
MS&E 213 / CS 269O : Chapter 7
Feasibility Problem and Cutting Plane Methods ∗

By Aaron Sidford (sidford@stanford.edu)

November 26, 2019

1 Motivation

In the last few lectures we discussed a tight connection between convex sets and convex functions. For a
convex function f : Rn → R we also proved that for any x0 ∈ Rn the set {x ∈ Rn : f(x) < f(x0)} is convex
and thus the set of points that have smaller function value than a given query point are convex. Moreover, we
showed that convex sets always admit supporting hyperplanes. The particular theorem we will use regarding
these hyperplanes is given by the following theorem.

Theorem 1 (Supporting Hyperplane Theorem). For any convex set S ⊆ Rn and x0 /∈ S or x0 ∈ ∂S there
exists a vector g ∈ Rn with g 6= 0 such that for all x ∈ S we have g>x ≥ g>x0. In other words, the half-space
H≥(g, g>x0) =

{
y ∈ Rn : g>y ≥ g>x0

}
contains S.

Consequently, for any convex function f : Rn → R and x0 ∈ Rn there is always a vector g where not only
is the minimizer in the halfspace induced by gx0

, but all points of value less then f(x0) are in the halfspace
induced by the gx0 direction (though moving in the gx0 direction may not itself yield progress on minimizing
the objective function).
In this chapter we discuss algorithms for minimizing functions given access to these sorts of separation oracles
on sets and level sets. Rather than provide a suite of algorithms tailored to the specifics of our assumptions
for the problems we wish to solve, we provide a single general problem called the feasibility problem that
encompasses numerous settings where one would wish to use a separation oracle. We show how to map
various standard optimization problems to the feasibility problem and then provide efficient algorithms for
the feasibility problem, broadly known as cutting plane methods.

2 The Feasibility Problem

The main problem we wish to solve in this chapter is a problem known as the feasibility problem. To define
it formally, we need to introduce a little bit of notation regarding balls in various metric spaces.

Definition 2 (Balls). For a given norm ‖ · ‖ : Rn → R the ball of radius r ∈ R≥0 centered around x0 ∈ Rn

is given by
B‖·‖(r, x0)

def
= {x ∈ Rn : ‖x− x0‖ ≤ r} .

∗These notes are a work in progress. They are not necessarily a subset or superset of the in-class material and there may
also be occasional TODO comments which demarcate material I am thinking of adding in the future. These notes will converge
to a superset of the class material that is TODO-free. Your feedback is welcome and highly encouraged. If anything is unclear,
you find a bug or typo, or if you would find it particularly helpful for anything to be expanded upon, please do not hesitate to
post a question on the discussion board or contact me directly at sidford@stanford.edu.

1

When the norm is omitted, it is assumed to be ‖ · ‖2 and when x0 is omitted it is assumed to be ~0. When
the norm is ‖ · ‖∞ we call the ball a box. Also, for simplicity we use Bp(r, x0)

def
= B‖·‖p(r, x0).

Note that a ball of radius r around a point x0 is simply the set of points at distance at most r from x0 with
respect to the ‖ · ‖. When ‖ · ‖ = ‖ · ‖2 the ball is a ball in the standard sense we typically think of.
Now the problem we wish to solve is the following:

Definition 3 (Feasibility Problem). For 0 < r < R and n ≥ 1 the (r,R, n)-feasibility problem is defined as
follows. We are given an oracle that when queried with x ∈ B∞(R) it outputs a vector gx ∈ Rn. The goal
of the feasibility problem is to query the oracle and either compute some x ∈ B∞(R) such that gx = ~0 or
compute some points x1, ..., xk ∈ B∞(R) such that

S
def
= B∞(R) ∩i∈[k] half(gxi

, g>xi
xi)

does not contain any ball of radius r. We call an algorithm a (Tq, Tt)-solution to the (r,R, n)-feasibility
problem if it achieves this goal with O(Tq) queries to the oracle and in O(Tt) total time.

