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Plan for Today

Recap

Feasibility 
Problem

Cutting Plane 
Methods

Interior Point
Methods

• An abstraction for separation oracles 

• Methods for solving feasibility problem

• Rates, subgradients, FTRL, and mirror descent

How to obtain improved rates when more structure.



Recap 
Regularity Oracle Goal Algorithm Iterations

𝑛 = 1, 𝑓 𝑥 ∈ [0,1], 𝑥∗ ∈ [0,1] value ½-optimal anything ∞
𝑛 = 1, 𝑥∗ ∈ [0,1], 𝐿-Lipschitz value 𝜖-optimal 𝜖-net Θ 𝐿/𝜖

𝑥∗ ∈ [0,1], 𝐿-Lipschitz in ‖ ⋅ ‖" value 𝜖-optimal 𝜖-net Θ 𝐿/𝜖 #

𝐿-smooth and bounded value, gradient 𝜖-optimal 𝜖-net exponential

𝐿-smooth gradient 𝜖-critical gradient descent 𝑂 𝐿 𝑓 𝑥$ − 𝑓∗ 𝜖%&

𝐿-smooth 𝜇-strongly convex gradient 𝜖-optimal gradient descent 𝑂 𝐿/𝜇 log 𝑓 𝑥$ − 𝑓∗ /𝜖

𝐿-smooth convex gradient 𝜖-optimal gradient descent 𝑂 𝐿 𝑥$ − 𝑥∗ &
&/𝜖

𝐿-smooth 𝜇-strongly convex gradient 𝜖-optimal gradient descent 𝑂 𝐿/𝜇 log 𝑓 𝑥$ − 𝑓∗ /𝜖

𝐿-smooth 𝜇-strongly convex gradient 𝜖-optimal gradient descent 𝑂 𝐿 𝑥$ − 𝑥∗ &
&/𝜖

𝐿-Lipschitz, convex subgradient 𝜖-optimal Mirror descent, 
FTRL 𝑂 𝐿& 𝑥$ − 𝑥∗ &

&/𝜖&

Problem
min
!∈ℝ"

𝑓(𝑥)



separation 
oracle

query
𝑥 ∈ ℝ&

output
𝑔 ∈ ℝ& such that 

level' 𝑓, 𝑓 𝑥 ⊆ 𝐻( 𝑔, 𝑔)𝑥
With 𝑔 = 0 only if 𝑓∗ = 𝑓(𝑥)

Cutting Plane 
Methods

subgradient
oracle

query
𝑥 ∈ ℝ&

output
𝑔 ∈ 𝜕𝑓(𝑥)

Subgradient: 𝑔 is subgradient of 𝑓 at 𝑥 (i.e. 𝑔 ∈ 𝜕𝑓(𝑥)) if 
and only if 𝑓 𝑦 ≥ 𝑓 𝑥 + 𝑔#(𝑦 − 𝑥) for all 𝑦 ∈ ℝ$

Subgradient
descent

Approach
• Reduce to online linear optimization
• Solve online linear optimization

Convex Function Oracle

ü

Approach
• Reduce to feasibility problem
• Solve feasibility problem
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How to obtain improved rates when more structure.
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𝑔 ∈ ℝ& such that 
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Cutting Plane 
Methods

subgradient
oracle

query
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and only if 𝑓 𝑦 ≥ 𝑓 𝑥 + 𝑔#(𝑦 − 𝑥) for all 𝑦 ∈ ℝ$

Subgradient
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• Reduce to online linear optimization
• Solve online linear optimization

Convex Function Oracle

ü

Approach
• Reduce to feasibility problem
• Solve feasibility problem



Picture

separation 
oracle

query
𝑥 ∈ ℝ&

output
𝑔 ∈ ℝ& such that 

level' 𝑓, 𝑓 𝑥 ⊆ 𝐻( 𝑔, 𝑔)𝑥
With 𝑔 = 0 only if 𝑓∗ = 𝑓(𝑥)

Geometric problem abstraction?



𝑹, 𝒓, 𝒏 -Feasibility Problem
Given:
• 𝑛-dimensional box 𝐵 of radius R:
• Separation oracle: when evaluated 

at point 𝑥 ∈ 𝐵 in time 𝑇 either 
outputs “success” or a halfspace
with 𝑥 on boundary.

