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In the last chapter we saw that unconstrained function minimization is impossible without any assumptions
on the objective function. Further, we saw that if all we assume is that our function is Lipschitz continu-
ous that unconstrained function minimization is possible, but an exponential dependence on dimension is
required. Here we consider a different assumption on our objective function, namely smoothness, and show
that although computing ε-optimal points may still require an exponential number of queries with just a
zero-order or first-order oracle, we can create descent algorithms that achieve some local optimality under
these assumptions.
There are several goals of this section. Primarily this section is meant to introduce smoothness, a natural
assumption we will use on objective functions, and gradient descent, an extremely popular algorithm in
theory and in practice. Secondarily, we will review some multivariable calculus, analysis, and possibly linear
algebra that we will use repeatedly throughout the class.

1 Smoothness

In this chapter, as usual consider the unconstrained minimization problem

min
x∈Rn

f(x)

where f : Rn → R is our objective function that we can only access through some restrictive oracle model.
Further, we let f∗

def
= infx∈R f(x).

Whereas we considered value oracles in the last chapter, here we assume that we have a gradient oracle, that
is an oracle that on some query point gives us the gradient of the function at the point. First we briefly call
the definition of a gradient and different function.

Definition 1 (Gradient of Differentiable Function). For f : Rn → R that is differentiable at x ∈ Rn we
let 5f(x) ∈ Rn where 5f(x)i = ∂

∂xi
f(x) for all i ∈ [n] denote the gradient of f at x. We recall that f is

differentiable at x if and only if the following holds for some vector g1

lim
h→~0∈Rn

∣∣f(x+ h)− f(x)− g>h
∣∣

‖h‖2
= 0

in which case g = 5f(x).
∗These notes are a work in progress. They are not necessarily a subset or superset of the in-class material and there may

also be occasional TODO comments which demarcate material I am thinking of adding in the future. These notes will converge
to a superset of the class material that is TODO-free. Your feedback is welcome and highly encouraged. If anything is unclear,
you find a bug or typo, or if you would find it particularly helpful for anything to be expanded upon, please do not hesitate to
post a question on the discussion board or contact me directly at sidford@stanford.edu.

1Note that the choice of norm here is arbitrary is f is defined over a finite dimensional vector space.
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Thus we see that locally a gradient measures how quickly a function changes when we move in a direction.
If the gradient could change arbitrarily quickly this wouldn’t be helpful for minimization. However, if it
doesn’t change too quickly then one might hope that by moving opposite of the direction of the gradient we
might be able to sufficiently decrease the functions value (as predicted locally by differentiability). The way
we formally quantify this in this chapter is through the following popular definition of smoothness.

Definition 2. We say a differentiable2 function f : Rn → R is L-smooth if for all x, y ∈ Rn we have that

‖ 5 f(x)−5f(y)‖2 ≤ L · ‖x− y‖2

Where we recall that 5f(x) is the gradient of f at x, i.e. 5f(x) ∈ Rn with [5f(x)]i = ∂
∂xi

f(x).

Now as usual, a natural question to ask is how many queries to a gradient oracle are needed to minimize
a smooth function? Unfortunately, as with the case of Lipschitz functions, nothing stops the input being a
function that is 1 everywhere except for a small ball where it smoothly drops below this value. Consequently,
it still takes an exponential in dimension number of queries to minimize a smooth function.
However, as we have argued it seems that smoothness should allow us to make progress locally by moving
in the direction of the gradient. If the gradient is large at a point it seems like one can make much progress
decreasing the value of the function by moving against the direction of the gradient. In the next section
(and the bulk of this chapter) we formalize this by giving an algorithm, gradient descent, that always makes
progress (i.e. decreases function value) and computes an ε-critical point (that is a point where the norm of
the gradient is small) at a rate free of dimension.

2 How to Locally Minimize Smooth Functions?

So how do we “locally minimize a smooth function”? A natural idea here is gradient descent. Smoothness
tells us that the gradient can’t change too quickly, so if the gradient is large somewhere and we move in
that direction or its opposite the gradient should stay decently large and we should increase or decrease the
function.
Let’s analyze this method. Let xk+1 = xk− η5 f(x) for some step size η. We call η here the step size of the
method. There are many procedures for choosing the step size, however we will consider a fixed step size for
now. To analyze this method we ultimately prove the following.

