’s can be readily enhanced (as well as inherent categories of MP’s) by only a small
change in connection strengths via a Hebb learning rule. Learning introduces small breaking of the sym-
metries in the connectivities which enables a symmetry in the patterns to be recognized in the Monte
Carlo evolution of the MP’s. Examples of the recognition of rotational invariance and of a time-reversed
pattern are presented. We propose the possibility of building a logic device from the hardware im-
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plementation of a higher level architecture of trion cortical columns.
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I. INTRODUCTION

Symmetries have long been recognized as a vital com-
ponent of physical and biological systems [1]. It is ap-
parent that as neuroanatomical and neurophysiological
techniques have improved in the past decade, more and
more structure has been found in the cortex. We expect
this trend to continue. We propose here that symmetry
operations performed by the brain are an important
feature of higher brain function and result from this spa-
tial and temporal structure of the cortex [2]. This modu-
lar structure with symmetry among the connections in-
troduces symmetries among the “inherent” spatial-
temporal firing patterns in the cortex. The symmetries of
these inherent firing patterns can then be “exploited” to
perform higher level computations or symmetry opera-
tions. Learning (through a Hebb rule [3]) introduces
small breaking of the symmetries in the connectivities
which enables a symmetry in the patterns to be recog-
nized in the Monte Carlo evolution of the patterns. This
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technique of computation by symmetry operators may
play an important role in mammalian higher brain func-
tion. Using the trion model of the cortex [4-7], we will
present specific, simple examples of this in the recogniza-
tion of rotational invariance and in the recognition of a
time-reversed pattern.

Mountcastle [8] proposed that the cortical column [2]
is the basic network in the cortex and is comprised of
small irreducible processing units called minicolumns. A
very simple pinwheel representation [9] of the min-
icolumns in the visual cortex [2,8] had been suggested.
Recently the optical recording results by Bonhoefer and
Grinvald [2] not only show a strong similarity to these
representations but find both helicities in the representa-
tion of the orientation minicolumns. We display this in a
very highly idealized, structured, and generalized scheme
in Fig. 1. The column has the capability of being excited
into complex spatial-temporal firing patterns. The as-
sumption is that higher mammalian processes involve the
creation and transformation of such complex spatial-
temporal firing patterns (in contrast to a “‘code” which
involves sets of neurons firing with high frequency). Evi-
dence [2,10] is accumulating in support of the viability of
Mountcastle spatial-temporal code [8] for the “internal
language” of the cortex.

The trion model of the cortical column, summarized in
Sec. II, is a mathematical realization of Mountcastle’s or-
ganizational principle. It was developed starting from
Little’s [11] neural network analogy to the Ising spin sys-
tem, and modified in a direction inspired by the ANNNI
(axial next-nearest neighbor Ising) model results of Fisher
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FIG. 1. Highly schematic representation of the Mountcastle
[8] principle of cortical organization. Each square, following
[9], represents a cortical column (horizontal dimension roughly
700 pm, see Fig. 14, comprising the six vertical layers of dimen-
sion roughly 2000 pum) while each triangle is a minicolumn
which encodes the relevant parameter in the stimuli such as line
orientation in the visual cortex [2] shown here by capital letters.
We note that the optical recording results by Bonhoeffer and
Grinvald [2] in secondary visual cortex show a strong similarity
to the cartoon idealized primary visual cortex shown here.

and Selke [12]. A trion, Fig. 2, represents an idealized
minicolumn or roughly 100 neurons, and has three levels
of firing activity, above average, average, and below aver-
age. A column with a small number of trions having
structured connections yields a large repertoire of
quasistable, periodic spatial-temporal firing patterns,
defined as magic patterns or MP’s which can be excited.
These inherent patterns are called magic patterns or
MP’s because of their ability to be learned or enhanced
via a Hebb learning rule to a large cycling probability.
The repertoire of (periodic) MP’s is found by evolving all
possible initial states (of the first two time steps) by fol-
lowing the most probable or deterministic path. The
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FIG. 2. We identify a minicolumn with the idealized trion
and the basic network of trions is the cortical column. As
shown, the trion has three levels of firing activity.
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symmetries relating the MP’s in a repertoire are dis-
cussed in Sec. III. In a full probabilistic (or Monte Carlo)
evolution, the MP’s evolve in natural sequences from one
to another. The probability of each MP remaining in
that pattern can be enhanced by even a small change in
connection strengths using a Hebbian learning rule
[3,13-15].

