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Plan for Today

Motivation

Convex sets

Oracles Hyperplanes and 
Subgradients

• Recap where we are
• Motivate next unit

• Another perspective on convex functions

• Structure of convex sets



Recap

Regularity Oracle Goal Algorithm Iterations

𝑛 = 1, 𝑓 𝑥 ∈ [0,1], 𝑥∗ ∈ [0,1] value ½-optimal anything ∞
𝑛 = 1, 𝑥∗ ∈ [0,1], 𝐿-Lipschitz value 𝜖-optimal 𝜖-net Θ 𝐿/𝜖

𝑥∗ ∈ [0,1], 𝐿-Lipschitz in ‖ ⋅ ‖" value 𝜖-optimal 𝜖-net Θ 𝐿/𝜖 #

𝐿-smooth and bounded value, gradient 𝜖-optimal 𝜖-net exponential

𝐿-smooth gradient 𝜖-critical gradient descent 𝑂 𝐿 𝑓 𝑥$ − 𝑓∗ 𝜖%&

𝐿-smooth 𝜇-strongly convex gradient 𝜖-optimal gradient descent 𝑂 𝐿/𝜇 log 𝑓 𝑥$ − 𝑓∗ /𝜖

𝐿-smooth convex gradient 𝜖-optimal gradient descent 𝑂 𝐿 𝑥$ − 𝑥∗ &
&/𝜖

𝐿-smooth 𝜇-strongly convex gradient 𝜖-optimal gradient descent 𝑂 𝐿/𝜇 log 𝑓 𝑥$ − 𝑓∗ /𝜖

𝐿-smooth 𝜇-strongly convex gradient 𝜖-optimal gradient descent 𝑂 𝐿 𝑥$ − 𝑥∗ &
&/𝜖

Problem
min
!∈ℝ"

𝑓(𝑥)



How?

𝝐-net
• Check enough points to cover 

optimal points
• Check random points

Local Greedy
• Iteratively, locally decrease 

function vaue

• 𝑥()* = 𝑥( −
*
+
∇𝑓(𝑥()

• 𝑥()* = argmin
,

𝑈((𝑥) for where 

𝑈( 𝑥( = 𝑓 𝑥( and 𝑈( 𝑥 ≥
𝑓(𝑥) for all 𝑥.

Acceleration
• Combine upper and lower 

bounds
• Is there a more general lower 

bound phenomena?



Next Few Weeks

• What if function is non-differentiable?
• What if function is very non-smooth?
• What if cannot make sufficient local progress?

𝑥∗

𝑥#

What to 
do here?

Idea
Develop new potential functions!
Develop new notions of progress!

Develop new methods!



Many Examples 

Max Functions
• min
,∈ℝ9

max
/∈[1]

𝑓/(𝑥)

• Can solve if 𝑓/ are smooth and 
convex.
• What if many of them? (𝑚 large)

Ill Conditioned Problem

• min
,∈ℝ9

*
3
𝐴𝑥 − 𝑏 3

3 + 𝜆 𝑥 *

• Can solve if 𝐿-smooth and 𝜇-
strongly convex
• What if  𝐿/𝜇 ≫ 𝑛4?



Linear Programming

Input
• 𝐴 ∈ ℝ1×6, 𝑏 ∈ ℝ1, 𝑐 ∈ ℝ6

Goal
• min
,∈7

𝑐8𝑥 for 𝑃 ≝ 𝑥 ∶ 𝐴𝑥 ≥ 𝑏

• = min
,∈ℝ9

𝑐8𝑥 + 𝜓7(𝑥) for 𝜓7 𝑥 ≝ C0 𝐴𝑥 ≥ 𝑏
∞ otherwise

A Canonical Example



The Picture min
&∈ℝ!∶ 𝑨&*+

𝑐,𝑥

− 𝑎- −
− 𝑎. −

⋮
− 𝑎/ −

⋮
− 𝑎0 −

𝑥 ≥

𝑏-
𝑏.
⋮
𝑏/
⋮
𝑏0

𝑨𝒙 ≥ 𝑏

𝑐!𝑥

Solution : 𝑥∗

(Closed) Half-space
half 𝑎$ , 𝑏$ ≝ 𝐻% 𝑎$ , 𝑏$ ≝ 𝑥 ∈ ℝ& ∶ 𝑎$

'𝑥 ≥ 𝑏$

What to 
do here?

