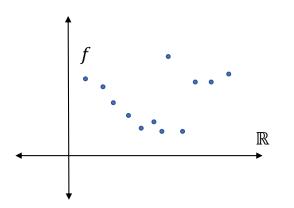
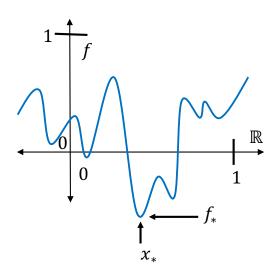
Introduction to Optimization Theory

Lecture #11 - 10/19/20 MS&E 213 / CS 2690



Aaron Sidford sidford@stanford.edu



Plan for Today

Motivation

- Recap where we are
- Motivate next unit

Convex sets

• Another perspective on convex functions

Oracles

• Structure of convex sets

Recap

$\frac{\text{Problem}}{\min_{x \in \mathbb{R}^n} f(x)}$

Regularity	Oracle	Goal	Algorithm	Iterations
$n = 1, f(x) \in [0,1], x_* \in [0,1]$	value	¹ /2-optimal	anything	Ø
$n = 1, x_* \in [0,1], L$ -Lipschitz	value	ϵ -optimal	<i>∈</i> -net	$\Theta(L/\epsilon)$
$x_* \in [0,1]$, <i>L</i> -Lipschitz in $\ \cdot\ _{\infty}$	value	ϵ -optimal	ϵ -net	$\left(\Theta(L/\epsilon)\right)^n$
L-smooth and bounded	value, gradient	ϵ -optimal	<i>∈</i> -net	exponential
<i>L</i> -smooth	gradient	ϵ -critical	gradient descent	$O(L(f(x_0) - f_*)\epsilon^{-2})$
L-smooth μ -strongly convex	gradient	ϵ -optimal	gradient descent	$O((L/\mu)\log([f(x_0)-f_*]/\epsilon))$
L-smooth convex	gradient	ϵ -optimal	gradient descent	$O(L x_0 - x_* _2^2/\epsilon)$
L-smooth μ -strongly convex	gradient	ϵ -optimal	gradient descent	$O(\sqrt{L/\mu}\log([f(x_0)-f_*]/\epsilon))$
L-smooth μ -strongly convex	gradient	ϵ -optimal	gradient descent	$O\left(\sqrt{L\ x_0 - x_*\ _2^2/\epsilon}\right)$

How?

<u>*ϵ*-net</u>

- Check enough points to cover optimal points
- Check random points

Acceleration

- Combine upper and lower bounds
- Is there a more general lower bound phenomena?

Local Greedy

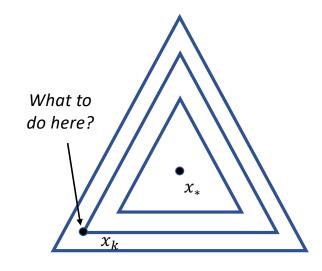
 Iteratively, locally decrease function vaue

•
$$x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$

•
$$x_{k+1} = \operatorname{argmin} U_k(x)$$
 for where
 $U_k(x_k) = f(x_k)$ and $U_k(x) \ge f(x)$ for all x .

Next Few Weeks

- What if function is non-differentiable?
- What if function is very non-smooth?
- What if cannot make sufficient local progress?



<u>Idea</u>

Develop new potential functions! Develop new notions of progress! Develop new methods!

Many Examples

Max Functions

- $\min_{x \in \mathbb{R}^n} \max_{i \in [m]} f_i(x)$
- Can solve if f_i are smooth and convex.
- What if many of them? (m large)

Ill Conditioned Problem

- $\min_{x \in \mathbb{R}^n} \frac{1}{2} \|Ax b\|_2^2 + \lambda \|x\|_1$
- Can solve if *L*-smooth and μ -strongly convex
- What if $L/\mu \gg n^c$?