One of the important and well-studied problems in
visual pattern recognition is to understand the nature of
how the brain recognizes rotated objects [16]. If one sees
a rotated form of a familiar object, the recognition time
will depend linearly on the angle or rotation. These prop-
erties are not readily incorporated into standard neural
networks [17]. In this paper, we show that this recogni-
tion of rotational invariance is built into the highly struc-
tured trion model of cortical organization due to its natu-
ral symmetry relations. The symmetry of the connections
among the trions introduces sets of MP’s related by sym-
metry operations, in particular, spatial rotations. Other
symmetries relating MP’s in a repertoire of the trion
model include parity, spin reversal, and time reversal.
Each MP can be learned (or selected out) through a
correlated Hebbian rule with small changes in connectivi-
ty, which can break the symmetry. As a result, the prob-
ability of the learned MP for remaining excited is in-
creased and its basin of attraction for recall is enlarged.
Consider a simplified example in which a specific visual
object (VO) is represented in the cortex by one of the
MP’s. Spatially rotated VO’s are represented by spatial
rotations of the MP corresponding to the standing VO.
The VO seen in a normal standing position is learned
with the Hebb rule and the symmetry among the connec-
tions is broken by a small amount. This learning occurs
as a natural consequence of repeated presentation of the
standing VO. When a rotated VO is seen, the rotated VO
MP is excited in the cortex, and evolves in a Monte Carlo
calculation into the MP for the standing VO, thereby
identifying it as related to the VO; the number of time
steps to evolve is linearly related to the amount of rota-
tion. This example is presented in Sec. IV. A second ex-
ample is presented in Sec. IV showing the recognition of
time-reversed MP’s (as well as spatially rotated ones),
again through the Monte Carlo evolutions once the sym-
metry in the connectivities is broken by a small amount
through learning.

Consider these symmetry operations in the dynamics of
the cortical column above to be the basic elements of
higher brain function. Based on this, we generalize our
results and speculate, in the discussion Sec. V, on the pos-
sibility of building a logic device from the hardware im-
plementation of a higher level architecture, Fig. 1, of
trion cortical columns.

II. SUMMARY OF TRION MODEL
OF THE CORTICAL COLUMN

The trion model [4-7] represents a mathematical reali-
zation of Mountcastle’s [8] columnar organizational prin-
ciple of cortex. The interactions among the trions are
taken to be localized, competing (between excitation and
inhibition), and highly structured, and the firing state of
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the network (cortical column) of the distinguishable
trions at time n7 is updated in a probabilistic way related
to the states of the two previous discrete time steps
(n —1)7 and (n —2)7 as in Fig. 3. We expect these time
steps T to be roughly 25-100 ms. The probability P(S;)
of the ith trion having a firing level or state S; at time nr
is given by
(S;)exp[BM;S;
p(s)=-2 p[BM;S;] ’
> g(S)exp[BM;S]
s

M=73 [VijS/f+WijS;’]_Vi ’

J

where S; and S}’ are the states of the jth trion at the two
earlier times (n —1)7 and (—n2)r, respectively. V;; and
W,; are the interactions between trions i and j at time n7
from times (n —1)7 and (n —2)7, respectively; V; is an
effective firing threshold. The three possible firing states
(of each trion) denoted by +,0,— for S=1,0,—1
represent, respectively, a large “burst” of firing, an aver-
age burst, and a below average firing (see Fig. 2). The
term g (S) with g (0)>>g (%) takes into account the num-
ber of equivalent firing configurations of the trion’s inter-
nal neuronal constituents [18]. [For example, in a trion
representing a group of 90 neurons, firing levels of
+,0,— could correspond to 90-61, 60-31, 30-0 neu-
rons firing, respectively. There are many more equivalent
combinatorial ways of generating the 60-31 level from
the indistinguishable neurons. This feature, g(0)
>>g(+)=g(—), gives stability to the trion model firing
patterns.] The fluctuation parameter B is inversely pro-
portional to the noise and results [19] from the statistical
nature of neurotransmitter release from the synapses [20].
Studies of the trion model for learning and memory and
higher brain function have been reported. Basically, the
success of these studies is due to the fact that the local-
ized, competing (between excitation and inhibition) in-
teractions with high symmetry yield a huge repertoire of
inherent quasistable, periodic firing patterns, MP’s, any
of which can be readily learned or enhanced with only
small changes in the interaction strengths using the Hebb

\

N \ \ 1 4
\\\ \\ I, //
/ e

\

it Wi o Wiis2

VAN
v ][] B ) Bed el [l

FIG. 3. One network of trions at three time steps, showing
the firing states S and the connections ¥ and W, see Eq. (1). For
N trions in the columnar network, we have the ringlike connec-
tions trion i/ =trion / + N as in Fig. 2.

learning algorithm
pattern

AI/IJ =g 2 S,-(nT)Sj((n - 1 )T) s

n e>0 (2)

pattern

AWijZE 2 Si(nT)Sj((n —2)7-)’

which allows for both increases and decreases of interac-
tion strengths. (Simply extending this learning rule to a
third time step using the correlation [14,15]