The feasibility problem can be thought of as follows. We are given a box of radius R and we either want to
find a good point (one where gx = ~0) or prove that the region of good points is fairly small (i.e. does not
contain a box of radius r). We keep querying the oracle at various points in the hope of finding a good point.
However, if instead we get vectors gx 6= 0 ultimately we wish to show that the intersection of the half-spaces
they induce is small.
Note that this problem says nothing about convexity or even the set of ε-optimal points. It is just about
reasoning about intersections of half-spaces given an oracle that produces them. The generality of this for-
mulation allows us to use algorithms that solve the feasibility problem to solve a broad range of optimization
problems (possibly even beyond those which are convex).
Also, note that the choice of norms for the initial ball, i.e. B∞(R), and the ball we wish to prove are not
contained in the intersection of the half-spaces, B∞(r, x) for unknown x, is somewhat arbitrary. As we will
later see, changing the norm likely only affects logarithmic factors in bounds for solutions to the feasibility
problem.

3 Reducing to the Feasibility Problem

Here we discuss how we can use algorithms that solve the feasibility problem to solve a broad class of
problems in convex optimization. The idea of this section is to convey the flavor of how algorithms for the
feasibility problem can be mapped to various common optimization settings.

3.1 Unconstrained Minimization

Here we consider the problem of unconstrained function minimization, i.e. minx∈Rn f(x). We need to
introduce an oracle for how to access f that makes sense in the context of the feasibility problem. The oracle
we assume is precisely the one that we know exists whenever level sets of the function f are convex. We
overload terminology here and call this a separation oracle where it will be clear from context that the oracle
is a separation oracle for a function (rather than a set).

Definition 4 (Separation Oracle (for a Function)). For a function f : Rn → R a separation oracle is a oracle
that when queried at a point x ∈ Rn outputs a vector g ∈ Rn, such that if g = ~0 then f(x) = f∗ and if g 6= ~0
then if f(y) < f(x) it is the case that g>y ≥ g>x.

2

Note that the vector g returned by a separation oracle is not necessarily a subgradient. If g 6= 0 the condition
that f(y) ≤ f(x) implies g>y ≥ g>x does not mean imply that f(x) ≥ f(y) + g>(y − x). The homework
gives an instance of this.
Also note in our definition of separation oracle we did not impose that f is convex. It is natural to ask
then whether or not a function admitting a separation oracle implies that it is convex. In the homework
we show that a closed set is convex if and only if it is the intersection of half-spaces and consequently this
definition does imply something about the convexity of level sets of f . However, while if f is convex then
its sub-level sets are convex, the converse of this statement does not hold (as we show in the homework).
The set of functions where sub-level sets are convex is known as quasiconvex functions (though we will not
discuss them much in this class).
Furthermore, note that computing a separation oracle for various functions can be quite easy. For example,
for a differentiable convex function we know that the gradient gives such a separation oracle. Furthermore,
it can be shown that functions that are a maximum of various differentiable convex functions computing
gradients and separation oracles can be easy (again, as we show in the homework).
Here we show that having a value oracle and a separation oracle for a function combined with a solution to
the feasibility problem allows us to perform unconstrained function minimization.

Lemma 5 (Unconstrained Minimization). Suppose f : Rn → R obtains its minimum value at some x∗ ∈
B∞(R). Further suppose that there is a box of radius r that is contained B∞(R) such that every point in
the box is ε-optimal. Then given a value oracle and a separation oracle for f and a (Tq, Tt)-solution to the
(r,R, n)-feasibility problem we can compute an ε-optimal point for f with O(Tq)-queries to the oracles and
O(Tt)-time.

Proof. There is a natural approach to solving this problem and it is the one we take. We simply run the
algorithm for the feasibility problem with the separation oracle for f as the oracle for the feasibility problem,
query the value at every point the algorithm for the feasibility problem queries and then output the point
of minimum value.
Now if we ever query a point x and find that gx = ~0 then we have that f(x) = f∗ and this routine
outputs a 0-optimal point in the desired running time. If this does not happen then we have that for some
x1, ..., xk ∈ B∞(R) it is the case that

S = B∞(R) ∩i∈[k] half(gxi
, g>xi

xi)

does not contain a box of radius r. However, since there is a box of radius r such that every point in that
box is ε-optimal we have that there is some y /∈ S with y ∈ B∞(R) such that f(y) ≤ f∗ + ε. This implies
that y /∈ half(gxi

, g>xi
xi) for some i ∈ [k]. However, by definition of a function separation oracle this implies

that f(xi) ≤ f(y) and therefore xi is ε-optimal. The result follows from the fact that our algorithm returns
the point of minimum value.

