MS&E 213 / CS 2690 : Chapter 8
Online Linear Optimization, Subgradient Descent, and Mirror
Descent *

By Aaron Sidford (sidford@stanford.edu)

December 14, 2019

1 Motivation

In the last section we saw how to use separation oracles for convex function and sets to compute e-optimal
points for a variety of points. These algorithms had a very good dependence on the desired error level € > 0,
but left a bit to be desired in terms of their dependence on the dimension of the problem d. They all had a
polylogarithmic dependence on e but a dependence on d that was at least (d).

This was rather inherent in the abstraction we used for using separation oracles and the assumptions we
made about the problem. In other words, we saw that the query complexity of O(dloge~!) we achieved
was optimal for the feasibility problem we considered and that to do better different assumptions need to be
made.

Here we show how to achieve a different dimension versus error trade-off for non-smooth convex optimization
while making a slightly different set of assumptions. Our emphasis in this chapter is on performing convex
optimization with a subgradient oracle. Our abstraction for using a subgradient oracle is the online linear
optimization problem, a fundamental problem in learning and online algorithms. We show how to solve this
problem efficiently and achieve efficient algorithms not just for subgradient descent, but also the learning
from experts problem and more.

2 Subgradients

We start by formally defining subgradients. As we have discussed these are close analogs gradients of convex
functions and when we minimize convex functions that are possibly non-differentiable, this is what we will
assume we can compute in this chapter.

Definition 1 (Subgradient). For a function f : R” — R and = € R™ we call g a subgradient of f at x if for
all y € R™ we have the property that

f) = f@)+g" (y—2)

and we let 9f(x) denote the set of subgradients of f at x.

*These notes are a work in progress. They are not necessarily a subset or superset of the in-class material and there may
also be occasional TODO comments which demarcate material I am thinking of adding in the future. These notes will converge
to a superset of the class material that is TODO-free. Your feedback is welcome and highly encouraged. If anything is unclear,
you find a bug or typo, or if you would find it particularly helpful for anything to be expanded upon, please do not hesitate to
post a question on the discussion board or contact me directly at sidford@stanford.edu.

In the remainder of this section we prove various properties of subgradients and their connections to convex
functions more broadly.

First we show that if a function has a subgradient at every point, then the function is convex.

Lemma 2. Suppose for convex S CR™ and f: S — R it is the case that Of (x) # O for all x € S then [is
CONVEL.

Proof. Let z,y € S and t € [0,1] be arbitrary. Let @, = ¢t -y + (1 —t)-x and g € df(xy), as x; € S by
convexity. By definition of df(x) we have that

f)=fla)+g9 (y—a)=fla)+1—1)-g" (y—2)

and
f@) 2 fz) + 9" (@ —ae) = flz) +t-g" (x —y)
adding a ¢ multiple of the first inequality to a (1 — t) multiple of the second inequality yields that

t-fly)+ A =t)- f(z) = flzr) .

Next we prove that a convex function has a subgradient at every point in the interior of the domain.

Definition 3 (Interior). For S C R™ we denote the interior of S by int(S) = S\ 05 that is, the set of points
in S that are not reachable by a convergent sequence of points not in S.

Note that equivalently we can view the interior of a convex set as a point in the set such that the set contains
a ball centered around the point.

Lemma 4. Let S C R™ be a convez set and f : S — R be convez function. Then df(x) # 0 for all z € int(S).

Proof. Let x € int(S) be arbitrary. Clearly (z, f(x)) € 0(epi(f)) since (z, f(x)+t) € epi(f) for all t > 0 and
(z, f(z) + t) & epi(f) for all ¢ < 0. Consequently, from the supporting hyperplane theorem we know that
there is a vector g € R™ and v, € R with either g # 0 or v, # 0 such that for all (y,v,) € epi(f) we have
that

9 y+ug-vy =gl w+u,- f(x).

However, since (y,v, + «) € epi(f) for all a we see that v, > 0 since otherwise we could make the above
inequality false for large enough «.

Now, since (y, f(y)) € epi(f) this implies
vg - (Fy) = f(2)) = (=9) " (y — @)

However, since 2 € int(S) we know that « — eg € int(S) for small enough € > 0 and therefore

v - (f(y) = f(2)) = ellgl3

Now either g = 0 in which case v, # 0 by separating hyperplane theorem or g # 0 in which case €|g||3 > 0
in which case v, # 0. Consequently, v, > 0 and f(y) > f(z) + (—g/vy) ' (y — x) for all y € S and we have
that (—g/vg) is a subgradient of f. O

Finally, we conclude this section by showing that subgradients of a differentiable function at a point must
be the gradient of the function at this point.

Lemma 5. Suppose that f : R™ — R is differentiable at x € R™ and g € 0f(z), then g = 7 f(z).

Proof. We know that 7 f(z) € 0f(x) since f(y) > f(z) + v f(x) " (y — z) for all x and y convexity. What
remains to show is that if g € df(x) then g = 7 f(x).

Let g € f(x) be arbitrary. By definition, we have that
F@) = f@) +9"(y—=)
for all y,z € R™. However, since f is differentiable we know that

o @) = [f@) + V(@) (y - 2)]]

y—w lz —yll2

=0.

Consequently, for all d # 0, letting x¢ 4 Ly 4t-dwe clearly have lim;_,o 2+ 4 = =, and substituting these z;
as y in the above expressions yields that
f(@ea) = fl@)—t-g"d . t-vf(@)d=t-g'd (vf(z)—g)'d

0 < lim = lim =
~ 10 t-ldll =0 t-ldll][>

Consequently, we have that (7 f(z) — g) 'd > 0 for all d and thus 7 f(x) = g (as otherwise we would get a
different sign when g = — (7 f(z) — g)). O

3 Online Linear Optimization

Now that we know what subgradients are, we provide our abstraction for how we will use having a subgradient
oracle to perform minimization of smooth functions. Our abstraction is a problem known as online linear
optimization problem. It is more general then the problem of subgradient descent and we define it formally
as follows.

Definition 6 (Ouline Linear Optimization Problem). The online linear optimization problem is as follows:
we are given a closed convex set S C R™ and in each round ¢ > 1 we pick some x; € S. We are then revealed
a penalty p; € R". We wish to minimize regret defined as follows

regret(T) = Z Py — mig Z P, .
te[T) e te(T)

The idea behind this game is that S should be though of as some sort of space of actions we are allowed to
take and p/ z; is to be though of as the penalty we incur for picking that action. Now, we wish to minimize
our total penalty, p, x;, as compared to the minimal penalty we could have incurred if we had just fixed an
action x € S and stuck with it, throughout the game. We call this regret, as it captures how much we might
regret simply picking a fixed strategy from S.

