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1 The Problem

Most of the optimization algorithms we have discussed so far assumed that our objective function (or at
least part of it) is differentiable. Even when we generalized further to the case of smoothness in other norms
or composite functions we at least assumed that there was some way to make immediate progress on the
function, i.e. that we could compute a descent direction, that is a direction that decreases the value. Note
that the analysis in most of the lectures we have seen so far assumed that to minimize f we could compute
for all x a function Ux : Rn → R such that Ux(y) = f(y) and Ux(y) ≥ f(y) for all x ∈ Rn.

The primary question we address for the next several lectures is what to do when we no longer have these
properties? How do we minimize a convex function when we cannot immediately make sufficient progress on
decreasing the objective function, e.g. it is non-differentiable. Note that there are cases where we might want
to use the techniques we will introduce even when functions are differentiable, as they may be so non-smooth
or non-strongly convex that the algorithms we have seen before will converge slowly.
Consequently, the main subject we wish to address in this section is how do we solve

min
x∈Rn

f(x)

when f is no longer differentiable, but is still convex. Some of the techniques generalize quite naturally (or
are more clearly explained) in the case when f is only defined over some set S ⊆ Rn that is convex and we
may wish to solve the constrained optimization problem

min
x∈S

f(x) .

1.1 Why these Assumptions?

There are two primary reasons for considering problems of this type. The first is that hey are quite prevalent
and arise easily. As we have already seen

min
x∈R

max
i∈[n]

fi(x)
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is convex function if the fi are convex, but it may not be differentiable if the fi are not differentiable and
although we have given techniques for smooth minimization, these may slow down tremendously when the
number of fi are large.
Another common example of this is linear programming where we have a constraint matrix A ∈ Rm×n and
x ∈ Rn and b ∈ Rm and c ∈ Rn and wish to solve

min
Ax≥b

c>x .

This is one of the most fundamental problems in optimization and in some sense contains all of convex
optimization as we will see. To get a better sense of the structure of this problem and the feasible region,
consider the simpler geometric set known as a half-space.

Definition 1 (Half-space). We call S ⊆ Rn a half space if for some a ∈ Rn and b ∈ R with a 6= 0 we have

S = half(a, b)
def
=

{
x ∈ Rn : a>x ≥ b

}
.

Thus we see that the feasible region Ax ≥ b is an intersection of half spaces, i.e. if we let a1, ..., am ∈ Rn

denote the rows of A written as vectors then

{x ∈ Rn : Ax ≥ b} = ∩i∈[m]half(ai, bi) .

Such an intersection of finite number of half spaces is known as a polytope.
We may also wish to solve problems like

min
x∈Rn

‖Ax− b‖22 + λ · ‖x‖1

a common form of regularized regression that shows up in machine learning.
Second, the reason we consider this new set of assumptions is that they motivate a fundamental set of
techniques in our broader optimization toolkit. Wheres in the previous section we could directly make
objective function progress, here we will introduce new techniques to develop proxy functions for progress.
Many of the algorithms we will introduce will work by locally making progress on some progress measure
other than objective function value and we will need to argue about their ultimate connection to minimizing
objective functions. This is a powerful technique for optimization more broadly and we will build on it in
the last few sections when we discuss second-order optimization techniques.

1.2 Roadmap

We will build these new algorithms in several steps. First, in these notes we take a closer look at the structure
of convex functions. This will motivate the sort of oracle assumptions we will make to solve these problems.
In the next few chapters we then build on these structural facts of convex sets, introducing new natural
optimization problems and efficient algorithms to solve them.

2 Convex Sets

In the remainder of this chapter we begin to address these questions by probing deeper into the the structure
of convex sets. We do this for two reasons. First, it is an interesting area of study broadly useful for
mathematics and optimization. Second, it motivate the definitions and the algorithms we will see in the
next unit.
We begin by defining convex sets and giving several basic properties about them. Note that the study of
convex sets is a wide area of mathematics and optimization and there are courses denoted entirely too it.
However, here we give just a few basic properties that we may use repeatedly in our analysis.
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Definition 2 (Convex Set). We say a a set S ⊆ Rn is convex if for all x, y ∈ S and t ∈ [0, 1] it is the case
that t · x+ (1− t) · y ∈ S

This definition says that a set is convex if and only if for any two points in the set, the line between them
is also contained in the set. It is easy to see that convex sets are closed under intersection and the closure
operation.