3.2 Constrained Minimization

Here we give another instance of reducing an optimization problem to the feasibility problem. We consider
the problem of constrained minimization where we wish to solve minx∈S f(x). We assume that we have a
separation oracle for both f and S (as well as a value oracle for f).

Definition 6 (Separation Oracle (for a Set)). For a set S ⊆ Rn a separation oracle is an oracle that when
queried at a point x ∈ Rn outputs a vector g ∈ Rn, such that if x ∈ S then g = ~0 and if x /∈ S then g 6= ~0
and g>y ≥ g>x for all y ∈ S.

Given a separation oracle for S and a separation oracle for f how should we solve the constrained minimization
problem minx∈S f(x)? There is a standard trick to reduce this to unconstrained function minimization
directly.

3

Lemma 7. For f : Rn → R and S ⊆ Rn consider the function f̃ : Rn → R ∪ {∞} defined so that for all
x ∈ Rn

f̃(x) =

{
f(x) if x ∈ S
∞ if x /∈ S

.

We can implement a separation oracle for f̃ using one call to at most one separation oracle call for S and
one separation oracle call for f .

Proof. Our separation oracle for f̃ is simple. Given a query x ∈ Rn we first query the separation oracle for
S to get g ∈ Rn. If g 6= 0 we return g. Otherwise, we query the separation oracle for f and return it. Note
that if g 6= 0 then it is the case that x /∈ S and f̃(x) = ∞. Consequently, f̃(y) < f̃(x) if and only if y ∈ S
in which case g>y ≥ g>x as desired. In the other case x ∈ S and since our modification from f to f̃ only
increases the value of the function at points, our output is as desired by definition of a separation oracle.

From this lemma we see that we can perform constrained minimization simply by performing unconstrained
minimization on f̃ .

Lemma 8 (Constrained Minimization). Suppose f : Rn → R and S are such that minx∈S f(x) is achieved
for some x∗ ∈ S ∩ B∞(R). Further suppose there is a a box of radius r that is contained B∞(R) ∩ S such
that every point in the box has value at most f(x∗) + ε. Then given a value oracle and a separation oracle
for f and a separation oracle for S and a (Tq, Tt)-solution to the (r,R, n)-feasibility problem we can compute
y ∈ S with f(y) ≤ f(x∗) + ε with O(Tq)-queries to the oracles and O(Tt)-time.

Proof. This follows directly from applying Lemma 5 to f̃ and implementing its separation oracle as defined
in Lemma 7. Note that this works since the box containing the points of value at most f(x∗) + ε is ε-optimal
for f̃ .

Note that again in this lemma we did not need to directly assume that f or S were convex. Instead the
class of functions and sets for which this procedure works is something more broad and induced only by the
assumption that the oracle exists.
Also, note that we can prove that the transformation from f to f̃ preserves convexity (but we did not need
it directly for our analysis).

Lemma 9. Let f : Rn → R be a convex function defined on a convex set S. Now let f̃ : Rn → R ∪ {∞} be
the function that

f̃(x) =

{
x if x ∈ S
∞ if x /∈ S

then f̃(x) is convex.

Proof. Let x, y ∈ Rn and t ∈ [0, 1] we wish to show that

f(t · y + (1− t) · x) ≤ t · f(y) + (1− t) · f(x) .

Now, when t ∈ {0, 1} the above holds trivially with equality. Furthermore, when x /∈ S or y /∈ S then the
right hand side is ∞ and the lemma is trivially true. However, when x ∈ S and y ∈ S then by convexity
t · x+ (1− t) · y ∈ S and the result follows from the convexity of f .

4

3.3 Bounded Convex Functions

While the last few examples showed can apply the feasibility problem to solve a broad range of optimization
problems unfortunately they each rely on bounds on the size of the set of ε-optimal points. A natural
lingering question is how to bound the sizes of these sets. Here we show how they can be bounded simply
by using that f itself might be bounded. To prove this provide the following general lemma about ε-optimal
sets.