Note, that there are other notions of regret we might pick or different things we wish to optimize in such
an online linear optimization problem. This notion of regret was chosen as it directly maps to subgradient
descent and a variety of problems. It is one of the simplest problems in online optimization and learning,
yet still highly nontrivial to solve.

Now, as we will see our goal will ultimately be to provide algorithms so that limz_, % =0, i.e. the
average regret over the rounds of the game converges to 0. This seems highly difficult to achieve though as
in general the penalty functions p; are allowed to depend on anything (including the x; themselves).

Also, note that regret need not always be positive. Since x; may change between rounds in principle it is
possibly that Zte[T] p/ ;¢ is less than minges Zte[T] p/ . While this is suggestive of picking a regret measure

like Zte[T] Pl T — mings .:es Zte[T] p/ (x}), as we will see in the homework this in general impossible to
have low average regret for.

4 Reduction to Convex Optimization

Before we discuss algorithm for solving the linear optimization problem, let’s quickly see why this problem
encompasses convex optimization with a subgradient oracle. The idea is quite simple, if we pick the penalty
functions to be subgradients, then we can show that a low regret algorithm for the online linear optimization
problem produces an e-optimal point. First, we formally define a subgradient oracle and then we show this
claim.

Definition 7 (Subgradient Oracle). For f : R™ — R as subgradient oracle is an oracle that given query point
x € R™ returns g, € 9f(x).
In the next lemma we show that a solution to the online linear optimization problem plus a subgradient

oracle can be used to compute e-optimal points for constrained convex function minimization.

Lemma 8. For closed convex set S and convezr f : R™ — R with minimizer x, € S if we have a solution to
the online linear optimization problem that achieves some regret, regret(T), when for the sequence of points
1, ...,xr we have that p, € Of (x;) then the point >_teqr) Tt is regret(T') /T-optimal.

Proof. Note that by definition of df(z;) it is the case that f(x.) > f(x¢) + p; (z« — z¢). Consequently, by
convexity

f %th —f*S%Zf(l“t)—f*ﬁ%zp:(ﬂft—f*)

te(T) te[T) te(T]

1 T) T | _ regret(T)
T Zptxt_fxnelgzptx = T
te[T] te[T]

IN

O

Consequently, this shows that if we have a solution to the online linear optimization problem where average
regret converges to 0 then this yields an algorithm for computing eoptimal points with a subgradient oracle.
Moreover, this shows that the exact query complexity of the problem depends on the rate at which average
regret goes to 0.

5 Learning From Experts

Before we give our algorithm for solving the online linear optimization problem, as a warm-up to gain
some intuition about the problem, let us consider a particular special case of the online linear optimization
problem.

Definition 9 (Learning From Experts Problem). The learning from experts problem is the online learning
problem where S = A" = {z € R%([> ;) #; = 1} and for all t > 0 and i € [n] we have p(i) € [0,1].

The set S = A" is known as the simplex. It is the set of non-negative vectors whose coordinates sum to
1. The set can be though of the set of probability vectors on n items. There is a natural bijection between
A" and the marginals of a distribution on n items. For every distribution on n items if we let p; be the
probability of picking item ¢ then p € A™. Conversely, for x € A™ we let D, be the simple distribution on
[n] where if Pr;p,[i = j] = x;. With this interpretation in mind, if we think of the penalty in a round of
the learning from experts problem we have that

S Z pe(i) - 24(i) = Binp,, pe (i)

i€[n]

in other words, p/ z; is the expected value of the i-th coordinate of p; as sampled by the distribution induced
by x;.

Consequently, the learning from experts problem has the following nice interpretation. We can think there
are n experts corresponding to each of the coordinates. We think that each day the experts are making some
sort of prediction or giving some sort of advice and we would like to decide who to listen to. Maybe they
are all predicting whether or not it will rain or whether the stock market will go up or down and p:(i) = 1
means they were incorrect and p;(i) = 0 means they were correct. Now, in each day we pick a distribution
over the experts corresponding to the distribution over which expert we will listen to, i.e. x; € A™. Then at
the end of the day, it is revealed how well each of the experts do p; € R™ with p;(¢) large means did badly
(large penalty) and p;(¢) small means they did well (small penalty).

Now, EtG[T] x/ p; is how well we do by following our strategy It is the expected penalty we incur from

picking experts as we did. However, mingcan Zte (7] plx = min, e, Zte (7] pi(1), i.e. the penalty incurred
by the expert with minimum penalty. Consequently, regret is the dlfference between our total penalty and
the penalty incurred by the best expert. Thus, achieving low average regret, means that we can do as well
as the best expert does on average.

However, this is a highly non-trivial claim. Note that we are allowing the performance of the experts to
depend on the distribution we pick. If we overcommit to listening to an expert, he might cease to perform
well. However, if we pick a uniform distribution, then we might miss out on an expert performing particularly
well. This learning from experts problem is about how to trade off these two issues while dealing with the
fact that future performance of the experts might have nothing to do with their past performance. In the
next section we take a closer look at some of these simple algorithms to help derive the actual algorithm
that we will use.

6 Simple Learning from Expert Algorithms

Here we consider some simple algorithms to solve the learning from experts problem. We consider these
algorithms to better understand the problem and ultimately motivate the efficient algorithms we consider
for this problem.

6.1 Arbitrary

To start, to get an upper bound on performance. Let us consider the the penalty and possible regret of an
arbitrary algorithm. Note that since p;(i) € [0,1] and x¢(¢) > 0 we have that

ploc=Y pili) 2(i) < Y wy(i) =1

i€[n] i€[n]
Consequently, Zte[T} pf zy < T. Furthermore, for any x € A" since z > 0 coordinate-wise and p>0

coordinate wise we have
manptx> ZO—O
te([T] te[T)

and therefore, for any algorithm for solving the learning from experts problem we have regret (7)) < T.
Thus we can ensure average regret 1 easily, however getting an algorithm so average regret converges to 0
seems to require more work.

Note that it can actually be the case that regret(T) = T. If we just have two experts and p;(1) = 1 and
pt(2) = 0 for all ¢ € [T] and we keep picking z; = 17, i.e. we keep listening to the first expert, then we will
get regret that is exactly T

6.2 Random

Another simple algorithm to consider is a random strategy. We could simply pick x; = %f for all t € [T).
Note that for this strategy we have that if j = argmin;cp,,) >yc(p Pe(7) then

regret(T) = Z Py Ty — Inin Z plz= Z Z %pt(i) —pe(d)

te(T] te[T] te[T] |ien]
1 n—1 1
< e . _= . —_
Yy iertioy <1 n) |
te[T] j#i

Furthermore, we can show that this is tight in the worst case. If z;(1) = 0 for all t and z;(i) = 1 for all ¢ # 1
then this is precisely the regret that will be achieved.

