Introduction to Optimization Theory

Lecture #18 - 11/16/20 MS&E 213 / CS 2690

Aaron Sidford sidford@stanford.edu

Plan for Today

Recap

• Rates, subgradients, FTRL, and mirror descent

Feasibility Problem

• An abstraction for separation oracles

Cutting Plane **Methods**

• Methods for solving feasibility problem

How to obtain improved rates when more structure.

Recap

Problem $\min_{x \in \mathbb{R}^n} f(x)$

Approach

- Reduce to feasibility problem
- Solve feasibility problem

Subgradient: q is subgradient of f at x (i.e. $q \in \partial f(x)$ *) if and only if* $f(y) \ge f(x) + g^{\top}(y - x)$ *for all* $y \in \mathbb{R}^n$

Convex Function Oracle

- **Approach**
- Reduce to online linear optimization
- Solve online linear optimization

How to obtain improved rates when more structure.

Approach

- Reduce to feasibility problem
- Solve feasibility problem

Subgradient: q is subgradient of f at x (i.e. $q \in \partial f(x)$ *) if and only if* $f(y) \ge f(x) + g^{\top}(y - x)$ *for all* $y \in \mathbb{R}^n$

Convex Function Oracle

- **Approach**
- Reduce to online linear optimization
- Solve online linear optimization

Geometric problem abstraction?

Analogous role to online linear optimization problem

(R, r, n) -Feasibility Problem

Given:

- n -dimensional box B of radius R:
- **Separation oracle**: when evaluated at point $x \in B$ in time T either outputs "success" or a halfspace with x on boundary.

Goal:

- Get "success" or
- Prove that the intersection of halfspaces and initial box does not contain a box of radius r

Note: Want $O(poly(n, T, \log(R/r)))$

Special Case: we obtain separating hyperplanes for some convex set the is contain in a Box of radius R and contains a ball of radius .

Analogous role to online linear optimization problem

Box of radius R: $\{x \in \mathbb{R}^n \mid ||x - c||_{\infty} \leq R\}$ $B_{\infty}(R) = \{x \in \mathbb{R}^n | ||x||_{\infty} \leq R\}$

(R, r, n) -Feasibility Problem

Given:

- *n*-dimensional box B of radius R:
- **Separation oracle**: when evaluated at point $x \in B$ in time T either outputs "success" or a halfspace
with x on boundary.

Goal:

- Get "success" or
- Prove that the intersection of halfspaces and initial box does not contain a box of radius r

Solution Concept:

• An algorithm is a (T_q, T_t) -solution if it solves the problem with $O(T_q)$ queries and $O(T_t)$ time.

Note

- Choice of norms somewhat arbitrary
- Consider solutions which depend polylogarithmically on nR/r and therefore, norm choice.

Why?
\n
$$
\begin{array}{ccc}\n & \text{query} \\
& x \in \mathbb{R}^n\n\end{array}
$$
\n**separation**
\n
$$
\begin{array}{ccc}\n & \text{order} \\
& \text{oracle}\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{output} \\
& g_x \in \mathbb{R}^n \text{ with level}_{\leq}(f, f(x)) \subseteq H_{\geq}(g_x, g_x^{\top}x) \\
& \text{with } g_x = \vec{0} \text{ only if } f_x = f(x)\n\end{array}
$$

Lemma: Suppose $f: \mathbb{R}^n \to \mathbb{R}$ obtains its minimum value at $x_* \in B_\infty(R)$ and there is a box of radius r where every point in it is ϵ -optimal, then given a (T_a, T_t) -solution to the (R, r, n) -feasibility problem, can compute an ϵ optimal point with $O(T_q)$ queries to a separation oracle and value oracle for f and $O(T_t)$ -time.

Proof: apply solution with separation oracle as oracle and output point queried which has minimum value.

- If query x and $g_x = 0$ then output minimizer!
- Otherwise, since intersection doesn't contain r -box, have for some x it is the case that $H_{\geq}(g_x,g_x^\top x)$ doesn't contain all ϵ -optimal points. Since $\text{level}_{\leq}(f, f(x)) \subseteq H_{\geq}\left(g_x, g_x^{\top} x\right) \Rightarrow x \text{ is ϵ-optimal}$

Note

- Can apply a similar approach to constrained optimization if have separation oracle for constraint set S , i.e. an oracle which when queried outputs $\vec{0}$ if $x \in S$ and $g \neq \vec{0}$ with $S \subseteq H_>(g, g^{\top}x)$ when $x \notin S$.
- **Idea**: apply feasibility solution and output separation oracle for S when queried point $\notin S$ and separation oracle for f otherwise.