ES,-(nT)SJ-((n —3)7)

significantly enhances the effects of learning with a small-
er change in the total connectivity.) Let us define the cy-
cling probability P- (MP) that the firing pattern for the
columnar trion network remains in the MP for one cycle
of the repeating MP. The P-(MP) is calculated by multi-
plying the probabilities P(S;), Eq. (1), of each trion i be-
ing in the state S at time n7, given by that MP for its
whole cycle length:

Pc(MP)= [T [T P(S:(n7)) . 3)

Then as a result of learning a MP using the Hebb [4] al-
gorithm (2), the cycling probability P-(MP), (3), is in-
creased. Further, after learning, many more initial states
will go to the learned MP (and some related MP’s). Note
that these MP’s evolve in natural sequences from one to
another in a probabilistic Monte Carlo calculation.

It was shown in [6] that there exist a series of phase
transitions at precise values B (n) giving new repertoires
of firing patterns: Rewriting the statistical factors
g(S)/g(0)=exp(—u2S?), then (1) becomes

P(S;)<exp | —u’S?+BS; (WS +V;S)H—V;

J

4)

The cancellation of the u? and B terms in the exponential
allow the S; =0 level to compete with the 1 and —1 firing
levels. There then exist a series of “transition tempera-
tures B~

B(n)=u?/n (5)

for specific integers n related to the ¥’s and W’s. These
B(n) separate regions with different logic and thus
different repertoires of MP’s.

The simulations of a trion columnar network are sim-
ply performed.

(1) We specify the parameters of the trion network: the
number of trions N, the degeneracy factors g(S;), the
connectivities ¥;; and W;;, the firing thresholds V;, and
the fluctuation parameter B.

(2) A choice for the firing states for the initial two time
steps is made. Since each of the N trions in each time
step has three possible firing levels S, there are 3%V possi-
ble initial choices.

(3) Given the firing states for each trion at the two ear-
lier times (n —1)7 and (n —2)r, the probability P (S;) for
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the ith trion being in state S; at time n7 is calculated
from Eq. (1).

Having made the choice of parameter (1) above, the re-
pertoire of MP’s or inherent, quasistable, periodic firing
patterns is found as follows. For a given initial firing
state (2), follow the procedure of always choosing the S
for each trion which has the largest probability (1) or
most probable path, i.e., the largest exponent in (4) for
P(S). Then the time evolution rapidly goes into a repeat-
ing spatial-temporal pattern or MP. Define the operator
I' which temporally evolves a MP according to its most
probable path for its cycle length N,. Then a MP is an
eigenfunction of T" with eigenvalue 1:

I'(MP)=(MP) . (6)

An explicit representation of I" can be written down from
(1) or (4). Going through all possible initial states (2)
gives all the MP’s (the repertoire of MP’s) as well as the
number of initial states recalling each MP and the aver-
age time to recall a MP. (See Fig. 4 below for an explicit
example of a repertoire of MP’s.) A MP has the property
of being readily learned or enhanced using the Hebb
learning rule in Eq. (2) with only a relatively small change
in the connections ¥V and W. After learning, more initial
states will go to the learned MP (and some related MP’s)
and the cycling probability P-(MP), Eq. (3) will be in-
creased. Furthermore, an arbitrary spatial-temporal pat-
tern cannot be readily learned. Only a MP can be learned
in a selective manner.

III. SYMMETRIES OF THE MP’s
IN A REPERTOIRE

Consider a symmetry operator a acting on (6):
al'(MP)=a(MP). Then if a commutes with I", a(MP) is
also a MP:

al'(MP)=aTla 'a(MP)=Ta(MP)=a(MP)
for aTa™!'=C. (7)

Thus we expect for our structured connectivity in the
trion model that there will be a number of symmetries a
that will be useful to use to characterize a repertoire of
MP’s. To be explicit, let us examine a specific example of
the repertoire of MP’s for structured connections in an
N =6 network. Consider the connectivities and other pa-
rameters in Eq. (1) to be as follows:

Vi=2 Viis1=Vii-1=1L, W;=—V;, (®)

thresholds  ¥;=0, all other V; equal to
0,g(0)/g(+)=500 or u%>=6.215, and B above the first
transition B(1)=6.215 in (5). Then following the calcu-
lations in Sec. II above, each of the 3!2=531441 possible
choices for the initial states is followed to find the 155
MP’s shown in Fig. 4. These 155 MP’s can be placed into
34 sets where the MP’s in a set are related to each other
by a spatial rotation among trions, R, among the (distin-
guishable) trions. It is evident from (8) and our ring
boundary conditions that =R commutes with I". Other
symmetries among these MP’s can be used to categorize
groups of MP’s. We see that a parity reflection P, a
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time-reversal operation 7, and the combination PT will
relate different MP’s as shown in Fig. 5. That T com-
mutes with I" is not obvious. In Fig. 4, the 34 sets of
MP’s are placed in 20 groups with MP’s in each group re-
lated by the symmetry operations a equal to P, T, and PT
(Fig. 5) in addition to rotation R.