Thus, we can show that random does a little better than arbitrary, but how much better degrades as n
increases and the average regret still stays at a constant when n > 2.

6.3 Follow the Leader

Each of the strategies we have seen so far have been oblivious to the actual penalties, p; encountered. If we
wish to do better the above analysis suggest we need to some how be focus in on experts doing better than
the average. Another natural strategy follow to achieve this is known as follow the leader (FTL). In each
round t we can pick the strategy for which would have done the best on what we have observed in the past.
In other words, we could let x;41 = argmin ca» Zke[t] pp .

However, we can show that this strategy gets regret that converges to T'/2 in the worst case. To see this,
consider a simple scenario where we have two experts. In the first round, expert 1 gets penalty € and expert 2
gets penalty 0. In the next round we pick expert 2 to listen to as they have done better in the past. However,
expert 2 gets penalty 1 and expert 1 gets penalty 0. Now expert 1 has had total penalty € and expert 2 has
had total penalty 1 so we pick expert 1. However, we then give expert 1 penalty 1 and expert 2 penalty 0.
We continue in this way, penalizing only the expert we pick. Note that our total penalty after T rounds is
e+ (T — 1). However, each of the experts individually have had total penalty at mostf%] Consequently,
our regret converges to T/2.

In short, this strategy perform poorly as even though both experts have done about the same over time, by
us switching experts every round, we realize a penalty that is much worse. Note that we can make the factor
of 2 even worse by considering a similar counterexample with more experts.

7 Follow The Regularized Leader

In the previous section we saw several algorithms for the learning from experts problem. A random strategy
failed as it didn’t identify an expert performing much better than the others. However, the greedy follow the
leader strategy also failed as it kept changing strategy missing out on the true leader. At first glance, this
seems like an insurmountable problem, we want to learn what experts to listen to, however past performance
says nothing about future performance and thus if we pick an expert, it might do worse down the road. How
should we hope to surmount this?

One idea is that if we start to focus on an expert based on past performance, then if the expert ceases to
do well, then there was likely not any strategy that does well. In our example where follow the leader does
poorly, uniform does great, and in our example where uniform did poorly, greedy did great. Perhaps, the
right algorithm is one that carefully interpolates between these two algorithms.

This turns out to be the case and is precisely the algorithm we will show in the case. A random strategy can
be though of picking x; = argmin,cg¢r(x) for some function r that depends only on S (not on the p;) and
forced the algorithm to pick zy = %T every time. Here we consider an algorithm that interpolates between
this algorithm and greedy. It is called follow the reqularized leader and the term r(x) is called a regularizer.

Definition 10 (Follow The Regularized Leader (FTRL)). To solve the online linear optimization problem
the follow the regularized leader (FTRL) algorithm is as follows, pick some function r : R™ — R, called a

reqularizer, that is differentiable and p-strongly convex on S with respect to some norm || - ||. For all T > 0
let
dr(z) = Z p; &+ r(z)
te(T]

def

and (with [0] =) so ®¢(x) = r(x)) and for all T > 0 pick
zpy1 = argming, ¢ g®r(z) .

This algorithm is quite simple, simply introduce a parameter 7 (sometimes called a learning rate) that
trades off how much we care about optimizing past performance, i.e. minimizing ZtE[T] pf z and being
stable, i.e. minimizing r(z). The algorithm simply takes the next action to be the minimizer over S of the n
weighted combination of these two contributions. The idea is that by picking a well behaved strongly convex
regularizer, we might ensure that we do not over commit to well performing experts while still be able to
take advantage of their improved performance.

In the remainder of this section we show that this algorithm achieves average regret that converges to 0 in
many scenarios. We show this by analyzing how the minimizer of ®7 changes in each iteration.

First, we recall the following basic lemma we proved earlier for this analysis.

Lemma 11 ((Recap) Characterization of Optimizer). If f : R® — R is a differentiable convez function and
S C R"™ is a closed conver set, then x, is a minimizer of f over S, i.e. x, € S, i.e. f(x.) < f(x) for all
x €8, if and only if Y f(x.) " (x —x,) >0 forallz € S.

Using this we show that we bound how much ®7 changes as we move away from its minimizer.

Lemma 12. In an instance of FTRL for all z € S and t > 0 we have

u(2) 2 Oilweer) + Sz — o2

Proof. Since r(z) is p-strongly convex and linear functions, e.g. 7 Zke[t] pi 2 is O-strongly convex, and the
sum of a p-strongly convex function and a O-strongly convex function is p-strongly convex we have that &,
is p-strongly convex. Consequently, as r is differentiable (and therefore ® is differentiable), we have

Dy(2) > D4(wr41) + VPs(2e11) T (2 — Tey1) + g”z — |

However, since 2,41 = argmin, . g®;(x) we have that \/®;(2441) " (2 —x441) > 0 by Lemma 11 and the result
follows. O

Using this we show bound how much ®7 increases in each iteration. Often the difficult part of analysis
in online algorithms is showing that the optimal, e.g. mincg ZtG[T] p/ x is lower bounded by something
involving our performance. Since, the minimizer of ®1 is approximately this quantity (up to scaling by n
and addition of the regularizer), lower bounding ®7 serves this purpose.

1Where exactly do we use the convexity of S? (It is in the minimality.)

Lemma 13. In FTRL for allt > 1 we have that

Oy(wig1) — ®roa(@e) >0 pl e+ p) (€1 —) + g”fft — 2|
>0 — ;ilptllf
Proof. First, note that by the definition of ®; and Lemma 12 we have
O (wr41) = np) Toe1 + Po1(eg) > npf T + g”ﬂft — ||+ Do ().
Rearranging terms yields the first inequality and using that

[I3

2

I n
U'P:Z‘anz —ﬂHPt *
yields the second inequality. O

This lemma shows that in every iteration the minimizer of ®; increases by an 7 multiple of our realized

penalty, p] z;, minus n?times ﬁ”ptﬂf Summing this up over each round lets us immediately bound the
total regret.

Theorem 14 (FTRL Guarantee). If we implement FTRL for the online linear optimization problem and
and G > ||p¢|« for all t € [T] then for all z € S

1

E p; (2, — 2) < T opogry . [r(z) —minr(x)}
2 n zeS

te[T]

and consequently for D > max,es r(x) — minges r(x) and n = \/(2Dp)/(T'G?) we can achieve

regret(T) < +/2DTG?/ .