Ball of radius R in $|| \cdot || : B_{|| \cdot ||} (R, c) = \{ x \in \mathbb{R}^n | ||x - c|| \le R \}$

Size of set of ϵ -opt points?

Lemma: If $f: \mathbb{R}^n \to \mathbb{R}$ convex and $\epsilon > 0$ and the set of ϵ -optimal points contains a ball of radius R in $\|\cdot\|$ then for all $\alpha \in (0,1)$ the set of $\alpha \in$ points contains a ball of radius αR in that norm.

Proof

- By assumption, there is x_0 with $B_{\|\cdot\|}(R, x_0) \subseteq \text{level}_{\leq}(f, f^* + \epsilon)$
- Let $S = B_{\|\cdot\|}(\alpha R, \alpha x_0 + (1 \alpha)x_*)$
- If $x \in S$ then $||x \alpha x_0 (1 \alpha)x_*|| \leq \alpha R$ and $x = \alpha y + (1 \alpha)x_*$ where $||\alpha(y - x_0)|| \leq \alpha R$, i.e. $y \in B_{\|\cdot\|}(R, x_0)$
- $\bullet \Rightarrow f(x) \le \alpha f(y) + (1 \alpha)f(x_{*}) \le \alpha \cdot (f_{*} + \epsilon) + (1 \alpha)f_{*} = f_{*} + \alpha \epsilon$

Minimizing Bounded Convex Functions

Lemma: Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable, convex, minimized in $B_{\infty}(R)$, and has $|f(x)| \leq M$ for al $x \in B_{\infty}(R)$. Then given a first order oracle for f and a (T_q, T_t) -solution to the $(R,$ ϵR $\frac{\epsilon R}{2M}$, n)-feasibility problem can compute an ϵ -optimal point with $O(T_q)$ -queries and $O(T_t)$ -time.

Proof: run solution with -gradient oracle and output queried point of min value

- -gradient oracle is separation oracle
- Every point in $B_{\infty}(R)$ is 2M-optimal
- The set of ϵ -optimal points contain a box of radius $\frac{\epsilon R}{2M}$ $rac{en}{2M}$ by preceding lemma

Cutting Plane Methods

• Methods for solving feasibility problem

How to obtain improved rates when more structure.

Analogous role to online linear optimization problem

Box of radius R: $\{x \in \mathbb{R}^n \mid ||x - c||_{\infty} \leq R\}$ $B_{\infty}(R) = \{x \in \mathbb{R}^n | ||x||_{\infty} \leq R\}$

(R, r, n) -Feasibility Problem

Given:

- n -dimensional box B of radius R:
- **Separation oracle**: when evaluated at point $x \in B$ in time T either outputs "success" or a halfspace
with x on boundary.

Goal:

- Get "success" or
- Prove that the intersection of halfspaces and initial box does not \overline{c} contain a box of radius \overline{r}

Solution Concept:

• An algorithm is a (T_q, T_t) -solution if it solves the problem with $O(T_q)$ queries and $O(T_t)$ time.

Algorithm Idea?

• **Warmup:** 1-dimension?

One Dimensional Problem

Theorem: Can solve the $(R, r, 1)$ -problem using $O\left(\log\left(\frac{R}{r}\right)\right)$ $\binom{n}{r}$) queries.

-Dimensional Problem

Grunbaum's Theorem: Intersecting convex body with halfspace through center of gravity decreases volume by at least $(1 - 1/e)$

Algorithm: repeatedly query center of gravity of intersection of box and all halfspaces

Analysis: volume starts at $(2R)^n$ and if volume $\leq (2r)^n$ algorithm ends

Theorem: Can solve the (R, r, n) -problem using $O\left(n \cdot \log\left(\frac{R}{r}\right)\right)$ $\binom{n}{r}$) queries

Algorithm Framework

• Start with "set" containing the box

What set?

• Get separating hyperplane through "center"

What center?

• Update set (must contain intersection of halfspaces)

How update?

• Repeat until "size" is small

How measure size?