Lemma 3 (Intersections of Convex Sets are Convex). Let C be a (possibly infinite) set of convex subsets of
Rn. Then ∩S∈CS is a convex set.

Proof. Suppose that x, y ∈ ∩S∈CS and t ∈ [0, 1] is arbitrary. Then x, y ∈ S for all S ∈ C and by convexity
t · x+ (1− t) · y ∈ S for all S ∈ C.

Lemma 4 (Closure of Convex Set is Convex). Suppose S ⊆ Rn is a convex set. Then C the closure of S,
i.e. the union of all limit points of S, is convex.

Proof. Let x, y ∈ C. Then there exist sequences xi, yi ∈ Rn such that xi, yi ∈ S for all i ∈ Z>0 and
limt→∞ xt = x and limt→∞ yt = y. Now, if α ∈ [0, 1] is arbitrary we have that zi = αxi + (1− α)yi ∈ S for
all i ∈ Z>0 by convexity. Consequently,

α · x+ (1− α) · y = lim
i→∞

zi ∈ C .

Furthermore, we can show that half-spaces are always convex.

Lemma 5 (Half-spaces are Convex). For all a ∈ Rn and b ∈ R the half-space half(a, b) is convex.

Proof. Suppose that x, y ∈ half(a, b) this implies that a>x ≥ b and a>y ≥ b. Consequently, for all t ∈ [0, 1]
we have that

a> [t · x+ (1− t) · y] = t · a>x+ (1− t) · a>y ≥ t · b+ (1− t) · b = b .

Note that from the lemmas we have seen this shows that any intersection of a (possibly infinite) number of
half-spaces is convex. Consequently, polytopes are convex. Eventually we will show that all closed convex
sets can be written this way, as an intersection of a possibly infinite number of half-spaces. Furthermore, the
study of half-spaces associated with convex sets will be one of the primary tools we use to design algorithms.

3 From Convex Sets to Convex Function

The convexity of sets is closely related to the convexity of functions. Here we provide several such relations.
First we show a tight connection between set convex and function convexity through the epigraph of a
function.

Definition 6 (Epigraph). For f : Rn → R its epigraph epi(f) ⊆ Rn+1 is define as

epi(f)
def
= {(x, v) |x ∈ Rn, v ∈ R, f(x) ≤ v} .

Now we prove that there is a tight connection between the convexity of functions and the convexity of their
epigraphs.

Lemma 7. A function f : Rn → R is convex if and only if epi(f) is a convex set.
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Proof. If f is convex, then if (x, vx) ∈ epi(f) and (y, vy) ∈ epi(f) then f(x) ≤ vx and f(y) ≤ vy and for all
t ∈ [0, 1] we have

f(t · x+ (1− t) · y)) ≤ t · f(x) + (1− t) · f(y) ≤ t · vx + (1− t) · vy

and consequently t · (x, vx) + (1− t) · (y, vy) ∈ epi(f).
On the other hand if epi(f) is convex, then for all x, y ∈ Rn we have (x, f(x)), (y, f(y) ∈ epi(f) and therefore,
for all t ∈ [0, 1] we have t·(x, f(x))+(1−t)·(y, f(y)) ∈ epi(f) so f(t·x+(1−t)·y) ≤ t·f(x)+(1−t)·f(y).

Consequently, by understanding properties of convex sets we can understand properties of convex functions.
Another nice connection between convex sets and function is through sublevel sets of convex functions.

Definition 8 (Sublevel Sets). For f : Rn → R and v ∈ R we define the sublevel set level≤(f, v)
def
= {x ∈ Rn :

f(x) ≤ v} and the strict sublevel set level<(f, v)
def
= {x ∈ Rn : f(x) < v}.

Note that if we have a function f : Rn → R and x ∈ Rn then level≤(f, f(x)) is the set of all points whose
value is at most that x. This is a natural set to consider, especially given that our algorithms are looking to
find points of smaller values. In other-words, directions moving into this set are descent directions we would
want to consider in an algorithm.