Goal:
• Get “success” or
• Prove that the intersection of 

halfspaces and initial box does not 
contain a box of radius 𝑟

𝑟
𝑥

R

Box of radius 𝑅: 𝑥 ∈ ℝ9| 𝑥 − 𝑐 : ≤ 𝑅

Special Case: we obtain separating hyperplanes
for some convex set the is contain in a Box of 

radius R and contains a ball of radius 𝑟.

Analogous role to online linear optimization problem 

Note: Want 𝑂(𝑝𝑜𝑙𝑦(𝑛, 𝑇, log 𝑅/𝑟 )



𝑹, 𝒓, 𝒏 -Feasibility Problem

Given:
• 𝑛-dimensional box 𝐵 of radius R:
• Separation oracle: when evaluated 

at point 𝑥 ∈ 𝐵 in time 𝑇 either 
outputs “success” or a halfspace
with 𝑥 on boundary.

Goal:
• Get “success” or
• Prove that the intersection of 

halfspaces and initial box does not 
contain a box of radius 𝑟

Solution Concept:
• An algorithm is a 𝑇5 , 𝑇6 -solution if it 

solves the problem with 𝑂(𝑇5) queries 
and 𝑂(𝑇6) time.

Note
• Choice of norms somewhat arbitrary
• Consider solutions which depend 

polylogarithmically on 𝑛𝑅/𝑟 and 
therefore, norm choice. 

Box of radius 𝑅: 𝑥 ∈ ℝ9| 𝑥 − 𝑐 : ≤ 𝑅
𝐵: 𝑅 = 𝑥 ∈ ℝ9| 𝑥 : ≤ 𝑅

Analogous role to online linear optimization problem 



Why?

Lemma: Suppose 𝑓:ℝ! → ℝ obtains its minimum value at 𝑥∗ ∈ 𝐵#(𝑅) and 
there is a box of radius 𝑟 where every point in it is 𝜖-optimal, then given a 
𝑇$ , 𝑇% -solution to the (𝑅, 𝑟, 𝑛)-feasibility problem, can compute an 𝜖-

optimal point with 𝑂(𝑇$) queries to a separation oracle and value oracle for 
𝑓 and 𝑂 𝑇% -time.

Proof: apply solution with separation oracle as oracle and output point 
queried which has minimum value.
• If query 𝑥 and 𝑔& = 0 then output minimizer!
• Otherwise, since intersection doesn’t contain 𝑟-box, have for some 𝑥 it is 

the case that 𝐻'(𝑔& , 𝑔&(𝑥) doesn’t contain all 𝜖-optimal points. Since 
level) 𝑓, 𝑓 𝑥 ⊆ 𝐻' 𝑔& , 𝑔&(𝑥 ⇒ 𝑥 is 𝜖-optimal

separation 
oracle

query
𝑥 ∈ ℝ!

output
𝑔" ∈ ℝ! with level# 𝑓, 𝑓 𝑥 ⊆ 𝐻$ 𝑔", 𝑔"%𝑥

With 𝑔" = 0 only if 𝑓∗ = 𝑓(𝑥)



Constraints

Note
• Can apply a similar approach to constrained optimization if have 

separation oracle for constraint set 𝑆, i.e. an oracle which when queried 
outputs 0 if 𝑥 ∈ 𝑆 and 𝑔 ≠ 0 with 𝑆 ⊆ 𝐻3(𝑔, 𝑔4𝑥) when 𝑥 ∉ 𝑆.
• Idea: apply feasibility solution and output separation oracle for 𝑆 when 

queried point ∉ 𝑆 and separation oracle for 𝑓 otherwise.

separation 
oracle

query
𝑥 ∈ ℝ!

output
𝑔" ∈ ℝ! with level# 𝑓, 𝑓 𝑥 ⊆ 𝐻$ 𝑔", 𝑔"%𝑥

With 𝑔" = 0 only if 𝑓∗ = 𝑓(𝑥)



Size of set of 𝝐-opt points?

Lemma: If 𝑓:ℝ5 → ℝ convex and 𝜖 > 0 and the set of 𝜖-optimal points 
contains a ball of radius 𝑅 in ‖ ⋅ ‖ then for all 𝛼 ∈ (0,1) the set of 𝛼𝜖-
points contains a ball of radius 𝛼𝑅 in that norm.