Proof. Summing Lemma 13 yields

Br(orin) ~ Boen) = 3 [iloren) sl = 3 [oe0Te = Ll
]

te[T] te[T

Now clearly ®p(z) > ®p(z7r4+1) and since ||p|l« < G and ®o(x1) = minges r(z) we have

2T GQ
1 >
anter{ glelgrw} N> pl - 2
te[T) te(T)
Rearranging terms yields the first claim and the choice of 1 yields the second. O

Note that the analysis essentially says that each iteration we have that our regret grows by at most Q’L llpe |2

and there is a = o L contribution from the regularizer. Trading off the two gives the final bound. Note that the
rate gets worse as either D (how much the regularizer varies) or G (how large the subgradients are) increases.
Also note, that the steps size or learning rate, n gets smaller as T increases, D decreases, or GG increases.
This says that as we run for longer, i.e. T increases, each step moves away from the regularizer less, i.e. we
require great confidence in an experts performance to move towards them. It also says that the large the
penalties the more cautious we should be (i.e. we should move away from the regularizer more slowly) and
the large the regularizer the more we should move away from it (i.e. as it is less helpful and there is more
space to explore).

Note also that this bound says we can achieve

regret(T) /2DTG?*/p |2DG?
T T N\ T

Consequently as T — oo we have regret(T)/T — 0. Consequently, we can use this algorithm for our
applications. We discuss using FTRL for the problems we considered more extensively in the next few
sections.

8 Solving The Experts Problem

Here we show how to use FTRL to solve the learning from experts problem. Note that this is not immediate
as FTRL does not specify what regularizer to use or how to compute x:1; = argmin, g®.(z). Here we
discuss these issues for the learning from experts problem.

Our main question is what regularizer r do we want to use. However, even more fundamental perhaps, we
could ask what norm do we want to do our analysis in? Note that FTRL depends on the bounds on ||p:]|.
and we have that ||p¢]joc < 1. Since || - || is the dual of || - ||; (see homework) this would suggest that we
may want to do our analysis in || - ||;. Furthermore, note that since r is strongly convex in | - || Lemma 12
shows that if there is some = € S such that ||z — z1]| is large then D will be large. However, since we know
that ||z — y||1 < 2 for all z,y € A (by triangle inequality) this would again suggest that we may want to do

our analysis in /1 to keep D down as well.

Consequently, we will perform our analysis for the experts problem in the || - ||y norm. The next question is
what regularizer to use or equivalently what is a good strongly convex function with respect to || - ||; over
A,. Another, essentially equivalent question, is what is a good way to measure distances in the simplex? A
natural choice here is entropy.

Definition 15. For z € R, the entropy regularizer is define as e(x) = | i - log x; where we let

i€n
def

0log0 = 0.

We note that this choice of treatment of 0log0 makes sense due to the following.

Lemma 16. Note that lim, .o x -logx = 0.

Proof. By L’Hopital we have

. . logz . 1/x)
lim z - logz = lim —— = lim = lim —z =0.
z—0 x>0 (1/x) 220 —1/22 20
O
Next, we analyze the strong convexity of e(x) with respect to || - ||1-
Lemma 17. The function e(z) = Y ic[n) Ti - log@; is 1-strongly convex with respect to || - ||1 on A™.

Proof. Note that e(z); = 1+ loga; and 72%e(z) = X! where X = diag(z). Now for x € A" we have by
Cauchy Schwarz that

2 _ |yl 9'2_ Ty—1
lylly = Z\/fjﬁ S,in-,zji_yx Y-

i€[n]

Consequently we have that r(x) is 1-strongly convex on A™. O

Next, we characterize the minimizers of r(z) plus a linear function over the simplex.

Lemma 18. Fore(z) =) x; - logz;, p € R™ we have

i€[n]
z = argmin e, p'x +r(2)

is given by)
eXp(—Pi
Zje[n] exp(—p;)

zZ; =

Proof. Note that clearly z € A™ and therefore from the characterization of the minimizer of a differentiable
convex function over a closed convex set, it suffices to show that 7 f(2) " (z — 2) > 0 for f(z) =p'z +r(z)
and all x € A™. However, by design, for all ¢ € [n] we have

Vf(2)i =pi +1+1log(z) =1-log Z exp(—p;)) | ,
Jj€ln]

Le. each coordinate of 7 f(2) has the same value. However since 3,1, i = D ey 2 = 1 as 2,2 € A we
have that 7 f(2)" (z — 2) = 0. O
Using this characterization of the minimizer of r(z) plus a linear over the simplex we bound D.

Lemma 19. We have

— mi <l .
max e(x) wrglAr}q/e(x) <logn

Proof. Note that zlogx is convex on [0, 1] with 0log0 = 0 and 1log1 = 0 and consequently

max e(x) <0

TEA"
Furthermore, we have that arg min can e(z) = %f and this
1- 1 1
i —el=T) = “Nlog (=) =—1
mig efo) = ¢ (37) 2 () o () = —tomn

Putting these pieces together gives the following result on solving the learning from experts problem.

Theorem 20. Suppose in the learning from experts problem we start with wy = T and in each roundt > 1 let
xy = wi/||wl|t, i-e. pick expert i with probability proportional to we(i) and let wiy1 () := we(7) - exp(—npt (7))

for alli € [n] and n= \/2logn/T then regret(T) < /2T logn.

Proof. We apply FTRL with r(z) = e(z). We have shown that r is 1-strongly convex with respect to || - ||1
over A, that ||p¢]]« < 1 for all ¢t and maxzean 7(2) — mingean r(x) < logn. Consequently, FTRL achieves
the desired regret bound as we can pick G =1 and D = logn. To see that the algorithm we have proposed
is the same as FTRL note that for all ¢ > 0 and ¢ € [n[we have

exp (Zke[t] -n- pk(i))
2 jefn) &P (Zkem =1 'pk(j))

and therefore z,41 = argmin c z» ¢ (x) as required. O

Ti41(i) =

Note that it can be shown that this bound is tight in general.

10

9 Solving Convex Optimization

Here we show how to use FTRL to solve L-Lipschitz continuous optimization problems. First we provide
the following lemma showing that a function is L-Lipschitz with respect to some norm if and only if its
subgradients are bounded with respect to the dual norm.

Lemma 21. A convexr function f : R® — R is L-Lipschitz continuous with respect to a norm | - ||, i.e.
lf(z) = fy)| < L-||lx—yl| for z,y € R™, if and only if for all x and g € Jf(x) it is the case that ||g|l« < L.