Lemma 9. If f : Rn → R is a convex function, then for all v ∈ R the sets level≤(f, v) and level<(f, v) are
convex.

Proof. If x, y ∈ level≤(f, v) and t ∈ [0, 1] then by definition f(x) ≤ v and f(y) ≤ v. Consequently, by the
convexity of f we have that

f(t · x+ (1− t) · y) ≤ t · f(x) + (1− t) · f(y) ≤ t · v + (1− t) · v = v .

Consequently, t · x + (1 − t) · y ∈ level≤(f, v) and f is convex. The proof that level<(f, v) is convex is
analogous.

Note that the converse of this lemma does not hold as you will prove in homework. However, this lemma
does show that if we can understand the structure of convex sets well enough we can perhaps build better
algorithms for minimizing them.

4 Separating Convex Sets

So what structure of convex sets can we exploit to design fast optimization algorithms in the absence of
smoothness and strong convexity? There are two ways to motivate the structure we will consider.
The first stems from our previous discussion of the intersection of half-spaces being convex sets. We could
try to make a converse statement and argue that all convex sets are intersections of half-spaces and therefore
we can understand convex sets by finding the half-spaces that border them. This motivates the notion of
separating hyperplanes that we will ultimately consider in these notes
Another nice way to motivate our approach is to again consider differentiable convex functions. Recall that
if f is a differentiable convex function then for all x, y ∈ Rn we have that f(y) ≥ f(x) +5f(x)>(y − x).
Consequently, if f(y) ≤ f(x) then it must be the case that 5f(x)>y ≤ 5f(x)>x. Furthermore, this implies
that level≤(f, f(x)) ⊆ half(−5 f(x),−5 f(x)>x). Consequently, we have that the gradient always induces
a half-space that is on the boundary of the level set for where the gradient is computed. Consequently, even
if a function is differentiable but very non-smooth we see that the gradient may not let us make a lot of
function progress necessarily, but it does gives us useful information about where the minimizer of f might
lie.
In the case of non-differentiable f this natural generalization of this concept is a subgradient.
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Definition 10 (Subgradient). For f : Rn → R we say that g ∈ Rn is a subgradient of f at x ∈ Rn if for all
y ∈ Rn it is the case that f(y) ≥ f(x) + g>(y − x).

Ultimately, we will show how subgradient oracles, that is algorithms which compute subgradients, suffice to
perform convex optimization. Moreover, we will eventually prove that subgradients exists rather generically
for convex functions.
Here, we show that the existence of objects like sub-gradients stems from a more general property of convex
sets, namely that of separating hyperplanes.

Definition 11 (Separating Hyperplane). For a set S ⊆ Rn and x0 ∈ Rn we say that for g ∈ Rn and c ∈ R the
hyperplane H(g, c)

def
= {x ∈ Rn : g>x = c} is separating if for all x ∈ S it is the case that g>x0 ≤ c ≤ g>x.

We call the separation strict if the inequalities are all strict and we call the hyperplane supporting if c = g>x0.

Note that computing separating hyperplanes for many convex sets can be quite easy. For example, for any
convex set S given as an intersection of half-spaces, e.g. a polytope, S = {x ∈ Rn : Ax ≥ b} if we are given
a point y /∈ S, we can find a separating hyperplane by simply finding one of the half-spaces, H = half(a, b)
in the intersection such that y /∈ H or a>y = b and the return H(a, b).
In the remainder of this chapter we prove that separating hyperplanes between convex sets and points on
the boundary of the set or outside the set always exist. This is part of a richer theory about duality between
convex sets and half-spaces that induce them which we will only touch upon. Rather, in the lectures to
come, our emphasis will be to design efficient algorithms and we will prove further structure mostly as we
need it, e.g. to prove that subgradients often exist and design efficient algorithms.

5 Separating Hyperplane Theorem

Here we prove that convex sets and always have separating hyperplanes them from points on their boundary
or outside them all together.
So how should we compute a separating hyperplane and thereby prove it exists? Note that for a set S and
x /∈ S we are looking for a plane that slices through the line between x and every point in S. Thus to slice
all these lines it seems like we want to find an extreme point of S, i.e. one that is closest to x in some way.
To analyze this we need to determine what happens when we minimize a convex function over a convex set.
We perform this analysis in several parts. First we give the following somewhat standard lemma from analysis
that says when continuous functions obtain their minimum or maximum value on subsets of Rn.