Lemma 3. Let f be L-smooth and suppose that y = x− η5 f(x) then∣∣f(y)− [f(x)− η‖ 5 f(x)‖22
]∣∣ ≤ η2L

2
· ‖ 5 f(x)‖22

Consequently if η = 1
L we have that

f(y) ≤ f(x)− 1

2L
‖ 5 f(x)‖22 .

This lemma says when we move η in the direction of the gradient we decrease the function value at a rate that
depends linearly on η with an additive penalty that depends quadratically η. Consequently, there is always a
step that makes progress, where the best progress guaranteed from this worst case bound coming from when
we pick η = 1

L . We defer the proof of this lemma to the next section where we give a better understanding
of smooth functions and the derivation of this algorithm. Instead, here we analyze the performance of the
algorithm that repeatedly applies this result, i.e. gradient descent with a fixed step size.

2Note that this assumption of differentiable is slightly redundant. While f being differentiable in each coordinate is in general
not enough to imply that f is differentiable, assuming that f is differentiable in each coordinate and obeys ‖5f(x)−5f(y)‖2 ≤
L · ‖x− y‖2 for all x, y ∈ Rn does imply that f is differentiable.
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Lemma 4 (Gradient Descent Computes Critical Points). Let f be a L-smooth function for any x0 ∈ Rn

consider the algorithm that computes xk+1 = xk − 1
L 5 f(xk) for all k ≥ 0. For all ε > 0 with 2L·[f(x0)−f∗]

ε2

call to a gradient oracle this procedure computes an ε-critical point, that is a point x such that ‖5f(x)‖2 ≤ ε.

Proof. For all k ≥ 0 let xk+1 = xk − 1
L 5 f(xk). Then we have by the previous lemma that for all k it is the

case that
f(xk+1) ≤ f(xk)−

1

2L
‖ 5 f(xk)‖22

Consequently, with k gradients computation we can compute xk such that

f∗ − f(x0) ≤ f(xk)− f(x0) ≤ −
1

2L

k−1∑
i=0

‖ 5 f(xi)‖22

Consequently
1

k

k−1∑
i=0

‖ 5 f(xi)‖22 ≤
2L · (f(x0)− f∗)

k

and therefore it must be the case that ‖ 5 f(xi)‖22 ≤
2L·[f(x0)−f∗]

k for some i ∈ {0, ...k − 1} and picking
k = d2L · [f(x0)− f∗] · ε−2e yields the result.

Note from the proof of the above actually gave something stronger then claimed as it gives bounds on the
average norm of the gradient over the life of gradient descent.
The above lemma shows that gradient descent is a descent algorithm, i.e. it always makes progress, that
converges to a point where the norm of the gradient is small. This is a reasonable proxy for a local minimum
in many cases and thus can be useful in many settings. A natural question is, is this dependence on ε tight?
This has been an open question for decades, but recently it was shown to be tight [?].
In the rest of this chapter we take a closer look at this analysis of gradient descent so we can better leverage
it later in the course.

3 Upper Bounds

While we could prove Lemma 3 directly, I believe such a proof would be a bit mysterious. I think there few
principled pieces going on and here we will break down the proof into these more principled pieces to prove
the lemma.
We start with a lemma giving an integral formula for the difference between a function and its first order
Taylor approximation.

Lemma 5. Let f : Rn → R be differentiable, then for all x, y ∈ Rn and xt = x + t(y − x) for t ∈ [0, 1] we
have

f(y)− f(x) =
∫ 1

0

5f(xα)>(y − x) · dα

and therefore

f(y)− f(x)−5f(x)>(y − x) =
∫ 1

0

(5f(xα)−5f(x))> (y − x) · dα .

