
Introduction to
Optimization Theory

Lecture #1 - 9/15/20
MS&E 213 / CS 2690

Aaron Sidford
sidford@stanford.edu

Lecture Plan

Part 1
Syllabus

• What course is and is not about
• Course setup, expectations, and plans

Part 2
Course Philosophy / Overview

• Overview of course approach
• Definitions we will use throughout quarter

Part 3 Brief Warmup Problem
• Time permitting

Thursday

Longer illustrative warmup
problem.

Rest of
Quarter

Build on foundations
set this week.

Why? • Prepare you for the quarter
• Help you choose which class to take

What is this class?

• Intro to theory of continuous optimization

• Provable guarantees for algorithm and methods solving continuous
optimization problems

• Finite convergence rates of iterative methods

• Limits of efficient computation and optimization

• Structure of continuous optimization problems

Introduction to iterative algorithms

What isn’t this class?

• The most comprehensive optimization intro? (MS&E 211/x)

• The most focused introduction to convex analysis? (EE364 a/b)

• Source of immediate practical optimization experience

Why this class?

• Understand theory for why method work or don’t

• Guide design of optimization methods in practice

• Begin research on optimization & iterative methods

• In some cases, the course will be at the cutting edge rather quickly.

Pre-requisites

• No optimization experience required

• Math (proofs, multivariable calculus, linear algebra, probability, etc.)

• May re-introduce some concepts, provide references, and refresh
material. However, these are not necessarily covered in class.

• Note: If you ever suspect that lectures are assuming more prior
knowledge, please feel free to contact me. – sidford@stanford.edu

Course material

Primary references
• Lectures
• Encourage to attend and

participate
• Will be recorded

Primary references
• Lecture notes
• Required reading
• Work-in progress
• Updating frequently
• Feedback welcome
• Typos / suggestions for

participation creditAdditional References
• Will be provided online
• Feel free to ask on Piazza

Expectations

Material and Presentations
• Stay up to date with lectures and

assignments (material
accumulates)
• Hope you can attend lecture and

encourage participate
• Participation encouraged and

possibly rewarded (in class, Piazza)
• Encourage to complete anonymous

feedback

Assignments
• Psets 40% (Fridays at 5PM PST)
• Take-home midterm 25%
• Take-home final 35%

COVID and Virtual Classroom
• We are here to help you learn and

succeed. Feel free to reach out.

Syllabus Questions?

Lecture Plan

Part 1
Syllabus

• What course is and is not about
• Course setup, expectations, and plans

Part 2
Course Philosophy / Overview

• Overview of course approach
• Definitions we will use throughout quarter

Part 3 Brief Warmup Problem
• Time permitting

Thursday

Longer illustrative warmup
problem.

Rest of
Quarter

Build on foundations
set this week.

ü

What’s this course about?

Function Minimization
• objective function: 𝑓:ℝ! → ℝ
• constraint set / feasible region: 𝑆 ⊆ ℝ!

• “Goal”: “minimize” objective subject to
constraint

“solve” min
"∈$

𝑓(𝑥)

minimum value: 𝑓∗ ≝ min
"∈$

𝑓(𝑥)
minimizer: 𝑥∗ ∈ min"∈$

𝑓(𝑥)

ℝ!

𝑓

𝑓∗

𝑥∗

Note
Feasible region, 𝑆, is often infinite in

this course, this is in contrast to
discrete or combinatorial

optimization where 𝑆 is finite.

Common Theme: Reductions and Generality

Unconstrained Minimization
• 𝑆 = ℝ" (focus for first few weeks)

Goal
min

"∈$⊆ℝ!
𝑓(𝑥)

ℝ!

𝑓

More or less
difficult?

Same difficulty!

How to show problem 𝑎 is no more difficult than
problem 𝑏? ”Reduce” 𝑏 to 𝑎, i.e. use 𝑎 to solve 𝑏.

Common Theme: Reductions and Generality

Unconstrained Minimization
• 𝑆 = ℝ"

Constrained Minimization

ℝ!

𝑓

(A)

(B)

Can reduce (A) to
(B), i.e. (B) is as hard
a (A), since (A) is a
special case of (B).