Lemma 12 (Multivariable Extreme Value). Suppose that f : Rn → R is a continuous function and S ⊆ Rn

is closed, bounded, and non-empty then there exists x∗ ∈ S such that f(x) ≥ f(x∗) for all x ∈ S.

Next, using this lemma we prove that strongly convex functions always obtain their minimum value over
closed convex sets.

Lemma 13. Let f : Rn → R be differentiable and µ-strongly convex with respect to some norm ‖ · ‖ and let
µ > 0. Furthermore, let S ⊆ Rn be a non-empty closed set. The there exists x∗ ∈ S such that f(x) ≥ f(x∗)
for all x ∈ S.

Proof. Let x0 ∈ S be arbitrary. Since f is differentiable and µ-strongly convex for we have that for all y ∈ S
it is the case that f(y) ≥ f(x0)+5f(x0)>(y−x0)+ µ

2 ‖y−x0‖
2. Consequently, if ‖y−x0‖ > 2

µ‖5f(x0)‖∗by
Cauchy Schwarz

f(y) ≥ f(x0)− ‖5 f(x0)‖∗ · ‖y − x0‖+
µ

2
‖y − x0‖2 > f(x0)
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and therefore if we let B def
= {y : ‖y − x0‖ ≤ 2

µ‖ 5 f(x0)‖∗} then

inf
x∈S

f(x) = inf
x∈S∩B

f(x)

However, since B is closed we have that S∩B is closed and since x0 ∈ S∩B we have that S∩B is nonempty
and since B is bounded so is S∩B. Consequently by the Multivariable Extreme Value Theorem (Lemma 12)
the result follows.

Next we characterize the minimizer of a convex differentiable function over S.

Lemma 14. If f : Rn → R is a differentiable convex function and S ⊆ Rn is a non-empty closed convex
set, then x∗ is a minimizer of f over S, i.e. x∗ ∈ S, i.e. f(x∗) ≤ f(x) for all x ∈ S, if and only if
5f(x∗)>(x− x∗) ≥ 0 for all x ∈ S.

Proof. Since f(x) ≥ f(x∗) + 5f(x∗)>(x − x∗) by convexity we have that if 5f(x∗)>(x − x∗) ≥ 0 for all
x ∈ S then f(x) ≥ f(x∗) for all x ∈ S.
Consequently, it just remains to show that when 5f(x∗)>(x − x∗) < 0 for some x ∈ S then ∃y ∈ S with
f(y) < f(x∗). To prove this, let xt = t · x + (1 − t)x∗ and let g(t) def

= f(xt). Note that by convexity xt ∈ S
for all t ∈ [0, 1] and we have

lim
δ→0

g(0 + δ)− g(0)
δ

= g′(0) = 5f(x∗)>(x− x∗) < 0

and since g(0 + δ) − g(0) = f(x∗ + δ(x − x∗)) − f(x∗) we see that for small enough δ ∈ [0, 1] it is the case
that y = x∗ + δ(x− x∗) satisfies y ∈ S and f(y) < f(x∗).

These lemmas give us everything we need to prove separation oracles exist. Suppose we have a strongly
convex differentiable function f such that f(x0) ≤ f(x) for all x ∈ S. Then from the above lemmas we
see that there is some x∗such that 5f(x∗)>(x − x∗) ≥ 0 for all x ∈ S. However, by convexity we know
that f(x0) ≥ f(x∗) +5f(x∗)>(x0 − x∗) and therefore as f(x0) ≤ f(x∗) we have 5f(x∗)>x0 ≤ 5f(x∗)>x∗.
Consequently, we have that H(5f(x∗),5f(x∗)>x∗) would be a separating hyperplane.
So how to we get such a strongly convex function f? A natural choice would be to pick f(x) = 1

2‖x− x0‖
2
2.

However, there is a general way to construct such a f . Suppose g is a differentiable µ-strongly convex function.
Then f(x) def

= g(x)−
[
g(x0) +5g(x0)>(x− x0)

]
is a µ-strongly convex function that obtains its minimum at

x0, since 5f(x0) = 5g(x0)−5g(x0) = ~0. This is known as a Bregman Divergence and we will study them
more later. However, for now we prove our separating hyperplane theorems with f(x) = 1

2‖x− x0‖
2
2.