Lemma 10. Let f : Rn → R be a convex function and ε > 0 be arbitrary. Now, if the set of ε-optimal
points, i.e. level≤(f, f∗ + ε), contains a ball of radius R in some norm ‖ · ‖, then for all α ∈ (0, 1) the set of
αε-optimal points contains a ball of radius αR in that norm.

Proof. By assumption there is some x0 such that B‖·‖(R, x0) ⊆ level≤(f, f∗ + ε). Now, consider S =
B‖·‖(αR,αx0 + (1 − α)x∗), i.e. the ball of radius R around α · x0 + (1 − α)x∗. Now we have that x ∈ S if
and only if

‖x− α · x0 − (1− α)x∗‖ ≤ αR .

Further, this happens if and only if x = α · y + (1 − α) · x∗ for some y ∈ B‖·‖(R, x0). Since B‖·‖(R, x0) ⊆
level≤(f, f∗ + ε) we have f(y) ≤ f∗ + ε and therefore by convexity

f(x) ≤ α · f(y) + (1− α) · f(x∗) ≤ f∗ + αε .

This implies S ⊆ levelf (f∗ + α · ε) yielding the result.

This lemma allows us to bound the size of ε-optimal sets in various contexts. We conclude with one simple
illustrative example.

Lemma 11. Suppose f : Rn → R is a differentiable convex function that achieves its minimum value in
B∞(R). Further suppose that |f(x)| ≤M for all x ∈ Rn. Then given a gradient oracle and value oracle for
f and a (Tq, Tt)-solution to the (R, εR2M , n)-feasibility problem we can compute an epsilon optimal point with
with O(Tq)-queries to the oracles and O(Tt)-time.

Proof. By assumption we have that B∞(R) contains a box of radius R such that every point in B∞(R) is
2M -optimal. Consequently the set of ε-optimal points contains a box of radius εR

2M by Lemma 10. The result
then follows from Lemma 5 and the fact that the gradient of a convex function yields a separation oracle for
that function.

4 Solving the Feasibility Problem

Here we discuss algorithms for solving the feasibility problem. We call such algorithms, cutting plane methods
(not to be confused with algorithms for solving integer linear programs). These algorithms all follow the
following same broad algorithmic template to solve the feasibility problem.

• Start with some initial set S0 ⊆ Rn that contains the box of radius R, i.e. B∞(R) ⊆ S0

• Repeat the following for k = 0, 1, 2, ...

– Query the oracle at xk ∈ Sk a point considered to be some type of center of Sk to get gxk

– If gxk
= ~0 terminate the algorithm

– Otherwise, update the set to compute Sk+1 ⊆ Rn such that it contains the intersection of Sk and
the half-space induced by gxk

, i.e. Sk+1 ⊇ Sk ∩ half(gxk
, g>xk

xk).

5

• Argue that some notion of size of Sk is decreasing over time.

This is a fairly simple and broad framework. We start with a set that contains the box, query the center
of the set, update the set to something (hopefully smaller) that contains the intersection of the old set and
the half-space induced by the queried point, and repeat. How the algorithms vary is in term of what sets
they use, what center they use, how the update to the set is done, and how progress in terms of decreasing
the size of the Sk is measured. In the remainder of this section we consider various results for solving this
problem. For some of these results we will just outline how they work, I am happy to provide additional
references to the literature as requested.

4.1 Center of Gravity Method

Perhaps the most natural set to consider would simply be the accumulation of all information we have, i.e.
the minimal set that conforms to the algorithmic template we have specified. We could pick S0 = B∞(R)
and then let Sk+1 = Sk ∩ half(gxk

, g>xk
xk). In other words, we let Sk be the intersection of the box with all

half-spaces we have seen so far.
Now what center should we compute? For intuition, let’s consider what happens in the case when n = 1. In
this case this algorithm will simply have each Sk be an interval, i.e. Sk = [ak, bk] for some ak, bk ∈ Rn. The
natural center to get would be the center of the interval, i.e. xk = ak + bk−ak