Polytope



Our Approach

Step #1
• Obtain a better understanding of 

convex sets
• Connect convex set structure to 

convex function structure

Step #2
• Consider different oracles for 

convex functions
• Subgradient oracle and 

subgradient methods
• Separation oracle and cutting 

plane methods
• Barrier oracle and interior 

point methods

Step #3
• Have a good winter break!
• Along the way we will learn
• Online learning, SGD, 

Newton’s method, and more!



Plan for Today

Motivation

Convex sets

Oracles

• Recap where we are
• Motivate next unit

• Another perspective on convex functions

• Structure of convex sets

ü

Hyperplanes and 
Subgradients



Convex Set

Definition: a set 𝑆 ⊆ ℝ6 is convex if and only if for all 𝑥, 𝑦 ∈ 𝑆 and 𝑡 ∈
[0,1] we have 𝑡𝑥 + 1 − 𝑡 𝑦 ∈ 𝑆. 

• “contains the line segment between every pair of points”
• “closed under convex combinations” 

𝑡𝑥 + 1 − 𝑡 𝑦 for 𝑡 ∈ [0,1] is a 
”convex combination” of 𝑥 and y”

𝑥

𝑦

Convex Convex

𝑥

𝑦

Non-convex

𝑥

𝑦



Convexity Examples and Properties

Lemma: if 𝐶 is a set (possibly 
infinite) of convex sets in ℝ6 then 
∩9∈: 𝑆 is convex

Proof: 𝑥, 𝑦 ∈∩9∈: 𝑆 implies that     
𝑡𝑥 + 1 − 𝑡 𝑦 ∈ 𝑆 for all 𝑆 ∈ 𝐶
and 𝑡 ∈ [0,1]

Lemma: if 𝑆 is convex, its closure 
(union of limit points) is convex

Lemma: for all 𝑎 ∈ ℝ6 and 𝑏 ∈ ℝ
the half-space, half 𝑎, 𝑏 ≝
𝐻; 𝑎, 𝑏 ≝ 𝑥 ∈ ℝ6 | 𝑎8𝑥 ≥ 𝑏 ,
is convex 

Corollary: Polytopes, i.e.
𝑥 ∈ ℝ6 𝐴𝑥 ≥ 𝑏}, are convex

Theorem: all closed convex sets are intersections 
of (a possibly infinite) set of halfspaces.



Convex function minimization?

(sub)level set: level< 𝑓, 𝑣 = 𝑥 ∈ ℝ6 | 𝑓 𝑥 ≤ 𝑣
strict (sub)level set: level= 𝑓, 𝑣 = 𝑥 ∈ ℝ6 | 𝑓 𝑥 < 𝑣
Note: 𝑥 is 𝜖-optimal ⇔ 𝑥 ∈ level< 𝑓, 𝑓∗ + 𝜖

Lemma: If 𝑓:ℝ convex then level< and level= are always convex.

Proof: if 𝑓 𝑥 ≤ 𝑣 and 𝑓 𝑦 ≤ 𝑣 then
𝑓 𝑡 ⋅ 𝑥 + 1 − 𝑡 ⋅ 𝑦 ≤ 𝑡 ⋅ 𝑓 𝑥 + 1 − 𝑡 ⋅ 𝑓(𝑦)
𝑓 𝑡 ⋅ 𝑥 + 1 − 𝑡 ⋅ 𝑦 ≤ 𝑡 ⋅ 𝑣

Problem
min
!∈ℝ"

𝑓(𝑥)

𝑥∗

𝑥#

What to 
do here?

Use convexity 
structure!

Optimizing a convex function ⇔ finding a point in a convex set



Convex function minimization?

(sub)level set: level< 𝑓, 𝑣 = 𝑥 ∈ ℝ6 | 𝑓 𝑥 ≤ 𝑣
strict (sub)level set: level= 𝑓, 𝑣 = 𝑥 ∈ ℝ6 | 𝑓 𝑥 < 𝑣
Note: 𝑥 is 𝜖-optimal ⇔ 𝑥 ∈ level< 𝑓, 𝑓∗ + 𝜖

Lemma: If 𝑓:ℝ convex then level< and level= are always convex.

Is the converse true?
No! 

Quasiconvex: function with convex level sets

Problem
min
!∈ℝ"

𝑓(𝑥)

𝑥∗

𝑥#

What to 
do here?

Use convexity 
structure!



Convexity and Convex Functions?