To simplify our notation we define the following.

Definition 15. For closed convex set S ⊆ Rn and x0 /∈ S we define the projection operator πS : Rn → Rn

as
argminx∈S

1

2
‖x− x0‖22

and call the πS(x) the projection of x0 onto x.

We remark that projection obeys a type of Pythagorean Theorem.

Lemma 16. For all closed convex sets S and x0 ∈ Rn and xS ∈ S we have that

‖xS − πS(x0)‖22 + ‖πS(x0)− x0‖22 ≤ ‖xS − x0‖22
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Proof. Letting A def
= ‖xS − x0‖22 − ‖πS(x0)− x0‖22 − ‖xS − πS(x0)‖22 we have

A = ‖xS‖22 − 2x>S x0 + ‖x0‖22 −
[
‖πS(x0)‖22 − 2x>0 πS(x0) + ‖x0‖22

]
−
[
‖xS‖22 − 2x>S πS(x0) + ‖πS(x0)‖22

]
= 2

[
x>S πS(x0) + x>0 πS(x0)− x>S x0 − ‖πS(x0)‖22

]
= 2

[
(πS(x0)− x0)>(xS − πS(x0))

]
≥ 0

Where we used Lemma 14 to conclude the final line.

We now formally show that this gives us strict separating hyperplanes for closed convex sets.

Theorem 17. Let S ⊆ Rn a closed convex set and x0 /∈ S. Then for all x ∈ S we have

(πS(x0)− x0)>(x− πS(x0)) ≥ 0

Consequently, for g = (πS(x0)−x0) and c = g>x0+‖g‖22 we have that g>x ≥ c for all x ∈ S and H(g, c− δ)
is a strict separating hyperplane for x0 and S for all δ ∈ (0, ‖g‖22).

Proof. Since 5
(
1
2‖x− x0‖

2
2

)
= x− x0 the first claim follows from Lemma 14. Since

(πS(x0)− x0)>(x− πS(x0)) = g>(x− x0) + g>(x0 − πS(x0)) = g>(x− x0)− ‖g‖22
the remainder of the theorem follows.

To show that supporting hyperplanes exist we take a limit of these strict supporting hyperplanes.
We can now prove that supporting hyperplanes exist. We just need to formally define the boundary of a set.

Definition 18 (Boundary). For S ⊆ Rn the boundary of S, denote ∂S, is the set of points x such that there
is both a sequence of points in S and a sequence of points not in S that converge to x, i.e. x is in the closure
of S and its complement.

Lemma 19. For any convex set S and x0 on the boundary of S there is a supporting hyperplane from x0 to
S.

Proof. First replace S with its convex closure. Note that its closure is still convex and x0 is still on the
boundary thus if we can prove the claim for the closure, we obtain the desired result. Now let x1, x2.... be a
infinite sequence of points such that limk→∞ xk = x0 and all the xi /∈ S for all i. Let

gi
def
=

πS(xi)− xi
‖πS(xi)− xi‖2

and ci
def
= g>i xi

By the separating hyperplane theorem we have that for all i

(πS(xi)− xi)>x ≥ (πS(xi)− xi)>x0 + ‖πS(xi)− xi‖22
and consequently dividing both sides by ‖πS(xi)− xi‖2 we have that

g>i x ≥ g>i xi + ‖πS(xi)− xi‖2 .

Now since ‖gi‖2 = 1 for all i we have that there is a convergent subsequence where limk→∞ gk converges and
therefore we assume this happens without loss of generality. Now let g = limk→∞ gk. We have that

g>(x− x0) = lim
k→∞

g>k (x− x0) ≥ lim
k→∞

g>k (xi − x0) + ‖πS(xi)− xi‖2

≥ lim
k→∞

−‖gk‖2 · ‖xi − x0‖2 = 0.

Note that this lemma gives another characterization of convex functions. It says that for any x ∈ ∂S for
convex S it is the case that there is a direction d 6= 0 such that x+ αd /∈ S for all α > 0.
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