2 . Why is this a good choice?
We know that any half-space through this point, when intersected with the interval will result in an interval
of half the length. So in every iteration we could halve the length of the interval with this algorithm. This
algorithm is known as “binary search” and it gives a (O(log(Rr)), O((log(Rr)) time algorithm for solving the
(r,R, 1) feasibility problem as S0 has length 2R and we can terminate with the interval has length < 2r (as
then it could not contain the box of radius r) and each iteration can clearly be performed in nearly linear
time.
Thus, in some sense, this shows that the feasibility problem is asking for a high-dimensional analog of binary
search. A natural analog of the 1-dimension binary search algorithm is to pick xk as the center of gravity of
Sk, this is simply the arithmetic mean, or average, over all points in Sk. Using this as the center gives the
center of gravity method.
To analyze how well this method performs, we need to reason about what happens when we take a convex
set and intersect it with a half-space through its center of gravity. Fortunately, to analyze this there is a
beautiful result in convex geometry.

Theorem 12 (Grunbaum’s Theorem). For any convex set S ⊆ Rn if x ∈ S is the center of gravity of S and
g ∈ Rn with g 6= 0 is arbitrary then vol(S ∩ half(g, g>x)) ≤ (1− 1

e)vol(S). In other words, the volume of S
intersected with a half-space through its center of gravity has at most 1− 1

ε of the volume of S.

This immediately gives us the analog of binary search we were looking for. Where’s in 1-dimension we could
halve the interval length of Sk with a single query, here we can decrease the volume of Sk by a constant
(1 − 1

e) ≈ 0.632. So we cannot make quite as much progress in high dimensions, but we can make a good
deal of progress. This gives the following guarantee for solving the feasibility problem.

Theorem 13 (Center of Gravity Method Queries). We can solve the (r,R, n)-feasibility problem with
O(n log(R/r)) queries to the oracle.

Proof. We run the center of gravity method where Sk is the intersection of all half-spaces we have computed
as well as B∞(R). Now vol(B∞(R)) = (2R)n and vol(B∞(r)) = (2r)n now after k iterations of computing
the center, xk, as the center of gravity we have that vol(Sk) ≤ (1− 1

e)k(2R)n consequently. When k log(1−
1
e) + n log(2R) < n log(2r) we have that Sk cannot contain a ball of radius r and thus this happens when
k > −[log(1− 1

e)]−1n · log(Rr), i.e. k = Ω(n · log(Rr)).

6

This is (up to constants) the optimal number of queries that could be used to solve the feasibility problem.
Note that every call to the oracle cut just cut a single dimension, so it clearly takes Ω(n) queries to see all
the dimension. Further, to performa binary search in each dimension a total of Ω(n · log(Rr)) queries would
be needed; more careful reasoning can then be used to show this is optimal.
However, the running time for this method is quite slow. Unfortunately, actually computing the center
of gravity is a difficult problem outside the scope of this class. However, there are sampling techniques to
approximate it and this can be used to get a running time around O(n5) for an approximate center of gravity
method that has O(n log(R/r)) query complexity.

4.2 Ellipsoid Method

Another popular and well know method for solving the feasibility problem is the ellipsoid method. One way
to possibly derive this method is to think about what would be needed to decrease the iteration costs in
the center of gravity method. One of the reasons the center of gravity method is so expensive to implement
is that the set being maintained is fairly complex. As the number of half-spaces computed increases, Sk
increasingly looks like an arbitrary convex set.
To obtain a simpler method we could simply work with a simpler set of Sk. One nice family of convex
sets is the set of ellipsoids, that is ball of bounded radius with respect to some rescaled Euclidean norm.
More formally, for Ak ∈ Rn×n with Ak = A>k and z>Akz > 0 we have that all the eigenvalues of A are
positive and it is not too hard to see that the set {y | ‖y − xk‖2Ak