An additional symmetry operator changes firing level
“spin” S to —S. In analogy with physical systems, let us
define this as C, the “charge” conjugation operator. An
example of a repertoire in which distinct MP’s are related
by C is seen in Table 5 of [S].

01 (3] (4]
7 (6) 9 (6) 10 (&) Il (6)
(6] [er] [7] [7e]
13 (6) 14 (6) 15 (6) (6)
[10] [10P] [1o7] [1orT]
19 (6) m 22 (6)
[13] [14]
25 (1) 9

e
-
it
i 8

[15] [15P] [17]
30 (1) 31 (1) 33 (1) 34 (1)
[18] [18P] [19] [i9P] [20]

FIG. 4. The initial repertoire of MP’s for a six-trion network
with the connectivity given by Eq. (8) are found by following the
most probable path in evolving all possible 32 initial states ac-
cording to Eq. (1) until repeating patterns, the MP’s, are ob-
tained. Each square represents a trion with three levels of firing
activity as in Fig. 2. Each horizontal row represents a ring of
interconnected (as in Fig. 2) trions (so that the sixth square
wraps around to the first) and time evolves downward. There
are a total of 155 MP’s which can be completely classified by
their distinct spatial rotations into 34 groups of MP’s shown
here. The group number is listed on the top left corner while
the number of MP’s in each group is given on the top right by
() (cyclically rotate the MP so that the first column is the
second, etc.; if the MP is not a temporal rotation of any of the
other elements in the group it is considered distinct). These 34
MP’s are further classified, below each MP, into 20 symmetry
groups [ ] according to the additional symmetries of parity P
(reflection of trion number about a line separating two trions),
time reversal T and a combination PT. An explicit example is
shown in Fig. 5. In a Monte Carlo calculation these MP’s
would flow from one to another.
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FIG. 5. An explicit example of the symmetry relations
among the MP’s in symmetry group [10] in Fig. 4.

There are 1804 MP’s in the repertoire given by the
connections [4]

Viie1i=Vii-1=1, W, =W,

thresholds ¥V;=0, all other V;, equal to O,
g(0)/g(£)=500, N =6 trions, and B > B(1) in Eq. (5).
Using these symmetry operations R, P, T, and PT, in ad-
dition to an additional one, R rotating in space and
time, present for these special sets of connections and
numbers of trions, these 1804 MP’s can be placed in 73
symmetry groups. This repertoire proved to be especially
interesting when mapped onto music and onto robotic
motion. An example of the MP’s in two of these symme-
try groups is given in Fig. 6. In one of these groups, the
MP’s with respect to spatial (and temporal) rotations
have been arranged to make the symmetry relationships
among the MP’s more transparent. We leave it as an ex-
ercise for the reader to see these relationships among the
complex spatial-temporal patterns in Fig. 6. This helps
illustrate the power of these networks that can readily
recognize these relationships as illustrated in the exam-
ples shown in Sec. V.

We suspect that there may be additional general sym-
metries to be discovered, especially when several colum-
nar networks are coupled together. We suggest that
these groups or categories of MP’s defined by symmetry
operations are not only useful in understanding aspects of
pattern recognization such as rotational invariance, but
will prove invaluable in understanding the nature of the
sequences of transitions of the MP’s among themselves.
A relevant example of a MP evolving into other MP’s in
Monte Carlo evolutions is shown in Fig. 7.

We have called the above symmetries “‘global” in our
columnar MP’s, in contrast to ‘“local” ones in which the
temporal patterns for two specific trions might be inter-
changed (with a possible phase shift in time). For exam-
ple, for the repertoire in Fig. 4, MP 2 is related to MP 1
by shifting the patterns for trions 1 and 2 by three time
steps (or applying C to just these two trions). We note
then that all the MP’s in Fig. 4 consist “simply” of com-
binations of just three temporal patterns for individual
trions:

=1, 9)

i
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FIG. 6. Example of the MP’s in two symmetry groups in the
repertoire (see Figs. 4 and 5) for the connectivity (9). Each sym-
metry group consists of eight MP’s related by combinations of
P, T, and a symmetry operation specific to this repertoire corre-
sponding to a spatial-temporal rotation of 90° about the center
of the MP. In the first symmetry group, the MP’s with respect
to spatial (and temporal) rotations have been arranged to make
the symmetry relationships among the MP’s more transparent.
We leave it as an exercise for the reader to see these relation-
ships among these MP’s. This exercise will help illustrate the
power of these trion networks that can readily recognize these
symmetry relationships (as illustrated in the examples shown in
Sec. V).

a:(+7+,01—’_’0)7
b:(+’+7+,_’_)_)3 (10)
¢ =(0,0,0,0,0,0) .