Proof. First suppose that ||g||. < L for all g € 9f(z). Then for z,y € R” and ¢, € df(x) and g, € 0f(y) we
have that

Fy) 2 f@) + g, (y —2) 2 f(2) = llgalllly — 2l > f(z) = Llly — |
and similarly
F@) = fy) +gy (@ =y) = f@) = llgylllly — = = £y) = Llly — ||
and therefore we have that
—Llly — 2| < f(y) = f(z) < Llly — |-
On the other hand suppose that ||g||« > L for some g € df(x). Then, since for some z € R” with ||z|| =1

we have g 2z = ||g.||« it is the case that

fl@+2)> f@)+g) (@+z—2)=f(2)+ g

Consequently
[f(@+2) = f(@)] = [|galle > L-[|(z +2) — 2|
O
Using this we show provide bounds for unconstrained Lipschitz continuous minimization in || - ||2. The idea

. . . . 1 2 .
is quite simple, we simply use 5 ||z — zo||5 as the regularizer.

Lemma 22. Let f : R® — R be a L-Lipschitz function and S is a closed convex set known explicitly.
Further suppose we have a subgradient oracle (and 0f(x) # O for all x € S) and some point xy € S and
R > ||xo — x.||3then if x. is a minimizer of f we can design a method that with k call to the subgradient

oracle produces xy € S such that
RI?
fan) = fo < Ve

and therefore we can produce an e-optimal point with O(RL?/€%) queries to the subgradient oracle.

Proof. For all T let gr € Of(xr) and let consider the algorithm

. 1
Tpy1 = argming g E gl x+ §||$ — zoll3
te[T]

we know that ||gr|l2 < L for all T and thus for 7(z) = %||z — ||} since r is 1 strongly convex Theorem 14

yields that

1
Z g (x; — x,) < Doyt [r(x*) - minr(x)} .
ol 2 n zeS

However, since clearly min,cg r(z) = 0 we have that

11

Since f(z.) > f(z4) + g/ (z+« — 2¢) we have that for n = \/R/(L2T)

2
g S o] -fsg S o)<\

te[T} te([T]

O

What exactly is this algorithm in the unconstrained case? Note that (0 = Vi (ziy1) =1 Zte[T] gt +xir1—To
and thus x4y = 29 — nzke[t] g and thus this algorithm is xy41 = ¢ — ngq, i.e. it is essentially gradient
descent, aka subgradient descent. In this case we have shown that the average of the iterates converges for
this algorithm for decaying choice of 7.

10 Mirror Descent

Here we consider another algorithm for solving the online linear optimization. This algorithm is known as
marror descent and the analysis will give us another interesting perspective on the problem.

Now rather than using our strongly convex function directly in a single minimization problem, we will use
it through Bregman divergences defined as follows.

Definition 23 (Bregman Divergence). For differentiable strongly convex function r : R — R the Bregman
def

Divergence, D, (z||y) for z,y € R™ is given by D, (z|ly) = r(z) — [r(y) + vr(y) " (z — y)]. Furthermore, for

closed, convex, non-empty S C R™ we let 7%5(y) = argmin, . g D(z||y).

The Bregman divergence is a way of turning an arbitrary differentiable strongly convex function into a
distance-like function (though triangle inequality need not hold of it). Indeed, so long as r is p-strongly
convex with respect to || - [[for 4 > 0 we can show that D(z|ly) > 4|z —y||* and thus D(z||y) = 0 if and only
if z = y. (See homework.) Furthermore, this implies that it is reasonable to think of 7% (y) as the projection
of y onto S.

The other notion we need is that of a mirror map.

Definition 24 (Mirror Map). We call differentiable strongly convex r : R® — R a mirror map if for all
x € R™ it is the case that = yr(y) for some y in the domain of r.

The idea of a mirror map is that it is a way to translate from the dual space, i.e. the space of gradients or
subgradients, back to the domain. Note that we often measure differences between points in one norm but
norms of gradients in the dual norm. While in finite dimensions all norms approximate each other up to
multiplicative factors and therefore such a primal space can always be related to the dual space, this need
not happen in infinite dimension. For example, if we have an infinite dimensional vector g € /o, and x € ¢4
the operation y = x + ng doesn’t necessarily even make sense. A mirror map provides a way to avoid such
issues by providing the mapping from dual space back to primal.

Note that clearly r(z) = %||z — z¢l|3 is a mirror map as /r(z) = z — xo. Furthermore, clearly e(z) = zlogx
for z € R%, is a mirror map as ve(z) = 1+ log(z) and we(z) = y if and only if # = exp(y — 1) which we
can always ensure.

These notions give another interesting perspective on FTRL provided that r is a mirror map. Note that the
step
Tiy1 = argmingcgn Z ez +7(z)
ke(t]
is trivially the same as
Tep1 = argminge g Dy (2[ye)

12

provided where ¢ is chosen such that

vr(y) =—nY pi-
ke(t]

Consequently, we see that FTRL is equivalent to the following. Start with yg such that 577 (yo) = 0 and then
for all ¢
o Let z441 = 7mg(y) = argmin, g Dy (2|[ye)

e Let yiy1 be such that 7r(yi1) = Vr(y:) — npesa

In other words, this algorithm is essentially performing gradient descent in the dual (on 77(y;)) and then
projecting back to x;. This is known as lazy mirror descent or dual averaging, in the context of convex
minimization. Here, the updates are occurring primarily in the dual, syr, space and we simply do projection
to get points in S.

Another natural modification of this algorithm would be to do exactly the same procedure, but project every
iteration and therefore better maintain points in S. Here we could start with some yy = x¢ € S and for all
t repeat the following

o Let ;41 = argmin gD (x||y:)
e Let y;11 be such that 77 (Y1) = Vr(@e41) — NP1

The algorithm is known as mirror descent. Here we perform the gradient descent update on the mapping
of z;11 back into the dual space. Note that in many cases, mirror descent and lazy mirror descent, can be
shown to be equivalent. However, the analysis typically revolves around different potential functions. The
analysis of mirror descent as the virtue that we can primarily measure progress by distances in the primal,
S, space.

We analyze the performance of mirror descent in the remainder of this section.

Lemma 25. In each iteration of mirror descent when r is a u-strongly convex mirror map with respect to
|- 1] and S is a closed set we have that for all z € R™

D,(2|lys) — Dr(z]|21) < —gllyt —z® =) (ye — a0 + 20 — 2)

< —pell2 = n-p/ (20— 2)

772
2
0

Proof. Direct calculation reveals that for all ¢ >

D(zllye) = D(zl|ze) = [r(2) = r(ye) = Vr(ye) T (z = ye)] = [r(2) = r(ze) = r(ze) T (z — z1)]
= r(@) = r(ye) — vr(e) (@ —ye) — 0w (g — 2)
Since 7(yr) > r(x1) + 77 (x) T (ye — ¢) + 5 lye — x4]|* by strong convexity this implies
D(zlly) = D) < =5 llye = @l =] (v — e + 2 = 2)
n? 2 T
< ﬂ”ptﬂ* —n-pp (T — 2).