Proof
• By assumption, there is 𝑥6 with 𝐵 ⋅ 𝑅, 𝑥6 ⊆ level8(𝑓, 𝑓∗ + 𝜖)
• Let 𝑆 = 𝐵 ⋅ 𝛼𝑅, 𝛼𝑥6 + 1 − 𝛼 𝑥∗
• If 𝑥 ∈ 𝑆 then 𝑥 − 𝛼𝑥6 − 1 − 𝛼 𝑥∗ ≤ 𝛼𝑅 and 𝑥 = 𝛼𝑦 + 1 − 𝛼 𝑥∗

where 𝛼 𝑦 − 𝑥6 ≤ 𝛼𝑅, i.e. 𝑦 ∈ 𝐵 ⋅ (𝑅, 𝑥6)
• ⇒ 𝑓 𝑥 ≤ 𝛼𝑓 𝑦 + 1 − 𝛼 𝑓 𝑥∗ ≤ 𝛼 ⋅ 𝑓∗ + 𝜖 + 1 − 𝛼 𝑓∗ = 𝑓∗ + 𝛼𝜖

Ball of radius 𝑅 in ‖ ⋅ ‖: 𝐵 ⋅ 𝑅, 𝑐 = 𝑥 ∈ ℝ9|‖𝑥 − 𝑐‖ ≤ 𝑅



Minimizing Bounded Convex Functions

Lemma: Suppose 𝑓:ℝ5 → ℝ is differentiable, convex, minimized in 𝐵:(𝑅), and 
has 𝑓 𝑥 ≤ 𝑀 for al 𝑥 ∈ 𝐵:(𝑅). Then given a first order oracle for 𝑓 and a 
(𝑇; , 𝑇<)-solution to the (𝑅, =>

?@
, 𝑛)-feasibility problem can compute an 𝜖-optimal 

point with 𝑂(𝑇;)-queries and 𝑂(𝑇<)-time.

Proof: run solution with -gradient oracle and output queried point of min value
• -gradient oracle is separation oracle
• Every point in 𝐵:(𝑅) is 2𝑀-optimal

• The set of 𝜖-optimal points contain a box of radius =>
?@

by preceding lemma

Can apply to smooth, strongly convex functions!
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𝑹, 𝒓, 𝒏 -Feasibility Problem

Given:
• 𝑛-dimensional box 𝐵 of radius R:
• Separation oracle: when evaluated 

at point 𝑥 ∈ 𝐵 in time 𝑇 either 
outputs “success” or a halfspace
with 𝑥 on boundary.

Goal:
• Get “success” or
• Prove that the intersection of 

halfspaces and initial box does not 
contain a box of radius 𝑟

Solution Concept:
• An algorithm is a 𝑇5 , 𝑇6 -solution if it 

solves the problem with 𝑂(𝑇5)queries and 𝑂(𝑇6) time.

Algorithm Idea?
• Warmup: 1-dimension?

Box of radius 𝑅: 𝑥 ∈ ℝ9| 𝑥 − 𝑐 : ≤ 𝑅
𝐵: 𝑅 = 𝑥 ∈ ℝ9| 𝑥 : ≤ 𝑅

Analogous role to online linear optimization problem 



One Dimensional Problem

Theorem: Can solve the 𝑅, 𝑟, 1 -problem using 𝑂 log >
A

queries.



𝒏-Dimensional Problem

Grunbaum’s Theorem: Intersecting convex body with halfspace
through center of gravity decreases volume by at least (1 − 1/𝑒)
Algorithm: repeatedly query center of gravity of intersection of box and 
all halfspaces
Analysis: volume starts at (2𝑅)5 and if volume ≤ (2𝑟)5 algorithm ends

Theorem: Can solve the 𝑅, 𝑟, 𝑛 -problem using 𝑂 𝑛 ⋅ log >
A

queries



• Start with “set” containing  the box

• Get separating hyperplane through “center”

• Update set (must contain intersection of halfspaces)

• Repeat until “size” is small

Algorithm Framework

R

• Given: 𝑛-dimension box of radius 𝑅
• Given: Separating oracle takes time 𝑇
• Goal: Prove intersection doesn’t 

contain box radius 𝑟
• Notation: 𝜅 ≝ 𝑛𝑅/𝑟

What set?