A Canonical Example

Linear Programming

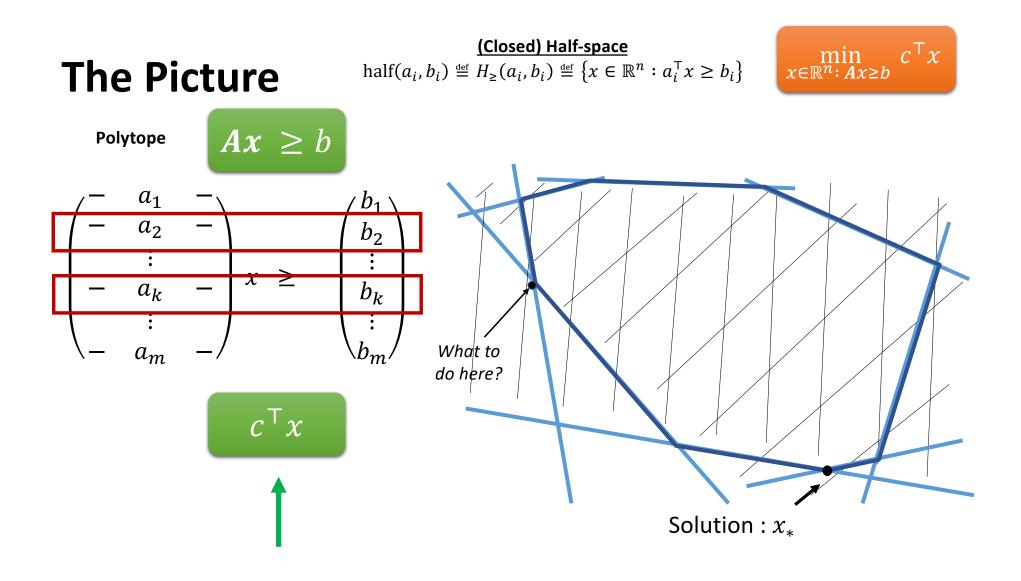
Input

• $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$

Goal

•
$$\min_{x \in P} c^{\top} x$$
 for $P \stackrel{\text{def}}{=} \{x : Ax \ge b\}$

• =
$$\min_{x \in \mathbb{R}^n} c^{\mathsf{T}} x + \psi_P(x)$$
 for $\psi_P(x) \stackrel{\text{def}}{=} \begin{cases} 0 & Ax \ge b \\ \infty & \text{otherwise} \end{cases}$



Our Approach

<u>Step #1</u>

- Obtain a better understanding of convex sets
- Connect convex set structure to convex function structure

<u>Step #3</u>

- Have a good winter break!
- Along the way we will learn
 - Online learning, SGD, Newton's method, and more!

<u>Step #2</u>

- Consider different oracles for convex functions
 - Subgradient oracle and subgradient methods
 - Separation oracle and cutting plane methods
 - Barrier oracle and interior point methods

• Another perspective on convex functions

Oracles

Convex sets

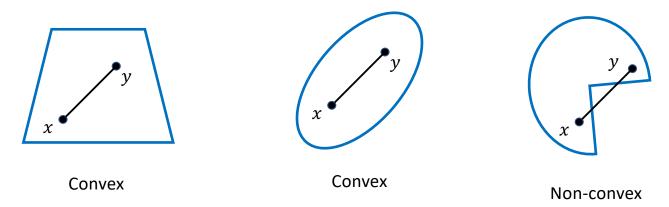
• Structure of convex sets

Convex Set

tx + (1 - t)y for $t \in [0,1]$ is a "convex combination" of x and y"

Definition: a set $S \subseteq \mathbb{R}^n$ is convex if and only if for all $x, y \in S$ and $t \in [0,1]$ we have $tx + (1-t)y \in S$.

- "contains the line segment between every pair of points"
- "closed under convex combinations"



Convexity Examples and Properties

Lemma: if *C* is a set (possibly infinite) of convex sets in \mathbb{R}^n then $\bigcap_{S \in C} S$ is convex

<u>Proof</u>: $x, y \in \bigcap_{S \in C} S$ implies that $tx + (1 - t)y \in S$ for all $S \in C$ and $t \in [0,1]$

Lemma: if *S* is convex, its closure (union of limit points) is convex

Lemma: for all $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ the half-space, half $(a, b) \stackrel{\text{def}}{=} H_{\geq}(a, b) \stackrel{\text{def}}{=} \{x \in \mathbb{R}^n \mid a^{\mathsf{T}}x \geq b\},\$ is convex

Corollary: Polytopes, i.e. $\{x \in \mathbb{R}^n \mid Ax \ge b\}$, are convex

Theorem: all closed convex sets are intersections of (a possibly infinite) set of halfspaces.

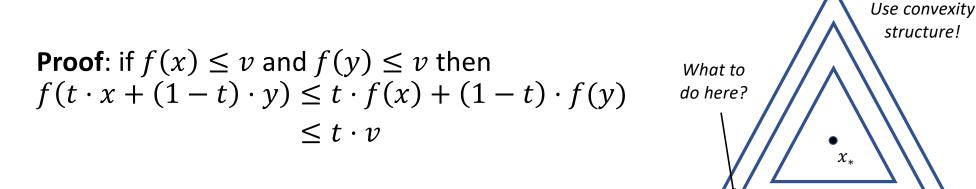
Optimizing a convex function \Leftrightarrow finding a point in a convex set

Convex function minimization?

 χ_1

(sub)level set: $\operatorname{level}_{\leq}(f, v) = \{x \in \mathbb{R}^n \mid f(x) \leq v\}$ strict (sub)level set: $\operatorname{level}_{<}(f, v) = \{x \in \mathbb{R}^n \mid f(x) < v\}$ Note: x is ϵ -optimal $\Leftrightarrow x \in \operatorname{level}_{\leq}(f, f_* + \epsilon)$

Lemma: If $f: \mathbb{R}$ convex then level_{\leq} and level_{\leq} are always convex.



Convex function minimization?