O

This lemma shows that we can bound the changed in Bregman divergence between any vector and y; and x;.

However, we would really like to relate this to changes only in x;. For this we can show a type of generalized
Pythagorean theorem that holds for Bregman divergences.

13

Lemma 26. If r is strongly convexr and S is a closed convex set then fory € S and z € R"
D (z|ly) + Dr(yl|2) < Dr(z|[2) for allz € S
if and only if y = 15(2).
Proof. Homework. O
We call this a generalized Pythagorean theorem as if r = %|z||3 then the inequality in this lemma is|z —

vl +lly = 213 < llo - 2[13.
Using this we see that in mirror descent that for all z € S clearly D(z||z¢11) < D(2]|ys).

Theorem 27 (Mirror Descent). Mirror Descent for u-strongly convex r with respect to || - || where we let
Yo = g € S ensures that for all z € S

n 2 1
pe (T — 2) = lIpells + —Dr(z|[z0) -
d_r <2 3 ;

te[T) te(T]
Proof. By the previous lemmas we have that for all ¢ € [T

I2

2
n
Dy (z||wey1) — D(z||zy) < ﬂ”pt 2—n-p (z—2).

Summing over ¢t € [T] and re-arranging terms yields that

> vl (@ —2) Z lpellZ + = [Dy(2]|a1) = Dr(2||zr41)] -

te(T) tE 1]

However, D, (z|||xt+1) > 0 and 21 = z¢ yielding the claim O

Thus we see that we can also use this theorem to get a /T regret growth rate with essentially the same
bounds as those we got for FTRL.

Note that there is another equivalent way of writing mirror descent that makes it look more like gradient
descent. Recall that in each iteration of mirror descent we let z;11 = argmin,gD(x||y;) where 7r(y;) =
vr(z:) — npe. Changing terms that do not affect the minimizer we have

e = argmingegr(a) — [r(ye) +7r(y) (@ — yi)]
. T
= argmin,gr(z) — [r(xt) + [vr(zy) —npe] (- xt)]
= argmin, ¢ gnp; (¢ — 1) + Dr(zlze).
Thus, each step is minimizing a weighted combination of the inner product with p; and the distance to x; as
measured by the Bregman divergence. Note when p; is a gradient and r is the ¢5 squared norm, then this is
projected exactly gradient descent (i.e. composite gradient descent where the composite term is an indicator

for x being an element of the set) and gradient descent when S = R™. This is in contrast to FTRL which if
it used D, (z||zo) as the regularizer would have

Typ1 = argmingcgn Z p; (x — x0) + Dy (z||20) -
te(T)

One of the nice things about FTRL is that to compute an x; we only need the p, and a single minimization
over S. On the other hand, one of the nice things about mirror descent is we only need to know x;, a point
in S, and p; to determine x;1. Each are useful for different reasons and in many cases they lead to the same
algorithm.

14

11 Mirror Descent for Smooth Functions

Here we consider the performance of mirror descent on smooth functions. Suppose we ran the same algorithm
as before for convex L-smooth f : R®™ — R and let p, = 7 f(x;). Then, letting z = x,, the guarantees of
mirror descent yield that

§jm%w¢mm$§:durwos2:%wm+%lemw

te(T] te[T] te[T)

However, we also have that ||p||2 = || v f(z¢)||3 < 2L - [f(2¢) — f(z)] and thus

1= 5 [f(@y) - f(@2)] < =Dy (2. |xo)
> (-%) el

Consequently picking 7 = 4+ we have

1 1 4L

f T Z Te | = fo < T Z [fze) = fu] < T * Dy (2] |20) -
te[T) te[T]

Thus we see that we now get a 1/T rate for smooth minimization. Note that if instead of running mirror

descent we ran FTRL, then we could obtain exactly the same guarantee. The 1/T rate stems not from the

analysis of mirror descent, but rather just an interpretation of its guarantees and picking n appropriately.

12 Stochastic Gradient Descent (SGD) and Finite Sums

Here we consider using the previous algorithms in the case where we pick p; to be a random variable so
that Ep, € 9f(z;). Such algorithms are known as stochastic gradient descent (SGD). Note that if in each
iteration we have that E||p;||2 < G? then we get exactly the same bounds as before with the only difference
that our regret bounds become expected regret bounds and the function errors we obtain become expected
function errors.

To demonstrate the power of this technique, here we show how to use SGD through a technique known as
variance reduction to get faster algorithms for minimizing finite sums and more broadly, regression.

12.1 The Problem

The main problem we consider in this section is what is known as the finite sum problem.

Definition 28 (Finite Sum Problem). We have a function f : R — R that is u-strongly convex such that
f(z) = %Zie[n] fi(x) where each f; : RY — R is L-smooth and convex. We wish to minimize f given some

initial point o € R? and an oracle that when queried at x € R? and i € [n] outputs v/ fi(x).

This problem encompasses a common setting in machine learning, where we wish to optimize over some set
of variables x and have n pieces of data each of which should be explained by z. The terms f;(z) are then
used to measure how well data point x; is explained by x and f yields the average explanation quality. Due
to the popularity of this problem there are many variants considered, however we will restrict our analysis
to this relatively simple form.

A particularly popular (and perhaps simplest) instance of the finite sum problem is the regression problem.

15

Definition 29 (Regression Problem). Given A € R"*? with rows ay, ..., a,, € R? we wish to solve min,cga f()

where)) . .
_ = a2 — & e T 132 2 TAT 3T LT
o) =5l Az -] = — > S(a)z—1b) ;v ATAT—bT Azt bTh.

1€[n]

such that Apin(ATA) > p and |ja;||3 < L for all i € [n].

Note that 72 f(x) = AT A and thus Apin(ATA) > p if and only if f is u-strongly convex. Also note that if

we let fi(z) = Z(a] z — b;)? then /2f;(z) = n - a;a; which has eigenvector a; of eigenvalue n||a;||3 and all

other eigenvectors 0. Consequently f; is convex and L-smooth if and only if ||a;]|3 < L/n and thus this is an
instance of the finite sum problem where the oracle can be implemented in O(d) time.