≤ 1} is an ellipse centered around xk

with axis given by the eigenvectors and eigenvalues of Ak, where we let ‖z‖Ak

def
=
√
z>Akz for all z (see

the chapter on norms).. Now a natural method would be to use such ellipses as the Sk. We could start
with the trivial ball the contains B∞(R) as the initial S0 and then in each iteration use the center of the
ellipse as the center xk and compute the new Sk+1 to be the smallest ellipse that contains the old ellipse
and the new half-space. It turns out that a good new ellipse can always be computed in O(n2) time such
that volume of the ellipse decreases by (1− 1

n). This method is known as the ellipsoid method and gives a
(O(n2 log(nRr), O(n4 log(nRr)) solution to the O(r,R, n) feasibility problem.
The ellipsoid method has essentially the cheapest iteration complexity known for methods that solve this
problem with a log(Rr) dependence in the query complexity (as opposed to O(poly(Rr)). However, it s query
complexity is worse than that of the center of gravity method by a factor of n.

4.3 John Ellipse Method

Another idea to improve the iteration cost of the center of gravity method (while nearly preserving the
optimal query complexity) would simply be to use a simpler center. One interesting idea is to compute the
center of the maximum volume ellipse contained inside Sk. This ellipse is known as the John Ellipse and it
is has the interesting property that if the ellipse is dilated by a factor of n then it contains Sk. It can also be
shown that if this center is used the in each iteration the volume of the John Ellipse decreases by a constant.
Since this tracks the volume of Sk up to a factor of nn this method has a nearly optimal query complexity
of O(n log(nR/r)). However, since there is a convex program for computing the John ellipse, the iterations
of this method are cheaper and each iteration can be implemented in time roughly Õ(nω+1/2).

4.4 Volumetric Center

To decrease the iteration costs even further several insights were needed. There was a beautiful result of
Vaidya in 1989 that did the following. First rather than maintaining all half-spaces computed and the box,
the set he maintained was the intersection of some of the half-spaces that induce B∞(R) and the half-spaces
computed. Then, the center he computed came directly from an optimization problem. He defined a barrier

7

function pk on Sk such that as x ∈ Sk goes towards the boundary of Sk the value of pk(x) goes to infinity
and let xk = argminx∈Sk

pk(x). This barrier is known as the volumetric barrier and the center is known as
the volumetric center.
Now, one of the virtues of defining the center this way is that as half-spaces are added or removed, the center
can be recomputed quickly by a few iterations of Newton’s method, i.e. minimizing the second order Taylor
approximation, on pk. Furthermore, it can be shown that the ellipse induced by the second order Taylor
approximation to pk at xk gives an approximate John ellipse, that is an ellipse contained inside Sk such that
dilating it by a factor of n contains Sk.
To analyze his method he then showed that by measuring how much each half-space contributed to the
approximate John ellipse and dropping unimportant half-spaces, he could insure that only O(n) half-spaces
ever needed to be maintained, the approximate John ellipse approximated Sk as desired, that every time a
new half-space was added the volume of this ellipse decreased by a multiplicative constant and that every
time a half-space was removed the volume of the ellipse may increase by a multiplicative constant (but it is
smaller than the increment). Consequently, the volume of this ellipse decreases on average by a constant in
every iteration and this gave a O(n log(nR/r), nω+1 log(nR/r)) solution to the (r,R, n) feasibility problem,
where ω < 2.373 is the matrix multiplication constant.
In practice, this idea of using a barrier is sometimes used, but that barrier is often different and the best
theoretical guarantees for it are weaker.

4.5 State of the Art

Recently, in joint work with Yin Tat Lee and SamWong we showed how to further decrease the iteration costs
and provided a O(n log(nR/r), n3 logO(1)(nR/r)) solution to the (r,R, n) feasibility problem. Our algorithm
worked by further approximating Vaidya’s method by only computing both the center and the importances
of constraints approximately. Ultimately, our algorithm can be viewed as approximating Vaidya’s method,
which in turn approximated the John Ellipse method, which in turn approximated the center of gravity
method while as much as possible trying to leverage simple properties of ellipses which we can leverage to
make iterations cheap.

8

	Motivation
	The Feasibility Problem
	Reducing to the Feasibility Problem
	Unconstrained Minimization
	Constrained Minimization
	Bounded Convex Functions

	Solving the Feasibility Problem
	Center of Gravity Method
	Ellipsoid Method
	John Ellipse Method
	Volumetric Center
	State of the Art