Definition: for 𝑓:ℝ6 → ℝ its epigraph is
epi 𝑓 = 𝑥, 𝑡 | 𝑥 ∈ ℝ6 , 𝑡 ∈ ℝ, 𝑓 𝑥 ≤ 𝑡

Theorem: 𝑓:ℝ6 → ℝ is a convex function ⇔ epi(𝑓) is a convex set
Proof ⇒: Let 𝑥, 𝑣, , 𝑦, 𝑣? ∈ epi(𝑓) .
Convexity: 𝑓 𝑡 ⋅ 𝑥 + 1 − 𝑡 ⋅ 𝑦 ≤ 𝑡 ⋅ 𝑓 𝑥 + 1 − 𝑡 ⋅ 𝑓 𝑦
Definition of epigraph: 𝑓 𝑡 ⋅ 𝑥 + 1 − 𝑡 ⋅ 𝑦 ≤ 𝑡 ⋅ 𝑣, + 1 − 𝑡 ⋅ 𝑣?
Same as: 𝑡 𝑥, 𝑣, + 1 − 𝑡 𝑦, 𝑣? ∈ epi(𝑓)



Convexity and Convex Functions?

Definition: for 𝑓:ℝ6 → ℝ its epigraph is
epi 𝑓 = 𝑥, 𝑡 | 𝑥 ∈ ℝ6 , 𝑡 ∈ ℝ, 𝑓 𝑥 ≤ 𝑡

Theorem: 𝑓:ℝ6 → ℝ is a convex function ⇔ epi(𝑓) is a convex set
Proof ⇐: 𝑥, 𝑓(𝑥) , 𝑦, 𝑓(𝑦) ∈ epi 𝑓 for all 𝑥, 𝑦 ∈ ℝ6

Convexity: 𝑡 𝑥, 𝑓(𝑥) + 1 − 𝑡 𝑦, 𝑓(𝑦) ∈ epi(𝑓)
Definition of epigraph:𝑓 𝑡 ⋅ 𝑥 + 1 − 𝑡 ⋅ 𝑦 ≤ 𝑡 ⋅ 𝑓 𝑥 + 1 − 𝑡 ⋅ 𝑓 𝑦



Plan for Today

Motivation

Convex sets

Oracles

• Recap where we are
• Motivate next unit

• Another perspective on convex functions

• Structure of convex sets

ü
ü

Hyperplanes and 
Subgradients



How obtain information about level sets?

Idea: Differentiable Case
• 𝑓:ℝ6 → ℝ convex
•⇔ 𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 8(𝑦 − 𝑥)
• ⇒ level< 𝑓, 𝑓 𝑥 ⊆ 𝑦: ∇𝑓 𝑥 8 𝑦 − 𝑥 ≤ 0
•⇔ level< 𝑓, 𝑓 𝑥 ⊆ 𝐻; −∇𝑓 𝑥 , −∇𝑓 𝑥 8𝑥
• Is this information enough?

• (sub)level set: level( 𝑓, 𝑣 = 𝑥 ∈ ℝ& | 𝑓 𝑥 ≤ 𝑣
• strict (sub)level set: level) 𝑓, 𝑣 = 𝑥 ∈ ℝ& | 𝑓 𝑥 < 𝑣

separation 
oracle

query
𝑥 ∈ ℝJ

output
𝑔 ∈ ℝJ such that 

levelK 𝑓, 𝑓 𝑥 ⊆ 𝐻* (𝑔, 𝑔,𝑥)

Cutting Plane 
Methods

• Will cover in a few weeks
• This week: just prove the oracle 

exists for quasi-convex functions



Another Idea

Idea: Differentiable Case
• 𝑓:ℝ6 → ℝ convex
•⇔ 𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 8(𝑦 − 𝑥)
• Subgradient: 𝑔 is subgradient of 𝑓 at 𝑥 if 
𝑓 𝑦 ≥ 𝑓 𝑥 + 𝑔8(𝑦 − 𝑥) for all 𝑦 ∈ ℝ6

• 𝜕𝑓 𝑥 = {set subgradients of 𝑓 at 𝑥}

• (sub)level set: level( 𝑓, 𝑣 = 𝑥 ∈ ℝ& | 𝑓 𝑥 ≤ 𝑣
• strict (sub)level set: level) 𝑓, 𝑣 = 𝑥 ∈ ℝ& | 𝑓 𝑥 < 𝑣

subgradient
oracle

query
𝑥 ∈ ℝJ

output
𝑔 ∈ 𝜕𝑓(𝑥)

Subgradient
descent

• Will cover this week / next week
• This week: just prove existence 

and relate to convexity



Plan for Today

Motivation

Convex sets

Oracles

• Recap where we are
• Motivate next unit

• Another perspective on convex functions

• Structure of convex sets

ü
ü

Hyperplanes and 
Subgradients

ü