Now note that in the finite sum problem clearly f is L smooth and since a gradient can be computed with n
oracle evaluations, an e-optimal point can be computed by gradient descent with O(n - % Jlog((f(zo) — fx)/€))

calls to the oracle. Moreover, this can be improved by AGD to O(n - \/% “log((f(xo) — f«)/€)) calls to the

oracle. Note that in the case of regression these correspond to running times of O(nd- ﬁ Jlog((f(xo) — fi)/€))

and O(nd - \/ £ - 1og((f(z0) = £.)/€)).

The main question of this section is can these be improved. We will show that the factor of n can be
improved using SGD and sampling techniques at least over regression. Accelerated gains can be made as
well, however we will simply provide references for those improvements. Again, this is an active area of
research and there are more results then we can present here, the goal in this section is simply to show how
sampling can provide general improvements over gradient descent.

12.2 Warm-up: Direct SGD

So how should we try to improve over gradient descent for the finite sum problem? Perhaps the most natural
idea would simply be to perform SGD, i.e in iteration k pick i € [n] at random and let py = 7 fi(xx) and
use this for mirror descent. Note that

Epr = % > Viilar) = v f(xr)
1€[n]

While we could do this in the full generality of the situation we do mirror descent or FTRL, here for

completeness we analyze this directly in the simple case where our regularizer is r(x) = L||z||2 and we work
p Yy y p g 2 2

with || - ||3, i.e. our algorithm is w41 = o, — 1 - pr. We provide this lemma with these settings but a slightly
more general formulation for how py is chosen.

Lemma 30 (Specialized SGD). Let D be a distribution over convexr L-smooth functions g : R? — R and let
flx) & Eg~pg(x). Suppose for some x; € R? and all k > 1 we let 2341 = x1, — 17 gr(zx) where g ~ D
independently at random. Then, for each iteration k conditioned on the value of x) we have

20+ [Ef (2x) = fu] < low — 2213 — Egenpllziers — 2.3 + 07 - Egunnll 7 g ()3

and therefore for all T > 0 we have

1 n 1
> FEf@) — £ < 55 D Elv a3+ g zllen — a3
ke[T) ke[T] 7

If we further assume that f is p-strongly convex this simplifies to

> FEF@) — £ < 55 Y Bl el + o) — £

ke[T) ke[T]

16

Proof. Direct algebraic manipulation yields that

Egi~nlltrit — 215 = Egonpllze — 2 — 1V gr(anll3
=Eg,~p [lzx — 2.3 — 20V gr(z) " (2 — 22) + 02| v gr (i) [I3]
= ok — 2.3 — 207 f(@r) T (2x — 22) + 0°Egpnnll ¥ g (2e) |13

Since f(z.) > f(zx) + Vf(zx) " (x4« — 1) by convexity we have that

2 - [f(zr) — £ < llon — 213 — Egennllzoss — 23 + 17 - Egunn |l 7 gk () 13

yielding the first inequality. Summing, taking expectation over all the g;, and noting that the E||zy — .|
cancel yields

2 Y [Ef(zr) — £ <) 0Bl v gr(@i)l3 + lon — 2.5 — Elleria — 2.3
ke[T) ke[T)]

Minor algebraic manipulations and the fact that f(z1) > f(x.) 4+ 4|21 — 2.[|3 when f is strongly convex
yields the result. O

This lemma reduces much of the analysis of SGD to bounding E|| v/ gx(z%)||3. As we have seen throughout
our analysis of mirror descent the smaller we can show this quantity is, the faster we can converge. Moreover,
as we have seen in the analysis of mirror descent for smooth functions, if we can somehow relate this quantity
to f(xk) — f« then we can simply have our error decay as the difference from zy to x, over a linear term.
Since, when our function is strongly convex, we can in turn relate this to our initial function error and hope
to halve the error after some fixed number of iterations and achieve an algorithm a O(loge~!) dependence
on error.

In short, to have any hope of competing with GD we need to ensure E|| 5/ gx (2)||3 decays as f(zx) — f. goes
to 0. However, note that it might be the case that E|| 5/ gx(z4)||3 # 0 and consequently as we get closer to
the minimizer we still might have a fixed lower bound on how big E|| </ gx(7)||3 thereby impinging on our

ability to get a O(loge~!) rate. In the next section we show how to deal with this issue. For now we explore
def

2= E[v k()3

The first step in this analysis is to bound E||</gx () — gk () ||3. This will allow us to break the contribution

of E|| 7 gx(x1)||3 into the contribution to this term and o2. Note that if there was no distribution, we would

have that this is at most 2L - [f(x) — f«] by smoothness. Below we show the same holds.

what rates we can get depending on what o

Lemma 31 (Variance Bound). Let D be a distribution over convex L-smooth functions g : R* — R and let
f(@) = Eyupg(x) and x. be a minimizer of f. Then for all z € R™ we have Egupl| 7 g(z) — vg(x.)||3 <
2L - [f(z) = [+

Proof. For all g € supp(D) since g is convex and L-smooth then by Lemma 7 in Chapter 5 we have

Egpll v 9(2) = vg(@.)|I3 < Egp2L - [9(2) = [g(zs) = vg(z) " (@ = 2.)]]

and the result follows from the definition of f and the fact that Eqop 7 g(2+) = v f(z+) = 0 by the optimality
of x,.

Using this, we show that if 02 = 0 then we can achieve our desired rate. Note that ¢2 = 0 implies that for
all g € supp(D) it is the case that 7g(z.) = 0. In the case of regression, where gi(zx) = % - (a] zp — b;,)?
for some i), € [n] we have that 7gx(zx) = n-a;, (a; x, —b;,) and thus assuming that the a; # 0 this implies
that a; x. = b; for all i € [n] or in other words, Az, = b. In other words, the following gives us bounds for
solving linear systems Az = b when there is a x, such that Az, =b. [

17

Lemma 32. In the setup of Lemma 30 if 02 = Egpl v g(z.)||3 =0 then for allk > 1 if n = i
Ellag — 2.2 < (1 - ﬁ) Ellzg—1 — 2.2
- 4L

Consequently,

Ellrpi 23 < (1= 2) o - a2
- 47

L, f(rlie)ff*) oracle evaluations.

and therefore can compute an expected e-optimal point with O(% -log (;7

Proof. By Lemma 30 we have

Egnpllorsn — 2.5 < low — 2.5 — 20 [Bgunnf () — fil + 07 - Egnnll 7 gi(an)3

However, since 02 = 0 by Lemma 31 we have

Egunpll 7 g1(21)lI3 = g |l 7 gr(2x) — Vgr(@)l3 <2- L [f(ar) = fi] -

Consequently we have
Egunpllzrsr — 2l < llzk — 243 — 20(1 = Ln) - Egenn|f (1) — £]

Since for n = 1/(2L) we have 2n(1—Ln) = 1/(2L) and since f(zy)— fx > 4 ||z —x.]|3 by strong convexity the
first result holds. Since f is L-smooth we have that f(z)) — f. < £z, — 2.3 and therefore Ef (zj41) — fo <

% (1- ﬁ)k [f(z1) — f.] yielding the second claim. 0O

Note that this says we can achieve our desired running time for regression and minimizing finite sums when
02 = 0. What about when 02 # 07 We analyze this case in the remainder of this section.