It would be of strong interest to analytically determine
the repertoire starting from this “alphabet” (10). [Note
that this alphabet (10) holds for the repertoire from the
connectivity (8) with any number of trions >3.] We see
from Table VI of [6] that for connectivity
Vi=1, Viis1=V,i-1=1, W;=—V,, the repertoire
has 246 MP’s and the alphabet consists of (10)
plus d=(—,+,—,+,—,+), f=(+,—,0,—,+,0), g
=(+,0,+,—,0,—), and kA =(+,0,0,—,0,0). We are
thinking of these trion temporal firing patterns (depen-
dent on the connectivity) as letters, the columnar MP’s as
words. The extension to a higher level architecture is dis-
cussed in Sec. VL.

IV. LEARNING A MP

Consider now learning a MP from Fig. 4 using the
Hebb learning algorithm, Eq. (2). The example of learn-
ing MP 6(2) [where the (2) denotes the MP obtained from
the MP 6 specifically shown in Fig. 4, by operating twice
with spatial rotation operator R] is shown in Fig. 8 where
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FIG. 7. Monte Carlo calculations for MP 17(0). The num-
bers at the end of the arrows give the percentage of 1000 Monte
Carlo calculations that go to the eight other MP’s (including all
spatial rotations). Shown here are those MP’s that are accessed

with percentages greater than 3%. These relations can be sub-
stantially modified through learning.

we plot the probability of cycling P [as defined in Eq.
(3)] versus €. The B value 6.3 for this striking example of
learning is particularly enhanced near this “transition”
B (1), see Eq. (5). Note as a result of learning this MP
6(2), the connections Eq. (8) will be modified according to
Eq. (2). For example, here, V5 =1 and V5 ,=1+2¢, so
that we say that the precise symmetry, V;, ,,=V,; _;=1,
is slightly broken by learning for small €. This small sym-
metry breaking has been shown [13] to form the basis for
a temporally rapid selectional learning in contrast to a
much slower fine tuning of the parameters necessary for

0.00 1 L 1

0.010
€

0.020

FIG. 8. The cycling probability, Eq. (3), P¢c to remain in MP
6(2) [where (2) denotes a rotation of two trion sites from the MP
6 pictured in Fig. 4] versus the learning coefficient ¢, Eq. (2) and
B =6.3. This striking example of learning is particularly
enhanced near the “transition” B(1), Eq. (5).
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instructional learning. (Both are probably necessary to
understand behavior.) Below, we show that this symme-
try breaking in the Hebb learning forms the basis for the
recognition of the symmetries among the MP’s present in
a repertoire.

V. RECOGNITION OF ROTATIONAL INVARIANCE
AND TIME REVERSAL

Here we discuss the recognition of spatially rotated
and time-reversed objects in the trion model. This recog-
nition of spatial rotational invariance is built into the
highly structured trion model due to its natural symme-
try relations Consider a simplified example in which a
specific visual object is represented in the cortex by one of
the MP’s. Rotated VO’s are represented by rotations of
the MP of the standing VO. The VO seen in a normal
standing position is learned with the Hebb rule and the
symmetry among the connections is broken by a small
amount. When a rotated VO is seen, the rotated VO MP
evolves in a Monte Carlo calculation into the MP for the
standing VO, thereby identifying it as a VO; the number
of time steps to evolve is linearly related to the amount of
rotation, in agreement with experiment [16]. A similar
scenario is considered for recognition of time-reversed
MP’s. Here we do not give an explicit physical represen-
tation for the abstract MP’s (although the mappings onto
music [7,14] and robotic motion [21] are relevant). Ex-
amples are presented below.

Rotational invariance will be explored in the following
example. Initially, when the subject sees an object, a MP
will be selected out, e.g., MP 4(0) where the ( ) indicate
the rotation of MP 4 in Fig. 4, so that 4(0) is the unrotat-
ed MP shown in Fig. 4. Before learning (B =7.0) this
MP will then evolve into other MP’s [see Fig. 7 for an ex-
ample of the evolution of MP 17(0)].

If the network is presented with a rotated object then a
rotated MP will be selected out [13]. Since the network
has six trions each rotated MP corresponds to an angle of
30°, with MP 4(3) being a rotation of 90°. When the vari-
ous rotated MP’s were run in Monte Carlo calculations
they evolved to MP 4(0) with a percentage inversely
dependent on the rotation as shown in Fig. 9.