Given constrained problem 𝑓, 𝑆
define penalty 𝜓:ℝ! → ℝ

𝜓 𝑥 = 00 𝑥 ∈ 𝑆
∞ 𝑥 ∉ 𝑆

Obtain equivalent unconstrained
minimization problem:

min
#∈%

𝑓(𝑥) = min
#∈ℝ!

𝑓 𝑥 + 𝜓(𝑥)

Goal
min

"∈$⊆ℝ!
𝑓(𝑥)

Common Theme: Reductions and Generality

Function Maximization

max
#∈%⊆ℝ!

𝑓(𝑥)

ℝ!

𝑓

𝑓∗

𝑥∗

Goal
min

"∈$⊆ℝ!
𝑓(𝑥)

Equivalent to
min

#∈%⊆ℝ!
−𝑓(𝑥)

Sums of Function

max
#∈%⊆ℝ!

𝑔 𝑥 + ℎ(𝑥) Define 𝑓 𝑥 ≝ 𝑔 𝑥 + ℎ(𝑥)

Note
These reductions may be useful, but they also may

lose problem structure that our methods depend on.
(We will see this later in the course).

Goal of this Class

• Provably minimize 𝑓 efficiently.
• Make minimal assumptions on 𝑓

Questions
• How do we access 𝑓?
• What do we mean by minimize?
• What do we mean by efficiently?

Why?
Obtain general purpose algorithms
and understand problem structure.

How do we access 𝒇?

• Often in this class, we will not assume that we know 𝑓
• Typically we will assume a restricted oracle model for accessing 𝑓
• Assume a procedure that can run to get limited info regarding 𝑓

Notation:
“procedure” ↔ “oracle”
“run” ↔ “query”

Setup:

oraclequery information on 𝑓
related to query

Example oracles

• “value oracle”, “evaluation oracle”, “0’th order oracle”

oracle
query
𝑥 ∈ ℝ!

output
𝑓(𝑥) ∈ ℝ

• “gradient oracle”

oracle
query
𝑥 ∈ ℝ!

output
∇𝑓(𝑥) ∈ ℝ!

“gradient of 𝑓 at 𝑥”
∇𝑓 𝑥 ! =

"
"#(
𝑓(𝑥) for all 𝑖 ∈ [𝑛]

• “first order oracle”

oracle
query
𝑥 ∈ ℝ!

output
𝑓(𝑥), ∇𝑓 𝑥

Many Oracles

• stochastic gradient oracle

oracle
query
𝑥 ∈ ℝ!

output
𝑔 ∈ ℝ! where 𝔼𝑔 = ∇𝑓(𝑥)

• noisy gradient oracle

oracle
query
𝑥 ∈ ℝ!

output
𝑔 ∈ ℝ! where 𝑔 − ∇𝑓 𝑥 ≤ 𝑐 ⋅ ‖𝑔‖

We will see many throughout the class.

Why the oracle model?

Practical
• Sometimes don’t know 𝑓 and

can only make observations.
• Sometimes can only make

observations about 𝑓
• Evaluation may be expensive
• Maybe data is corrupted

Complexity Theory
• Can prove information theoretic

lower bounds!

Theoretical
• Clarify what structure of 𝑓 is being

used in algorithm.

• E.g. regression

min
"
𝑓 𝑥 =

1
2 𝐴𝑥 − 𝑏 #

#

Is an algorithm using linear structure?
Is algorithm just using 𝛻𝑓 𝑥 = 𝐴$ 𝐴𝑥 − 𝑏 ?

Help understand the utility of
problem structure and measurement.

Goal of this Class 2.0

• Given oracle access to 𝒇
• Provably minimize 𝑓 efficiently.
• Make minimal assumptions on 𝑓

Questions
• How do we access 𝑓?
• What do we mean by minimize?
• What do we mean by efficiently?

Minimization? Optimization?

• For most of class, we will not exactly optimize.
• Instead, we will approximately optimize
• Consider different solution concepts.

𝝐-suboptimal point or a point with 𝝐-additive function error:
• 𝑥 ∈ 𝑆 s.t. 𝑓 𝑥 ≤ 𝑓∗ + 𝜖 where 𝑓∗ = min

"∈$
𝑓(𝑥)

𝝐-critical point:
• 𝑥 ∈ 𝑆 s.t. ∇𝑓 𝑥 % ≤ 𝜖 where 𝑦 % ≝ ∑&∈[(]𝑦&%

Efficiency?