Proof. Let g(t) def
= f(xt) for t ∈ [0, 1]. Now, I claim that g′(t) = 5f(xt)>(y − x). Later in the course I will

simply state things like this without proof. However, to get a refresh in how these sorts of proofs work, we’ll
work it out from scratch just for these notes.
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Note that since f is differentiable, by assumption (and the fact that all norm in finite dimensions are the
same up to a constant) we know that for all x ∈ Rn it is the case that for any norm ‖ · ‖

lim
h→0

∣∣f(xt + h)− f(xt)−5f(xt)>h
∣∣

‖h‖
= 0

Consequently, considering h of the form α(y − x) we have that

0 = lim
α→0

∣∣f(xt + α(y − x))− f(xt)−5f(xt)> · (α(y − x))
∣∣

‖α · (y − x)‖

=
1

‖y − x‖
· lim
α→0

∣∣f(xt + α(y − x))− f(xt)− α · 5f(xt)>(y − x)
∣∣

|α|

=
1

‖y − x‖
· lim
α→0

∣∣∣∣g(t+ α)− g(t)− α · 5f(xt)>(y − x)
α

∣∣∣∣ .
Consequently

g′(t) = lim
α→0

g(t+ α)− g(t)
α

= 5f(xt)>(y − x) .

The claim then follows from the fundamental theorem of calculus, we have

f(y)− f(x) = g(1)− g(0) =
∫ 1

0

5f(xα)>(y − x) · dα

subtracting 5f(x)>(y − x) =
∫ 1

0
5f(x)>(y − x)dα to each side of the equation then yields the result.

What does this lemma say? It says we can explain how good approximation the Taylor series expansion
around a point is in terms of how much the gradient changes relative to the direction we move in. Thus,
naturally this says that if we assume smoothness we can upper bound the Taylor series expansion in terms
of a quadratic when our function is smooth. We show this formally using Cauchy Schwarz.

Lemma 6 (Cauchy Schwarz). For x, y ∈ Rn we have
∣∣x>y∣∣ ≤ ‖x‖2 · ‖y‖2.

Proof. Note that the claim is equivalent to (x>y)2 ≤ ‖x‖22 · ‖y‖22. We prove this through the following

‖x‖22 · ‖y‖22 − (x>y)2 =

∑
i∈[n]

x2i

 ·
∑
i∈[n]

y2i

−
∑
i∈[n]

xiyi

2

=
∑
i,j∈[n]

x2i · y2j −
∑
i,j∈[n]

xiyixjyj .

Now note that when i = j we have x2i y2i = xiyixjyj and that for every setting of i < j there is a term with
the values of i and j reversed (which does not affect the xiyixjyj value) and therefore

‖x‖22 · ‖y‖22 − (x>y)2 =
∑

i<j∈[n]

(
x2i · y2j + x2j · y2i − 2 · xiyixjyj

)
=

∑
i<j∈[n]

(xi · yj − xj · yi)2 ≥ 0 .

From Cauchy Schwarz and Lemma 5 we have the following

Lemma 7. If f : Rn → R is L-smooth then for all x, y ∈ Rn we have that∣∣f(y)− [f(x) +5f(x)>(y − x)]∣∣ ≤ L

2
‖y − x‖22
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Proof. For all t let xt = x+ t(y − x). By Lemma 5 and Cauchy Schwarz we have

∣∣f(y)− f(x)−5f(x)>(y − x)∣∣ = ∣∣∣∣∫ 1

0

(5f(xα)−5f(x))> (y − x) · dα
∣∣∣∣

≤
∫ 1

0

∣∣∣(5f(xα)−5f(x))> (y − x)
∣∣∣ · dα

≤
∫ 1

0

‖ 5 f(xα)−5f(x)‖2 · ‖y − x‖2 · dα .

Consequently, by the smoothness of f we have

‖ 5 f(xα)−5f(x)‖2 ≤ L · ‖xα − x‖2 = Lα · ‖y − x‖2

Note that the proof of our earlier inequality follows from this.

Proof of Lemma 3. By Lemma 7 we have that for all x, y ∈ Rn we have that∣∣f(y)− [f(x) +5f(x)>(y − x)]∣∣ ≤ L

2
‖y − x‖22

and consequently, when y = x− η5 f(x) we have

∣∣f(y)− [f(x)− η‖ 5 f(x)‖22
]∣∣ ≤ η2L

2
‖ 5 f(x)‖22

as desired.