What center?

How update?

How measure size?

𝜖

Goal:
• Minimize total running time:

• Number of times call oracle (oracle complexity)
• Additional running time (overhead)



• Start with “set” containing  the box

• Get separating hyperplane through “center”

• Update set (must contain intersection of halfspaces)

• Repeat until “size” is small

Ellipsoid Method

R

Ellipsoid

Center of ellipsoid

𝑂(𝑛*)

Volume of ellipsoid decreases by 
1 − 1/𝑛 each iteration

Result
• Time 𝑂(𝑛'𝑇 𝑙𝑜𝑔 𝜅 + 𝑛( 𝑙𝑜𝑔 𝜅)
• Great cost per iteration
• Bad oracle complexity

• Given: 𝑛-dimension box of radius 𝑅
• Given: Separating oracle takes time 𝑇
• Goal: Prove intersection doesn’t 

contain box radius 𝑟
• Notation: 𝜅 ≝ 𝑛𝑅/𝑟



• Start with “set” containing  the box

• Get separating hyperplane through “center”

• Update set (must contain intersection of halfspaces)

• Repeat until “size” is small

Center of Gravity

Intersection of all halfspaces

Center of gravity

Can approximate 
center in poly time

Result
• Time 𝑂(𝑛𝑇 𝑙𝑜𝑔 𝜅 + 𝑛 𝑙𝑜𝑔 𝜅 )(+))
• Great oracle complexity
• Bad cost per iteration

Grunbaum’s Theorem
Intersecting convex body with halfspace through center of 

gravity decreases volume by at least (1 − 1/𝑒).

• Given: 𝑛-dimension box of radius 𝑅
• Given: Separating oracle takes time 𝑇
• Goal: Prove intersection doesn’t 

contain box radius 𝑟
• Notation: 𝜅 ≝ 𝑛𝑅/𝑟



• Start with “set” containing  the box

• Get separating hyperplane through “center”

• Update set (must contain intersection of halfspaces)

• Repeat until “size” is small

John Ellipse

Intersection of all halfspaces

Center of maximum volume ellipse in set

Polynomial time

Result
• Time 𝑂(𝑛𝑇 𝑙𝑜𝑔 𝜅 + 𝑛 𝑙𝑜𝑔 𝜅 )(+))
• Great oracle complexity
• Better but still high iteration cost

Volume of maximum volume ellipse 
decreases by constant.

• Given: 𝑛-dimension box of radius 𝑅
• Given: Separating oracle takes time 𝑇
• Goal: Prove intersection doesn’t 

contain box radius 𝑟
• Notation: 𝜅 ≝ 𝑛𝑅/𝑟



• Start with “set” containing  the box

• Get separating hyperplane through “center”

• Update set (must contain intersection of halfspaces)

• Repeat until “size” is small

Practice : Analytic Center

Intersection of some halfspace

Barrier – analytic center

Fast - comparable to interior point

Sometimes good in practice, various 
theoretical guarantees, hard to analyze

• For polytope 𝑃 = {𝑥: 𝑨𝑥 ≥ 𝑏}
• Let 𝑠% = 𝑨𝑥 − 𝑏
• Log barrier  b&(𝑥) = −∑' log 𝑠%(𝑖)
• Analytic center argmin

%
𝑏( (𝑥)

• Given: 𝑛-dimension box of radius 𝑅
• Given: Separating oracle takes time 𝑇
• Goal: Prove intersection doesn’t 

contain box radius 𝑟
• Notation: 𝜅 ≝ 𝑛𝑅/𝑟

Barrier
A nice function from interior of set to 
the reals that goes to infinity as you 

approach boundary of set



• Start with “set” containing  the box

• Get separating hyperplane through “center”

• Update set (must contain intersection of halfspaces)

• Repeat until “size” is small

Volumetric center

Intersection of some halfspace

Volumetric center

Matrix multiplication time

Dropping constraint decreases 𝑏-(𝑥) by 
small constant but adding constant 
increases 𝑏-(𝑥) by larger constant.