In this case we have the following.

Lemma 33. In the setup of Lemma 50 if 0° = Egup|| 7 g(z4)||3 > 0 and f is u-strongly convex then for all
k > 1 we have

1 1
(=20 1) | 7 32 Efton) = o) So-0* 4 Sl f(o) = £

Proof. By Lemma 30 we have

> ZEf(m) ~ [< ok 3 eVl @) - 1.

However, since |la + b||3 < 2[|a||3 + 2/|b]|3 (as ||a + b|3 + [|a — bl|3 = 2 - ||al|3 + 2]|b]|3) we have that

ST EIvar@e)li= D> E21 v grlar) — Va3 + 2 v gr(@)|3]) <AL- Y [Ef(zy) - fo] +2T -0
ke[T) ke[T) ke(T]

yielding the desired result. O

Thus we see that we can get fast rates proved we can related o2 to f(x1) — f.. This is precisely what we
show how to do in the next section.

18

12.3 Variance Reduction

From the analysis in the previous section it seems that if we could find a way to relate o2 to f(x1) — f. in the
finite sum problem the we can achieve fast rates. Another way to say this, is that the problem with making
SGD faster than gradient descent for regression is finding away to ensure that E,pl| /7 g(.)||3 decays over
time.

To do this we simply want to write f(z) = Egupg(x) for better g. We have already seen the effects
of picking g = f; with probability % The question is how to do better? Omne natural idea is to pick
g(z) = fi(z) — vV fi(z+) Tz with probability 1. Note that E;pg(z) = f(z) — v f(2z:) T2 = f(z) and thus
this is a valid transformation. Furthermore, we have v7g(z.) = 0 for all g in the distribution. This works
quite well, but unfortunately has the problem of requiring x, to be computed. Another, idea would be to
perform the same transformation, but using o as a proxy for z., this would yield g(x) = f;(z) — v fi(z1) "=
with probability 2. However, unfortunately, Eg(z) = f(x) — 7 f(z1) @, which is not necessarily f(z), and
therefore is biased.

To fix all these issues what we actually do is let g(z) = fi(z) — v fi(z1) Tz + v f(21) "2 with probability
1

~. This has that Eg(x) = f(x) as desired. The corresponding algorithm is known as stochastic variance
reduced gradient. To analyze it, all we have to do is bound o2 for this particular g, i.e. Egupl|| v g(z4)||3 =

Srep 21V filwn) = v filan) +)3

Lemma 34. Let D be a distribution over convexr L-smooth functions g : R® — R and let f(x) = E,pg(x),
r1 € RY, and x. be a minimizer of f then

Egunll 7 9(@.) — v9(z1) + f(2)l3 < 2L [f(x1) - f] -
Proof. Note that for any random X € R? we have
E[|X —EX|3 = E|| X3 - 2EX "EX + [EX|3 = E[X3 — |[EX|3 < E[| X[]3.
and consequently
Egonll v 9(22) = V9(20) + T f(20)l3 = Egonll 7 g(@2) — Vg(wo) — [Vf(2:) — V7 f(w0)] 13
< Egup| v 9(z:) — 79(0)|3-

The result then follows from Lemma 31. O

This lemma then says we can bound o2 by 2L - [f(x1) — f.].
Theorem 35 (SVRG). Suppose in the finite sum problem for some z1 € R? and all k > 0 we let

Tp1 = op — [V fi(zr) — Vfi(z1) + v f(21)]

then forn € (0, =) we have
N Efan) S € o (2Lt | ()~ £
T R 7 Rl A A
ke[T]
and consequently we can compute an expected e-optimal point with O((n + %) log(w)) queries to the
oracle

Proof. As discussed, this algorithm is SGD where in each iteration k the stochastic gradient is /g (z) for

gr ~ D where gi(z) = fi, (z) — [V fi, (z1) — vf(xl)]T x for iy € [n] chosen uniformly at random. Now, note
that each is gy is convex and L-smooth. Further, by Lemma 34 this implies

0% = Egonnl| V gr(@)l3 = Eiu | 7 fir () = V fir (1) + f ()13 < 2L - [f(21) = fi] -

19

Consequently, Lemma 33 implies that

(1=2000) Y | Ef @) = 1] < 200 (o) = £1 4) = £
ke[T) e

yielding the first claim. Now, if we pick n = 8% and T = 64% we have

1 1 1 3
LR Gd] e -s1< 2 e - 1)

Consequently we can decrease the function error by a constant factor with O(%) iterations. Repeating

this (i.e. taking either the average point or a random point as the next x1) and repeating then yields the
claim. Each time it is repeated we need n oracle calls to get 7 f(z1) and an additional %, 1 for each of the
iterations. O

Consequently, we can generically improve upon gradient descent. Furthermore, it can be shown that there
are cases where L/p < 1 and thus the number of oracle calls needed scales just linearly with n in these cases.

12.4 Extensions

This is an incredibly well studied problem and a very active area of research. There are numerous extensions
that can and are considered. Here, we briefly state a few. First, if f; is L; smooth (rather than L smooth)
non-uniform sampling can be applied to achieve an O(n + % Zie[n] %) query algorithm. Furthermore, this

can be accelerated to yield a O (n +> iefn] \/ ﬁ—;) query algorithm, note that this is always an improvement

as by Cauchy Schwarz and |ab| < £a® + 1b% we have

L, L; 1[1 «— L;
2\ S\ | (&) Sa\n 2w

i€[n] nu i€[n] i€[n]
There are also composite analogs and it can be shown that there are interesting connections between these

algorithms and coordinate descent (in some sense SVRG is an analog of running coordinate descent in the
dual of the problem). If you would like further references to these, please post on Piazza.

20

	Motivation
	Subgradients
	Online Linear Optimization
	Reduction to Convex Optimization
	Learning From Experts
	Simple Learning from Expert Algorithms
	Arbitrary
	Random
	Follow the Leader

	Follow The Regularized Leader
	Solving The Experts Problem
	Solving Convex Optimization
	Mirror Descent
	Mirror Descent for Smooth Functions
	Stochastic Gradient Descent (SGD) and Finite Sums
	The Problem
	Warm-up: Direct SGD
	Variance Reduction
	Extensions

