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Plan for Today
* Recap where we are
* Motivate next unit
Convex sets
e Structure of convex sets Hyperplanes and
Subgradients

Another perspective on convex functions




Problem

Recap min £(x)

Regularity Oracle Goal Algorithm Iterations

n=1, f(x)€[01], x, € [0,1] value 15-optimal anything o0
n =1, x, € [0,1], L-Lipschitz value e-optimal e-net O(L/e)

x, € [0,1], L-Lipschitzin || - |le value e-optimal e-net (@(L/e))n

L-smooth and bounded value, gradient e-optimal €-net exponential
L-smooth gradient e-critical gradient descent O(L(f(xg) — f)e™?)
L-smooth u-strongly convex gradient €-optimal gradient descent 0((L/u) log([f (x) — ﬁ]/e))
L-smooth convex gradient €-optimal gradient descent O(L||xy — x.|5/€)

L-smooth p-strongly convex gradient e-optimal gradient descent  O(y/L/ulog([f(x,) — £.1/6))
L-smooth u-strongly convex gradient e-optimal gradient descent 0 (\/Lllxo = x*||5/6>




How?

€-net

* Check enough points to cover
optimal points

* Check random points

Acceleration

e Combine upper and lower
bounds

* |s there a more general lower
bound phenomena?

Local Greedy

* [teratively, locally decrease
function vaue

1
* Xp41 = Xx — 7 VI (xg)
* X;+1 = argmin U, (x) for where

U (xx) = ]gc(XR) and Uy (x) >
f (x) for all x.



NEXt Few Weeks Develop new plgfntial functions!

Develop new notions of progress!
Develop new methods!

* What if function is non-differentiable?
* What if function is very non-smooth?
* What if cannot make sufficient local progress?

What to
do here?




Many Examples

Max Functions lll Conditioned Problem

. .1 2
min, max fi(x) » min - [lAx — blI5 + Allxll;

* Can solve if f; are smooth and * Can solve if L-smooth and u-
convex. strongly convex

* What if many of them? (m large)  What if L/u > n€?



A Canonical Example

Linear Programming

Input
e A € R™M" pheR™ ceR"

Goal
minc'x forP & {x : Ax > b}
XEP
. 0 Ax > b
o — T f def -
;rel]%ll ¢ x +p(x) forp(x) = {oo otherwise



(Closed) Half-space min ch

The Pictu re half(a;, b;) &€ Hs(a;, b;) & {x ER":alx > bi} XERM: Ax=b

Polytope Ax 2 b
A

—r— o 3] '

( :2 \ { bz \ “ ’ "

- a - |~ = b'k r /

_ a;n - bm Whatt to ‘
do here?

y
]

Solution : x,



Our Approach

Step #1 Step #2

* Obtain a better understanding of < Consider different oracles for
convex sets convex functions

e Connect convex set structure to * Subgradient oracle and
convex function structure subgradient methods

e Separation oracle and cutting

Step #3 plane methods

 Have a good winter break! * Barrier oracle and interior

e Along the way we will learn point methods

 Online learning, SGD,
Newton’s method, and more!



Plan for Today

* Recap where we are
* Motivate next unit

Another perspective on convex functions

* Structure of convex sets Hyperplanes and
Subgradients

Convex sets




tx+ (1 —t)yforte[01]isa

CO nvex SEt “convex combination” of x and y”

Definition: a set S € R" is convex if and only if forall x,y € Sand t €
[0,1] we have tx + (1 — t)y € S.

* “contains the line segment between every pair of points”
» “closed under convex combinations”

RN Z

Convex Convex

Non-convex



Convexity Examples and Properties

Lemma: if C is a set (possibly Lemma: foralla € R"and b € R

infinite) of convex sets in R™ then  the half-space, half(a, b) &

Nsec S is convex H.(a,b) & {x € R" |a"x > b},
IS convex

Proof: x,y ENgc S implies that
tx+(1—t)yeSforallSeC

Corollary: Polytopes, i.e.
andt € [0,1] y: TOIIOP

{x € R" | Ax = b}, are convex

Lemma: if S is convey, its closure
(union of limit points) is convex Theorem: all closed convex sets are intersections

of (a possibly infinite) set of halfspaces.




Optimizing a convex function < finding a point in a convex set

Problem

Convex function minimization? min 00

xXERN

(sub)level set: level.(f,v) = {x € R" | f(x) < v}
strict (sub)level set: level.(f,v) = {x € R" | f(x) < v}
Note: x is e-optimal © x € level.(f, f. + €)

Lemma: If f: IR convex then level. and level_ are always convex.

Use convexity
structure!

Proof: if f(x) < vand f(y) < v then What to
fE-x+@Q-0-y)<t-fl)+@A—t)-f(y)  dohere
<t-v




Problem

Convex function minimization? min £ (0

xXERN

(sub)level set: level.(f,v) = {x € R" | f(x) < v}
strict (sub)level set: level.(f,v) = {x € R" | f(x) < v}
Note: x is e-optimal © x € level.(f, f. + €)

Lemma: If f: IR convex then level. and level_ are always convex.

Use convexity
structure!

Is the converse true? What to
NO’ do here?

Quasiconvex: function with convex level sets




Convexity and Convex Functions?

Definition: for f: R" — R its epigraph is
epi(f) ={(x,t) | x e Rt ER, f(x) <t}

Theorem: f: R" — R is a convex function & epi(f) is a convex set
Proof =: Let (x, v,), (y, vy) € epi(f).

Convexity: f(t x4+ (1 —-¢t)-y)<t-f(x)+ (1 —-1¢t):f(y)
Definition of epigraph: f(t-x+ (1 —t) - y) <t v, + (1 —1t) v,
Same as: t(x,v,) + (1 — t)(y, vy) € epi(f)




Convexity and Convex Functions?

Definition: for f: R" — R its epigraph is
epi(f) ={(x,t) | x e Rt ER, f(x) <t}

Theorem: f: R™ - R is a convex function < epi IS a convex set
p

Proof <: (x, f(x)), (v, f(y)) € epi(f) forall x,y € R™
Convexity: t(x, f(x)) + (1 = t)(y, f(¥)) € epi(f)
Definition of epigraph:f(t - x+ (1 —¢t) - y) <t-f(x)+ (A —-1t) - f(y)




Plan for Today

* Recap where we are
* Motivate next unit

* Another perspective on convex functions

Hyperplanes and

* Structure of convex sets

Subgradients




* (sub)level set: level.(f,v) = {x € R" | f(x) < v}
* strict (sub)level set: level.(f,v) = {x e R" | f(x) < v}

How obtain information about level sets?

Idea: Differentiable Case

* f:R"™ - R convex Methods

* S f) 2 )+ V) (v~ ) . Wil cover i a few weeks

= levelo(f, (1) € i VFQT(r =) S 0} Ilmeioroe veonce
+ & level.(f, f(x)) € Hy (=Y (x), =V () Tx)

* |s this information enough?

uer separation OTUtFM
x € R" - oracle - g € R" such that

level<(f, f(x)) € Hs (9,97 x)




* (sub)level set: level.(f,v) = {x € R" | f(x) < v}
* strict (sub)level set: level.(f,v) = {x e R" | f(x) < v}

Another Idea

Idea: Differentiable Case Subgradient
* f:R™ - R convex descent
o T _
A f (y ) = f (X) + Vf (X) (y X) * Will cover this week / next week
* Subgradient: g is subgradient of f at x if * This week: just prove existence

and relate to convexity
f@)=fx)+g'(y—x)forally € R"
* df (x) = {set subgradients of f at x}

uer subgradient output
x € R" oracle g € af(x)
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