Oracle Complexity
• How many time query oracle

Runtime / Computational Complexity
• Total runtime / computational work done

Both are interesting to study and lens of #queries versus cost per query
can be helpful in designing optimization algorithms (e.g. regression).

Focus of this class

Happy to discuss

Have found very useful for research

So what do algorithms / methods look like?

Most of the oracles in this class
yield local information regarding a

queried point.

Idea: have algorithms iteratively
repeatedly make local

improvements.

This class is in part an introduction to such
algorithms, often called iterative methods.

Iterative Methods (Rough Template)

• Start at initial point 𝑥>
• For 𝑡 = 0,… , 𝑇 − 1

• Query oracle
• Take “local step” to obtain 𝑥?@A
• Repeat

• Output aggregation of the 𝑥?

e.g.
• Last iterate: 𝑥BCA
• Average iteration: A

B
∑D∈[BCA] 𝑥D

How complicated can this be?
• Many possible local steps
• Many ways of measuring progress
• Many ways of using history

(Lots of progress over years and
many uses in ML, TCS, OR, etc.)

Typical analysis?
• Bound the number of iterations
• ⇒ bound on oracle complexity (# queries)

This Class

• Motivate new oracle and assumptions on 𝑓
• Study structure and design new algorithms
• Prove upper bounds
• Discuss lower bounds
• Repeat J

Thursday

Longer illustrative warmup
problem.

Plan Questions?

Lecture Plan

Part 1
Syllabus

• What course is and is not about
• Course setup, expectations, and plans

Part 2
Course Philosophy / Overview

• Overview of course approach
• Definitions we will use throughout quarter

Part 3 Brief Warmup Problem
• Time permitting

Thursday

Longer illustrative warmup
problem.

Rest of
Quarter

Build on foundations
set this week.

ü
ü

Setting #1

• 𝑓:ℝ → ℝ (one dimensional)
• Have evaluation oracle (can compute 𝑓(𝑥) with 1 query)
• Promised ∃𝑥∗ ∈ [0,1] such that 𝑓 𝑥 = 𝑓∗ = inf

7∈ℝ
𝑓(𝑦)

• Promised 𝑓 𝑥 ∈ [0,1] for all 𝑥 ∈ ℝ
• Goal: compute 1/2-optimal point
• i.e. compute 𝑥 with 𝑓 𝑥 ≤ 𝑓 𝑥∗ + 1/2

• Question: what oracle complexity achievable?
• Answer: ∞ is optimal

ℝ𝑓∗

𝑥∗

𝑓

1

1

0
0

Claim: there is no algorithm and finite number 𝑡 such that
the algorithm always outputs the correct answer in 𝑡
queries.

• For all 𝑧 ∈ [0,1] let

𝑓$ 𝑥 = 31 𝑥 ≠ 𝑧
0 𝑥 = 𝑧

Note: the only ½-optimal point is 𝑧

• Suppose oracle always returns 1. This is consistent with
𝑓 = 𝑓$ for all 𝑧 that is not one of the queried points.

• Since there are two different 𝑓$ with disjoint ½-optimal
points consistent with oracle, the algorithm will output
the incorrect answer when one of these is the input

Proof

ℝ

z

𝑓

1

1

0
0

ℝ𝑓∗

𝑥∗

𝑓

1

1

0
0

Problem: oracle gives only pointwise information, no local information.

Solution:
• This is a class on continuous optimization
• Our problems will be continuous or have more structure
• Will see examples next class and the rest of the quarter!

What went wrong?

ℝ

𝑓

Lecture Plan

Part 1
Syllabus

• What course is and is not about
• Course setup, expectations, and plans

Part 2
Course Philosophy / Overview

• Overview of course approach
• Definitions we will use throughout quarter

Part 3 Brief Warmup Problem
• Time permitting

Thursday

Longer illustrative warmup
problem.

Rest of
Quarter

Build on foundations
set this week.

ü
ü
ü

See you Thursday!

