Introduction to Optimization Theory

Lecture #11 - 10/19/20 MS&E 213 / CS 2690

Aaron Sidford sidford@stanford.edu

Plan for Today

Motivation

- Recap where we are
- Motivate next unit

Convex sets

• Another perspective on convex functions

Structure of convex sets

Oracles • Structure of convex sets **Exercise Property** Hyperplanes and Subgradients

Recap

Problem $\min_{x \in \mathbb{R}^n} f(x)$

How?

-net

- Check enough points to cover optimal points
- Check random points

Acceleration

- Combine upper and lower bounds
- Is there a more general lower bound phenomena?

Local Greedy

• Iteratively, locally decrease function vaue

•
$$
x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)
$$

• x_{k+1} = argmin $U_k(x)$ for where \mathcal{X} $U_k(x_k) = f(x_k)$ and $U_k(x) \geq$ $f(x)$ for all x.

Next Few Weeks

- What if function is non-differentiable?
- What if function is very non-smooth?
- What if cannot make sufficient local progress?

Idea

Develop new potential functions! Develop new notions of progress! Develop new methods!

Many Examples

Max Functions

- min $x \in \mathbb{R}^n$ max $i \in [m]$ $f_i(x)$
- Can solve if f_i are smooth and convex.
- *What if many of them? (large)*

Ill Conditioned Problem

- min $x \in \mathbb{R}^n$ * $\frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1$
- Can solve if L-smooth and μ strongly convex
- What if $L/\mu \gg n^c$?

A Canonical Example

Linear Programming

Input

• $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$

Goal

• min
$$
c^{\top}x
$$
 for $P \stackrel{\text{def}}{=} \{x : Ax \geq b\}$

$$
\bullet = \min_{x \in \mathbb{R}^n} c^\top x + \psi_P(x) \text{ for } \psi_P(x) \stackrel{\text{def}}{=} \begin{cases} 0 & Ax \geq b \\ \infty & \text{otherwise} \end{cases}
$$

Our Approach

Step #1

- Obtain a better understanding of convex sets
- Connect convex set structure to convex function structure

Step #3

- Have a good winter break!
- Along the way we will learn
	- Online learning, SGD, Newton's method, and more!

Step #2

- Consider different oracles for convex functions
	- Subgradient oracle and subgradient methods
	- Separation oracle and cutting plane methods
	- Barrier oracle and interior point methods

• Recap where we are

• Motivate next unit

Convex sets

• Another perspective on convex functions

Oracles

• Structure of convex sets

Hyperplanes and Subgradients

Convex Set

 $tx + (1 - t)y$ for $t \in [0,1]$ is a *"convex combination" of and y"*

Definition: a set $S \subseteq \mathbb{R}^n$ is convex if and only if for all $x, y \in S$ and $t \in$ [0,1] we have $tx + (1 - t)y \in S$.

- *"contains the line segment between every pair of points"*
- *"closed under convex combinations"*

Convexity Examples and Properties

Lemma: if C is a set (possibly infinite) of convex sets in \mathbb{R}^n then $\cap_{S\in\mathcal{C}} S$ is convex

Proof: $x, y \in \cap_{S \in C} S$ implies that $tx + (1 - t)y \in S$ for all $S \in C$ and $t \in [0,1]$

Lemma: if S is convex, its closure (union of limit points) is convex

Lemma: for all $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ the half-space, half $(a, b) \stackrel{\text{def}}{=}$ $H_>(a, b) \stackrel{\text{def}}{=} \{x \in \mathbb{R}^n \mid a^{\mathsf{T}} x \geq b\},\$ is convex

Corollary: Polytopes, i.e. ${x \in \mathbb{R}^n \mid Ax \geq b}$, are convex

Theorem: all closed convex sets are intersections of (a possibly infinite) set of halfspaces.

Optimizing a convex function ⇔ *finding a point in a convex set*

Convex function minimization?

(sub)level set: level_< $(f, v) = \{x \in \mathbb{R}^n \mid f(x) \le v\}$ **strict (sub)level set**: $level_{\leq}(f, v) = \{x \in \mathbb{R}^n \mid f(x) < v\}$ **Note**: *x* is ϵ -optimal ⇔ $x \in level_{\leq}(f, f^* + \epsilon)$

Lemma: If $f: \mathbb{R}$ convex then level_s and level_s are always convex.