An example of one of the Monte Carlo calculations is
shown below in Fig. 10 which started in MP 4(2) and
evolved into MP 4(0) at the 26th time step, thereby tak-
ing 25 time steps to reach the learned MP or unrotated
object. The Monte Carlo calculations were performed by
searching for MP 4(0) within the first 50 time steps. This
method was chosen so that evolutions that started in 4(2)
went to 4(1) and then 4(0) would be counted. The percen-
tage of runs going to MP 4(0) varied with the amount of
rotation with those that are rotated more are less likely to
reach the unrotated MP. These results are only for one
column, and a realistic version would probably involve
many columns. By “multiplexing” the input to a number
of columns [22] or using interconnected columns [23] the
performance can be improved.

The rotational invariance is examined for various
values of €, which may be the result of learning the unro-
tated object more on a single trial or having multiple tri-
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4(4) 4(5) 4(1) 4(2) 4(3)

FIG. 9. Example of recognition of rotation invariance.
Monte Carlo (1000 runs for 50 time steps) results from starting
in each of the five rotated MP’s [and then searching for MP 4(0)
within the 50 time steps] after learning MP 4(0) with an
€=0.025 at B=7.0. Both the percentage of runs evolving to
MP 4(0) and the average number of time steps taken (¢) are
shown.

als which keep increasing € in increments. The percen-
tage of Monte Carlos (Fig. 11) that evolve into MP 4(0)
are improved for all rotations and are starting to saturate
for €=0.05, which would be considered a large learning
coefficient. The rotation is symmetric for clockwise and
counterclockwise rotations.

The average number of time steps () for the Monte
Carlo calculations to reach MP 4(0) is shown in Fig. 12.
Notice that the {¢) is also symmetric, being the same for
both clockwise and counterclockwise rotations. Also, the
(t) is linear with the angle of rotation since each rotated
MP is an additional rotation of 30°. The two time step
next-nearest neighbor learning rule was used in this ex-

Monte Carlo starting in
MP 4(2)

10

20

MP 4(0)
26 —»

30

FIG. 10. A Monte Carlo calculation (Fig. 9) starting in MP
4(2). The evolution reaches the learned MP 4(0) at the 26th
time step.
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0 #\L ] 1
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MP

FIG. 11. The percentage (%) of Monte Carlo calculations
(Fig. 9) for the rotated MP’s that evolve into MP 4(0) within the
first SO time steps for various values of €. Recall that MP’s 4(1)
and 4(5) are closest in rotation to 4(0), whereas 4(3) is furthest
away. (The straight lines are for visual guidance.)

ample (see [14,15] for use of the three time step next-
nearest neighbor learning rule, as well as a discussion [15]
of allowing one or two errors in the recall).

In addition to being able to identify rotations the net-
work can also identify a time-reversal operation. Besides
the rotational symmetries for group 6, the time reversal T
yield distinct MP’s forming their own rotational group 5,
so that MP 6(2) is transformed into MP 5(2). The rota-
tion groups for MP 5 and MP 6 are related through a
time-reversal operation T as shown in Fig. 4. The Monte
Carlo evolution results identifying both rotations and
time reversal after learning MP 6(2 with an €=0.025 for
two time steps at B =7.0 are shown in Fig. 13.
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4(1) 4(2) 4(3) 4(4) 4(5)

MP

FIG. 12. The average number of time steps (t) for the
Monte Carlo calculations (Fig. 9) for the rotated MP’s that
evolve into MP 4(0) within the first 50 time steps for various
values of €.
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6(0) 6(1) 6(3) 6(4) 6(5)

5(0) 5(1) 5(2) 5(3) 5(4) 5(5)

FIG. 13. Example of both rotation and time-reversal recogni-
tion in Monte Carlo calculations (see Fig. 9) after learning MP
6(2). MP’s 5 are related to MP’s 6 by T.

V1. DISCUSSION

We have proposed in this paper that symmetry opera-
tions are a crucial feature of higher brain function and re-
sult from the spatial and temporal modularity of the cor-
tex. It is interesting to stress the general role of pattern
development in biological systems. Waddington [24] in
referring to growth of various animals states “the dom-
inant characteristic of biological proportions is that any
given form usually exhibits the simultaneous operation of
several rules of proportion, rather than of only one. And
in discussing these proportions, it becomes extremely
superficial to omit the time factor, since in the great ma-
jority of instances the proportions of a biological form
change as it grows and develops.” This fits in nicely with
our ideas of pattern development in the brain [25] as
shown in the evolution of the trion model spatial-
temporal firing patterns and the symmetry relations
among these patterns as they evolve dynamically. As
shown in Fig. 14, there are many spatial and temporal
scales in the cortex. Only those spatial scales for the min-
icolumn and larger, and temporal scales of 25 ms and
longer, are considered here. The symmetry operations
arise naturally in the highly structured trion model of the
cortex. A columnar network of a small number of trions
has a large repertoire of quasistable, periodic spatial-
temporal firing patterns, MP’s, which an be excited. The
MP’s are related by specific symmetries: spatial rotation,
parity, “spin” reversal, and time reversal as well as other
“global” symmetry operations in this abstract internal
language of the brain. These MP’s can be readily
enhanced (as well as inherent categories of MP’s) by only
a small change in connection strengths via a Hebb learn-
ing rule. Learning introduces small breaking of the sym-
metries in the connectivities which enables a symmetry in
the patterns to be recognized in the Monte Carlo evolu-
tion of the MP’s: We presented, in Sec. V, detailed exam-
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. Spatial Temporal