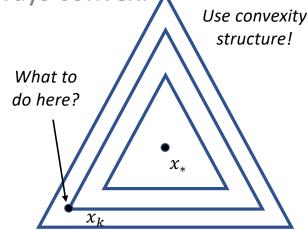
 $\frac{\text{Problem}}{\min_{x \in \mathbb{R}^n} f(x)}$

(sub)level set: $\operatorname{level}_{\leq}(f, v) = \{x \in \mathbb{R}^n \mid f(x) \leq v\}$ strict (sub)level set: $\operatorname{level}_{<}(f, v) = \{x \in \mathbb{R}^n \mid f(x) < v\}$ Note: x is ϵ -optimal $\Leftrightarrow x \in \operatorname{level}_{\leq}(f, f_* + \epsilon)$

Lemma: If f: \mathbb{R} convex then level_{\leq} and level_< are always convex.

Is the converse true?

No! **Quasiconvex**: function with convex level sets



Convexity and Convex Functions?

<u>Definition</u>: for $f : \mathbb{R}^n \to \mathbb{R}$ its **epigraph** is $epi(f) = \{(x, t) \mid x \in \mathbb{R}^n, t \in \mathbb{R}, f(x) \le t\}$

<u>**Theorem</u></u>: f : \mathbb{R}^n \to \mathbb{R} is a convex function \Leftrightarrow \operatorname{epi}(f) is a convex set Proof** \Rightarrow : Let $(x, v_x), (y, v_y) \in \operatorname{epi}(f)$. Convexity: $f(t \cdot x + (1 - t) \cdot y) \leq t \cdot f(x) + (1 - t) \cdot f(y)$ Definition of epigraph: $f(t \cdot x + (1 - t) \cdot y) \leq t \cdot v_x + (1 - t) \cdot v_y$ Same as: $t(x, v_x) + (1 - t)(y, v_y) \in \operatorname{epi}(f)$ </u>

Convexity and Convex Functions?

<u>Definition</u>: for $f : \mathbb{R}^n \to \mathbb{R}$ its **epigraph** is $epi(f) = \{(x, t) \mid x \in \mathbb{R}^n, t \in \mathbb{R}, f(x) \le t\}$

<u>Theorem</u>: $f : \mathbb{R}^n \to \mathbb{R}$ is a convex function $\Leftrightarrow \operatorname{epi}(f)$ is a convex set **Proof** $\Leftarrow : (x, f(x)), (y, f(y)) \in \operatorname{epi}(f)$ for all $x, y \in \mathbb{R}^n$ Convexity: $t(x, f(x)) + (1 - t)(y, f(y)) \in \operatorname{epi}(f)$ Definition of epigraph: $f(t \cdot x + (1 - t) \cdot y) \leq t \cdot f(x) + (1 - t) \cdot f(y)$

Oracles

• Structure of convex sets

- (sub)level set: $\operatorname{level}_{\leq}(f, v) = \{x \in \mathbb{R}^n \mid f(x) \le v\}$
- strict (sub)level set: $\operatorname{level}_{<}(f, v) = \{x \in \mathbb{R}^n \mid f(x) < v\}$

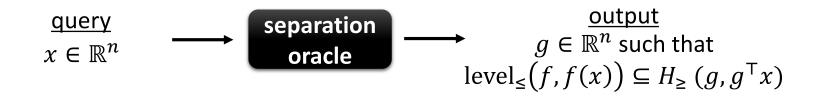
How obtain information about level sets?

Idea: Differentiable Case

- $f: \mathbb{R}^n \to \mathbb{R}$ convex
- \Leftrightarrow $f(y) \ge f(x) + \nabla f(x)^{\top}(y x)$
- $\Rightarrow \operatorname{level}_{\leq}(f, f(x)) \subseteq \{y : \nabla f(x)^{\top}(y x) \leq 0\}$
- $\Leftrightarrow \operatorname{level}_{\leq}(f, f(x)) \subseteq H_{\geq}(-\nabla f(x), -\nabla f(x)^{\top}x)$
- Is this information enough?

Cutting Plane Methods

- Will cover in a few weeks
- This week: just prove the oracle exists for quasi-convex functions



- (sub)level set: $\operatorname{level}_{\leq}(f, v) = \{x \in \mathbb{R}^n \mid f(x) \le v\}$
- strict (sub)level set: $\operatorname{level}_{<}(f, v) = \{x \in \mathbb{R}^n \mid f(x) < v\}$

Another Idea

Idea: Differentiable Case

- $f: \mathbb{R}^n \to \mathbb{R}$ convex
- $\Leftrightarrow f(y) \ge f(x) + \nabla f(x)^{\top}(y-x)$
- Subgradient: g is subgradient of f at x if
- $f(y) \ge f(x) + g^{\top}(y x)$ for all $y \in \mathbb{R}^n$
- $\partial f(x) = \{ \text{set subgradients of } f \text{ at } x \}$

- Will cover this week / next week
- This week: just prove existence and relate to convexity

$$\begin{array}{ccc} \underline{query} \\ x \in \mathbb{R}^n \end{array} \longrightarrow \begin{array}{ccc} subgradient \\ oracle \end{array} \longrightarrow \begin{array}{ccc} \underline{output} \\ g \in \partial f(x) \end{array}$$