Note, this this gives us another way to obtain the gradient descent step. Note that

argminyU(y)
def
= f(x) +5f(x)>(y − x) + L

2
‖y − x‖22

has the property that for as ‖y‖2 → ∞ goes to infinity then U(y) → ∞. Consequently, the minimizer of
U(y) occurs when 5U(y) = ~0. However, 5U(y) = 5f(x) + L(y − x) and consequently 5U(y) = ~0 if and
only if y = x− 1

L 5 f(x).3

4 Second Order Explanation of Non-convex Gradient Descent

Another nice way to think about smoothness and the convergence of gradient descent is through second
order Taylor approximations to f . Recall the following definition of the Hessian.

Definition 8 (Hessian). For twice differentiable function f ∈ Rn → R the Hessian of f at x is, 52f(x) ∈
Rn×n, is defined so that for all i, j ∈ [n] we have [52f(x)]ij = ∂2

∂xi∂xj
f(x), We recall that f is twice

differentiable at x if and only if the following holds for some matrix H

lim
h→0

‖ 5 f(x+ h)−5f(x)−Hh‖
‖h‖

= 0

in which case H = 52f(x).
3This follows more generally from the fact that U(y) is convex in y and therefore its minimum value is achieved at any point

whose gradient is 0. We discuss this in greater details in later notes when we formally define convexity.
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Using this we can characterize how the gradient changes between different points.

Lemma 9. Let f ∈ Rn → R be a twice differentiable function. Then for all x, y ∈ Rn and xt = x+ t(y − x)
for t ∈ [0, 1] we have

5f(y)−5f(x) =
∫ 1

0

52f(xα)(y − x) · dα

Proof. Let gi(t)
def
= [5f(xt)]i for t ∈ [0, 1]. Now, I claim that g′i(t) = ~1>i 52 f(xt)(y − x).

Note that since f is differentiable, by assumption (and the fact that all norm in finite dimensions are the
same up to a constant) we know that for all x ∈ Rn it is the case that for any norm ‖ · ‖

lim
h→~0∈Rn

‖ 5 f(xt + h)−5f(xt)−52f(xt)h‖2
‖h‖2

= 0

Consequently, considering h of the form α(y − x) we have that

0 = lim
α→0

‖ 5 f(xt + α(y − x))−5f(xt)−52f(xt) · (α(y − x))‖2
‖α · (y − x)‖2

=
1

‖y − x‖2
· lim
α→0

‖ 5 f(xt + α(y − x))−5f(xt)−52f(xt) · (α(y − x))‖2
|α|

=
1

‖y − x‖2
· lim
α→0

∣∣∣∣∣∣∣∣
√∑

i∈[n]

(
gi(t+ α)− gi(t)− α~1>i 52 f(xt)(y − x)

)2
α

∣∣∣∣∣∣∣∣ .
Consequently

g′i(t) = lim
α→0

gi(t+ α)− gi(t)
α

= ~1>i 52 f(xt)(y − x) .

The claim then follows from the fundamental theorem of calculus, we have

[5f(y)−5f(x)]i = gi(1)− gi(0) =
∫ 1

0

~1>i 52 f(xα)(y − x) · dα .

Furthermore, since this holds for all i ∈ [n] the result follows.

Combining this with Lemma 5 we immediately get the following characterization of the difference between
the function and the Taylor series expansion

Lemma 10. If f is twice differentiable then for all x, y ∈ Rn and xt
def
= x+ t(y − x) we have that.

f(y) = f(x) +5f(x)>(y − x) +
∫ 1

0

∫ t

0

(y − x)> 52 f(xα)(y − x)dαdt .

Proof. Recall from the definition of the gradient that

f(x1)− f(x0) =
∫ 1

0

5f(xt)>(y − x)dt .

Furthermore, we have that

5f(xt)−5f(x0) =
∫ t

0

52f(xα)(y − x)dα .

Combining and using that x1 = y and x0 = x then yields the result.
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Thus we see that having z> 52 f(x)z ≤ L‖z‖22 also suffices for having the gradient descent guarantee.

Lemma 11. If f : Rn → R is twice differentiable and has the property that for all x, z ∈ Rn it is the case
that z> 52 f(x)z ≤ L · ‖z‖22 then for all x, y ∈ Rn we have

f(y) ≤ f(x) +5f(x)>(y − x) + L

2
‖y − x‖22 .