• For polytope 𝑃 = {𝑥: 𝑨𝑥 ≥ 𝑏}
• Let 𝑠% = 𝑨𝑥 − 𝑏 and 𝑆% = 𝑑𝑖𝑎𝑔(𝑠%)
• Volumetric barrier 𝑏) 𝑥 = ln det(𝑨*𝑺%+, 𝑨)
• Volumetric center argmin

%
𝑏) (𝑥)

Algorithm [V89]
• If constraint has high leverage score

𝑺"𝑨 𝑨𝑺".'𝑨 .+𝑨%𝑺" //
drop it and compute new center.
• Otherwise, add call oracle at center, 

add nearby, and re-center. 
• Repeat

Result
• Time 𝑂(𝑛𝑇 𝑙𝑜𝑔 𝜅 + 𝑛01+ log 𝜅)

• Given: 𝑛-dimension box of radius 𝑅
• Given: Separating oracle takes time 𝑇
• Goal: Prove intersection doesn’t 

contain box radius 𝑟
• Notation: 𝜅 ≝ 𝑛𝑅/𝑟

Fact
Volume of ellipse is approximately 
volume of set at center if not too 

many constraints.

𝜔 < 2.373 [W14]



Method Set Center Size Tracked Time (𝜿 = 𝒏𝑹/𝝐)

Ellipsoid 
[YN76,S77,K80] Ellipse Ellipse Volume 𝑂(𝑛,𝑇 log 𝜅 + 𝑛- log 𝜅)

Center of Gravity 
[L65,BV02] All half-spaces Gravity Volume 𝑂 𝑛𝑇 log 𝜅 + 𝑛. log/(1) 𝜅

Inscribed Ellipse 
[KTE88,NN92] All half-spaces John Ellipse Volume 𝑂(𝑛𝑇 log 𝜅 + 𝑛341.. log/(1) 𝜅)

Volumetric Center 
[V89] Some half-spaces Volumetric Volume, width 𝑂(𝑛𝑇 log 𝜅 + 𝑛341 log 𝜅)

Analytic Center [AV95] Some half-spaces Analytic Volume, width 𝑂(𝑛𝑇 log/(1) 𝜅 + 𝑛/(1) log/(1) 𝜅)

Cutting Plane Methods
• Maintain a convex set
• Query separation oracle at “center” of convex set
• Update convex set
• Repeat until “size” is sufficiently small

𝜔 < 2.373 [W14]



Method Set Center Size Tracked Time (𝜿 = 𝒏𝑹/𝝐)

Ellipsoid 
[YN76,S77,K80] Ellipse Ellipse Volume 𝑂(𝑛,𝑇 log 𝜅 + 𝑛- log 𝜅)

Center of Gravity 
[L65,BV02] All half-spaces Gravity Volume 𝑂 𝑛𝑇 log 𝜅 + 𝑛. log/(1) 𝜅

Inscribed Ellipse 
[KTE88,NN92] All half-spaces John Ellipse Volume 𝑂(𝑛𝑇 log 𝜅 + 𝑛341.. log/(1) 𝜅)

Volumetric Center 
[V89] Some half-spaces Volumetric Volume, width 𝑂(𝑛𝑇 log 𝜅 + 𝑛341 log 𝜅)

Analytic Center [AV95] Some half-spaces Analytic Volume, width 𝑂(𝑛𝑇 log/(1) 𝜅 + 𝑛/(1) log/(1) 𝜅)
[LSW15] Some half-spaces Hybrid Volume, width 𝑶(𝒏𝑻 𝐥𝐨𝐠 𝜿 + 𝒏𝟑 𝐥𝐨𝐠𝑶(𝟏) 𝜿)

[JLSW20] Some half-spaces Volumetric Volume, width 𝑶 𝒏𝑻 𝐥𝐨𝐠 𝜿 + 𝒏𝟑 𝐥𝐨𝐠 𝜿

Cutting Plane Methods
• Maintain a convex set
• Query separation oracle at “center” of convex set
• Update convex set
• Repeat until “size” is sufficiently small

𝜔 < 2.373 [W14]

• Implication: 𝐿-smooth, 𝜇-strongly convex 𝜖-opt given 𝜖9-initial error with 𝑂 𝑛 log $:;!
<;

gradient evaluations
• Implication: faster matroid intersection, semidefinite programming, submodular optimization
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• An abstraction for separation oracles 
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• Rates, subgradients, FTRL, and mirror descent
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