Unit Number scale scale

| synapse 10'4 s I ms
104

" neuron 10'° 20pu I ms
2
10

t minicolumn 108 100 25 ms
2
10

t column 108 7001 250 ms
3
10

t area 102 3cm ** 28
10

‘ system 10 10cm ##20s
|
10

‘ cortex | 30cm #%x200s

FIG. 14. Very rough spatial and temporal scales for various
structures, along with their number, in cortex. The numbers on
the left between structures represent the number of units of the
structure above in the structure below, e.g., there are roughly
10? neurons in a minicolumn. The spatial scales for minicolumn
and larger should be considered perpendicular to the cortical
surface after it is unfolded and flattened out. We consider the
spatial and temporal scales of 100 ym and 25 ms and larger, re-
spectively, as those which we explicitly consider here. The
three temporal scales marked with «« are proposed new scales
[6] and may be related to all the spatial scales of column and
larger.

ples of the recognition of rotational invariance and of a
time-reversed pattern via this procedure.

As shown in Fig. 1, the cortical columns may them-
selves be organized in a very highly structured manner to
form a cortical area: It is this higher level architecture
that must be examined in order to explore the further
consequences of the concepts concerning computation by
symmetry operations introduced in this paper. Clearly
any analytic insight into the behavior of this architecture
would be extremely useful. We suggest that a hardware
analog-digital implementation of this higher level cortical
area architecture of trion cortical columns shown in Fig.
1 should be “straightforward” due to the localized and
structured (in space and time) connectivity, and the
discreteness of the firing levels. (A more “biological” ver-
sion could also be considered in which these discrete
quantities are allowed some spread in order to optimize
the “behavior” of the model.) The high speed parallel
computations will allow us to look for symmetry opera-
tions in a cortical area.

We note the structured connectivity that permits the
notation of the minicolumn, column, and cortical area, to
be called functional cooperative units in a dynamical pro-
cessing sense: the heavy interconnections vertically (exci-
tatory and inhibitory) among the neurons through the
cortical layers form the basis for the minicolumn; the
(neurons in the) minicolumns are connected to neighbor-
ing minicolumns in the same column through horizontal
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FIG. 15. Four coupled six-trion columnar networks labeled
1-4 are mapped onto a 4 X4 Go board (with the 16 vertices la-
beled by X) illustrating the chunking of the board into groups
of six vertices and the overlap of the columnar networks onto
some of the vertices.

connections in a weaker manner; the long-range connec-
tions between distant columns [26] are still highly specific
and yet still weaker in strength. Thus it seems quite
reasonable to think of (at least) three spatial scales of
cooperativity defining the functional units of minicolumn,
column, and cortical area. We note that “global” MP’s
[23] in the higher level architecture of coupled columnar
trion networks, which follow from the nature of weak in-
tercolumnar connectivity between minicolumns, are (pri-
marily) products of the MP’s from the individual
columns (with specific temporal phase relations now be-
ing important).

We suggest that the computations by symmetry opera-
tion discussed here are involved in higher brain function.
We have shown that simple mappings of the Monte Carlo
evolutions of the trion model onto pitches and instru-
ments produces recognizable human styles of music
[7,14] and that the mappings onto robotic motion [21]
give very interesting behavior. We now propose that a
potential goal of a cortical area architecture is, by very
“clever” mapping of these firing patterns onto a logic
problem, to build a logic device. For example, insight
into the solution of some simple ‘“board” game would be
a major advance toward building a thinking computer.