Proof. By Lemma 10 we have that if xt = x+ t(y − x) for all t ∈ [0, 1] then

f(y) = f(x) +5f(x)>(y − x) +
∫ 1

0

∫ t

0

(y − x)> 52 f(xα)(y − x)dαdt .

However, by assumption we have that∫ 1

0

∫ t

0

(y − x)> 52 f(xα)(y − x)dαdt ≤
∫ 1

0

∫ t

0

L · ‖y − x‖22dαdt

Since ∫ 1

0

∫ t

0

1 · dαdt =
∫ 1

0

t · dt = 1

2

the result follows.

Consequently, we have that we can compute an ε-critical point using gradient descent at the same rate we
got for a L-smooth function provided r all x, z ∈ Rn it is the case that z> 52 f(x)z ≤ L · ‖z‖22. Next we
show that this assumption is more general then simply assuming smoothness.

Lemma 12. If f : Rn → R be twice differentiable at x ∈ Rn and there exists a z ∈ Rn such that |z> 52

f(x)z| > L · ‖z‖22 then, f is not L-smooth.

Proof. Suppose that f is everywhere differentiable as otherwise the claim follows trivially. For all t let
xt = x + t · z and let g(t) = f(xt). Now since f is twice differentiable at x we know that g is twice
differentiable at 0 and therefore that for all ε > 0 there exist some δ > 0 such that∣∣∣∣g′(δ)− g′(0)δ

− g′′(0)
∣∣∣∣ ≤ ε .

However, g′(t) = 5f(xt)>z and g′′(t) = z> 52 f(xt)
>z and therefore we have that∣∣∣∣1δ [(5f(xδ)−5f(x0))>z]− z> 52 f(x0)

>z

∣∣∣∣ ≤ ε .
Consequently, by Cauchy Schwarz this yields that

∣∣z> 52 f(x0)
>z
∣∣− ε ≤ ∣∣∣∣1δ [(5f(xδ)−5f(x0))>z]

∣∣∣∣ ≤ 1

δ
‖ 5 f(xδ)−5f(x0)‖2 · ‖z‖2 .

Letting γ =
∣∣z> 52 f(x)z

∣∣− L‖z‖22 and dividing both sides by ‖z‖2/δ (as z 6= 0 by our assumption) yields

δL‖z‖2 + δ

(
γ − ε
‖z‖2

)
≤ ‖5 f(xδ)−5f(x0)‖2 .

Since ‖xδ − x0‖2 = δ‖z‖2 by construction and γ > 0 by assumption we have that for ε ∈ (0, γ) we have
‖ 5 f(xδ)−5f(x0)‖2 > L‖xδ − x0‖2 and therefore f is not L-smooth by definition.
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Using, this we can give the following Hessian based characterization of smoothness.

Lemma 13. Twice differentiable f : Rn → R is L-smooth if and only if for all x, z ∈ Rn we have |z> 52

f(x)z| ≤ L‖z‖22.

Proof. By the previous lemma we have shown that if it is not the case that |z> 52 f(x)z| ≤ L‖z‖22 for all
x, z ∈ Rn then f is not L-smooth. Consequently we simply need to show that if |z> 52 f(x)z| ≤ L‖z‖22 for
all x, z ∈ Rn then f is L-smooth. Consequently, suppose this condition holds and let x, y ∈ Rn be arbitrary
and let xt

def
= x+ t(y − x) for all t ∈ [0, 1]. Then,

‖ 5 f(y)−5f(x)‖2 =

∥∥∥∥∫ 1

0

52f(xt)(y − x)dt
∥∥∥∥
2

≤
∫ 1

0

‖ 52 f(xt)(y − x)‖dt

However,

‖ 52 f(xt)(y − x)‖2 =

√
(y − x) [52f(xt)]

2
(y − x)

and since |z>52 f(xt)z| ≤ L‖z‖22 for all t we know that all eigenvalues of 52f(xt) have magnitude at most L
and therefore all eigenvalues of [52f(xt)]

2 lie between 0 and L2. Consequently, (y−x)
[
52f(xt)

]2
(y−x) ≤

L2‖y − x‖22 and the result follows.
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