Convex function minimization?

(sub)level set: level_< $(f, v) = \{x \in \mathbb{R}^n \mid f(x) \le v\}$ **strict (sub)level set**: $level_{\leq}(f, v) = \{x \in \mathbb{R}^n \mid f(x) < v\}$ **Note**: *x* is ϵ -optimal ⇔ $x \in level_{\leq}(f, f_{*} + \epsilon)$

Lemma: If $f: \mathbb{R}$ convex then level_s and level_s are always convex.

Is the converse true?

No! **Quasiconvex**: function with convex level sets

Convexity and Convex Functions?

Definition: for $f: \mathbb{R}^n \to \mathbb{R}$ its **epigraph** is $epi(f) = \{(x, t) | x \in \mathbb{R}^n, t \in \mathbb{R}, f(x) \le t\}$

Theorem: $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function \Leftrightarrow epi (f) is a convex set **Proof** \Rightarrow : Let (x, v_x) , $(y, v_y) \in \text{epi}(f)$. Convexity: $f(t \cdot x + (1-t) \cdot y) \le t \cdot f(x) + (1-t) \cdot f(y)$ Definition of epigraph: $f(t \cdot x + (1-t) \cdot y) \le t \cdot v_x + (1-t) \cdot v_y$ Same as: $t(x, v_x) + (1 - t)(y, v_y) \in \text{epi}(f)$

Convexity and Convex Functions?

Definition: for $f: \mathbb{R}^n \to \mathbb{R}$ its **epigraph** is $epi(f) = \{(x, t) | x \in \mathbb{R}^n, t \in \mathbb{R}, f(x) \le t\}$

Theorem: $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function \Leftrightarrow epi (f) is a convex set **Proof** \Leftarrow : $(x, f(x))$, $(y, f(y)) \in$ epi (f) for all $x, y \in \mathbb{R}^n$ Convexity: $t(x, f(x)) + (1-t)(y, f(y)) \in epi(f)$ Definition of epigraph: $f(t \cdot x + (1-t) \cdot y) \le t \cdot f(x) + (1-t) \cdot f(y)$

Oracles

• Structure of convex sets

Hyperplanes and Subgradients

- **(sub)level set**: $level_{\leq}(f, v) = \{x \in \mathbb{R}^n \mid f(x) \leq v\}$
- **strict (sub)level set**: $level_{\leq}(f, v) = \{x \in \mathbb{R}^n \mid f(x) < v\}$

How obtain information about level sets?

Idea: Differentiable Case

- $f: \mathbb{R}^n \to \mathbb{R}$ convex
- $\bullet \Leftrightarrow f(y) \geq f(x) + \nabla f(x)^{\top}(y x)$
- \Rightarrow level_{\leq} $(f, f(x)) \subseteq \{y : \nabla f(x)^{\top}(y x) \leq 0\}$
- \Leftrightarrow level_{\leq} $(f, f(x)) \subseteq$ $H_{\geq}(-\nabla f(x), -\nabla f(x)^{\top}x)$
- Is this information enough?

Cutting Plane Methods

- *Will cover in a few weeks*
- *This week: just prove the oracle exists for quasi-convex functions*

- **(sub)level set**: $level_{\leq}(f, v) = \{x \in \mathbb{R}^n \mid f(x) \leq v\}$
- **strict (sub)level set**: $level_{\leq}(f, v) = \{x \in \mathbb{R}^n \mid f(x) < v\}$

Another Idea

Idea: Differentiable Case

- $f: \mathbb{R}^n \to \mathbb{R}$ convex
- $\bullet \Leftrightarrow f(y) \geq f(x) + \nabla f(x)^{\top}(y x)$
- **Subgradient**: q is subgradient of f at x if
- $f(y) \geq f(x) + g^{\top}(y x)$ for all $y \in \mathbb{R}^n$
- $\partial f(x) = \{$ set subgradients of f at x }

- *Will cover this week / next week*
- *This week: just prove existence and relate to convexity*

query	subgradient	output	output
$x \in \mathbb{R}^n$	oracle	$g \in \partial f(x)$	

Hyperplanes and Subgradients