Some simple thoughts toward such a project of build-
ing a logic device to solve board games can be mentioned:
Insights gained from analysis of chess [27] show that

master chess players recall a middle game position takes
place through the use of “local clusters of pieces.” As
noted by Chase and Simon [27], the master’s strategy in
choosing a next move in a middle game is very interest-
ing: “As we have shown, the board is organized into
smaller units representing more local clusters of pieces.
Since some of these patterns have plausible moves associ-
ated with them in long-term memory, the master will
start his search by taking one of these moves and analyz-
ing its consequences. Since some of the recognizable pat-
terns will be relevant, and some irrelevant, to his analysis,
we hypothesize that he constructs a more concrete inter-
nal representation of the relevant patterns in the mind’s
eye, and then modifies these patterns to reflect the conse-
quences of making the evoked move. The information
processes needed . .. are akin to the rotation processes
when the internal representation of the position is updat-
ed the result is then passed back through the pattern per-
ception system and new patterns are perceived. These
patterns in turn will suggest new moves and the search
continues.” It is well known that the organization of the
visual information in the cortex is such that the receptive
fields overlap in neighboring columns.

We illustrate these two features of chunking or use of
local clusters and of overlap in information in the simple
example of a 4 X4 Go game shown in Fig. 15: four cou-
pled six-trion columnar networks labeled 1-4 are
mapped onto a 4X4 Go board illustrating the chunking
of the board into groups of six vertices and the overlap of
the columnar networks onto some of the vertices. We
have in mind mapping a few winning strategies of play in
this 4X4 Go game onto trion model evolutions and
enhancing these evolutions using the Hebb rule in a selec-
tive and very rapid manner [13] for the coupled networks
[23]. The goal would be to see if these winning strategies
generalized to other moves. Clearly, achieving this goal
for any nontrivial board game will be a challenge, but of
considerable significance.
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FIG. 10. A Monte Carlo calculation (Fig. 9) starting in MP
4(2). The evolution reaches the learned MP 4(0) at the 26th
time step.
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FIG. 13. Example of both rotation and time-reversal recogni-
tion in Monte Carlo calculations (see Fig. 9) after learning MP
6(2). MP’s 5 are related to MP’s 6 by T.
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FIG. 2. We identify a minicolumn with the idealized trion
and the basic network of trions is the cortical column. As
shown, the trion has three levels of firing activity.
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FIG. 4. The initial repertoire of MP’s for a six-trion network
with the connectivity given by Eq. (8) are found by following the
most probable path in evolving all possible 3'? initial states ac-
cording to Eq. (1) until repeating patterns, the MP’s, are ob-
tained. Each square represents a trion with three levels of firing
activity as in Fig. 2. Each horizontal row represents a ring of
interconnected (as in Fig. 2) trions (so that the sixth square
wraps around to the first) and time evolves downward. There
are a total of 155 MP’s which can be completely classified by
their distinct spatial rotations into 34 groups of MP’s shown
here. The group number is listed on the top left corner while
the number of MP’s in each group is given on the top right by
() (cyclically rotate the MP so that the first column is the
second, etc.; if the MP is not a temporal rotation of any of the
other elements in the group it is considered distinct). These 34
MP’s are further classified, below each MP, into 20 symmetry
groups [ ] according to the additional symmetries of parity P
(reflection of trion number about a line separating two trions),
time reversal T and a combination PT. An explicit example is
shown in Fig. 5. In a Monte Carlo calculation these MP’s
would flow from one to another.
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FIG. 5. An explicit example of the symmetry relations
among the MP’s in symmetry group [10] in Fig. 4.



FIG. 6. Example of the MP’s in two symmetry groups in the
repertoire (see Figs. 4 and 5) for the connectivity (9). Each sym-
metry group consists of eight MP’s related by combinations of
P, T, and a symmetry operation specific to this repertoire corre-
sponding to a spatial-temporal rotation of 90° about the center
of the MP. In the first symmetry group, the MP’s with respect
to spatial (and temporal) rotations have been arranged to make
the symmetry relationships among the MP’s more transparent.
We leave it as an exercise for the reader to see these relation-
ships among these MP’s. This exercise will help illustrate the
power of these trion networks that can readily recognize these
symmetry relationships (as illustrated in the examples shown in
Sec. V).
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FIG. 7. Monte Carlo calculations for MP 17(0). The num-
bers at the end of the arrows give the percentage of 1000 Monte
Carlo calculations that go to the eight other MP’s (including all
spatial rotations). Shown here are those MP’s that are accessed

with percentages greater than 3%. These relations can be sub-
stantially modified through learning.
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FIG. 8. The cycling probability, Eq. (3), P¢ to remain in MP
6(2) [where (2) denotes a rotation of two trion sites from the MP
6 pictured in Fig. 4] versus the learning coefficient €, Eq. (2) and
B =6.3. This striking example of learning is particularly
enhanced near the “transition” B (1), Eq. (5).
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FIG. 9. Example of recognition of rotation invariance.
Monte Carlo (1000 runs for 50 time steps) results from starting
in each of the five rotated MP’s [and then searching for MP 4(0)
within the 50 time steps] after learning MP 4(0) with an
£¢=0.025 at B=7.0. Both the percentage of runs evolving to
MP 4(0) and the average number of time steps taken () are
shown.