- **Given**: n -dimension box of radius R
- **Given**: Separating oracle takes time
- **Goal**: Prove intersection doesn't contain box radius r
- **Notation**: $\kappa \stackrel{\text{def}}{=} nR/r$

Goal:

- Minimize total running time:
	- Number of times call oracle (oracle complexity)
	- Additional running time (overhead)

Ellipsoid Method

• Start with "set" containing the box

Ellipsoid

• Get separating hyperplane through "center"

Center of ellipsoid

• Update set (must contain intersection of halfspaces)

• Repeat until "size" is small

Volume of ellipsoid decreases by $(1 - 1/n)$ each iteration

- **Given**: n -dimension box of radius R
- **Given**: Separating oracle takes time
- **Goal**: Prove intersection doesn't contain box radius r
- **Notation**: $\kappa \stackrel{\text{def}}{=} nR/r$

Result

- Time $O(n^2 T \log \kappa + n^4 \log \kappa)$
- Great cost per iteration
- Bad oracle complexity

Center of Gravity

• Start with "set" containing the box

Intersection of all halfspaces

• Get separating hyperplane through "center"

Center of gravity

• Update set (must contain intersection of halfspaces)

Can approximate center in poly time

• Repeat until "size" is small

Grunbaum's Theorem

Intersecting convex body with halfspace through center of gravity decreases volume by at least $(1 - 1/e)$.

- **Given:** n -dimension box of radius R
- **Given:** Separating oracle takes time T
- **Goal**: Prove intersection doesn't contain box radius r
- **Notation**: $\kappa \stackrel{\text{def}}{=} nR/r$

Result

- Time $O(nT\ log\ \kappa\ + (n\ log\ \kappa)^{O(1)})$
- Great oracle complexity
- Bad cost per iteration

John Ellipse

• Start with "set" containing the box

Intersection of all halfspaces

• Get separating hyperplane through "center"

Center of maximum volume ellipse in set

• Update set (must contain intersection of halfspaces)

Polynomial time

• Repeat until "size" is small

Volume of maximum volume ellipse decreases by constant.

- **Given:** n -dimension box of radius R
- **Given:** Separating oracle takes time T
- **Goal**: Prove intersection doesn't contain box radius r
- **Notation**: $\kappa \stackrel{\text{def}}{=} nR/r$

Result

- Time $O(nT\ log\ \kappa\ + (n\ log\ \kappa)^{O(1)})$
- Great oracle complexity
- Better but still high iteration cost

Practice : Analytic Center

• Start with "set" containing the box

Intersection of some halfspace

• Get separating hyperplane through "center"

Barrier – analytic center

• Update set (must contain intersection of halfspaces)

Fast - comparable to interior point

• Repeat until "size" is small

Sometimes good in practice, various theoretical guarantees, hard to analyze

• **Given**: -dimension box of radius **Barrier**

A nice function from interior of set to the reals that goes to infinity as you approach boundary of set

- For polytope $P = \{x: Ax \geq b\}$
- Let $s_r = Ax b$
- Log barrier $b_1(x) = -\sum_i \log s_x(i)$
- Analytic center argmin $b_l(x)$

$$
\chi
$$

Volumetric center

• Start with "set" containing the box

Intersection of some halfspace

• Get separating hyperplane through "center"

Volumetric center

• Update set (must contain intersection of halfspaces)

Matrix multiplication time

• Repeat until "size" is small

Dropping constraint decreases $b_v(x)$ by small constant but adding constant increases $b_n(x)$ by larger constant.

• **Given**: -dimension box of radius **Fact**

Volume of ellipse is approximately volume of set at center if not too **EXECUTE:** Many constraints.

Algorithm [V89]

- If constraint has high *leverage score* $\left[S_{\chi}A(AS_{\chi}^{-2}A)^{-1}A^{\top}S_{\chi}\right]_{ii}$ drop it and compute new center.
- Otherwise, add call oracle at center, add nearby, and re-center.
- Repeat

• For polytope = {: ≥ } **Result**

• Volumente center argument

• L<mark>et & and & and \$ (%) = (%)</mark> • V • Time $O(nT \log \kappa + n^{\omega+1} \log \kappa)$

 \mathcal{X}

 \sim _V \langle N \rangle ω < 2.373 [W14]

Cutting Plane Methods • Maintain a convex set **Cutting Plane Methods** • Query separation orac

-
- Query separation oracle at "center" of convex set
- Update convex set
- Repeat until "size" is sufficiently small

 ω < 2.373 [W14]

Cutting Plane Methods • Maintain a convex set Cutting Plane Methods

-
- Query separation oracle at "center" of convex set
- Update convex set
- Repeat until "size" is sufficiently small

• Implication: L -smooth, μ -strongly convex ϵ -opt given ϵ_0 -initial error with $O\left(n\log\left(\frac{nL\epsilon_0}{\mu\epsilon}\right)\right)$ gradient evaluations

 ω < 2.373 [W14] • Implication: faster matroid intersection, semidefinite programming, submodular optimization

How to obtain improved rates when more structure.