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Plan for Today

Reca P * Rates, subgradients, FTRL, and mirror descent

Feasibility
Problem

* An abstraction for separation oracles

CUtting Plane e Methods for solving feasibility problem Interior Point
Methods : vP Methods

How to obtain improved rates when more structure.




Problem

Recap STy

XERMN

Regularity Oracle Goal Algorithm Iterations
n=1, f(x) €[01], x, € [0,1] value 2-optimal anything 0
n =1, x, € [0,1], L-Lipschitz value e-optimal e-net O(L/e)
x, € [0,1], L-Lipschitzin || - [le value e-optimal e-net (@(L/e))n
L-smooth and bounded value, gradient e-optimal €-net exponential
L-smooth gradient e-critical gradient descent O(L(f(xg) — f)e™?)
L-smooth u-strongly convex gradient €-optimal gradient descent 0((L/u) log([f (x) — ﬁ]/e))
L-smooth convex gradient €-optimal gradient descent O(L||xy — x.|5/€)
L-smooth p-strongly convex gradient e-optimal gradient descent  O(y/L/ulog([f (x,) — f.1/€))
L-smooth u-strongly convex gradient e-optimal gradient descent 0 (JLleO - x*||5/6>
. . . . Mirror descent, 2 27 2
L-Lipschitz, convex subgradient €-optimal FTRL O(L?||xg — x.1l5/€%)




Approach
* Reduce to feasibility problem

Convex Function Oracle . Solve feasibility probler

uer output Cutting Plane

separation -

level<(f, f(x)) € Hx (g,97x)
With g = O onlyif f, = f(x)

uer subgradient O_U;M Su(l;)gradlint
-_— ’ escen
x € R" oracle 9 € f(X)
. . . ) ) Approach
Subgradient: g is subgradient of f at x (i.e. g € 0f (x)) if + Reduce to online linear optimization

andonly if f(y) = f(x) + g" (y — x) forall y € R" * Solve online linear optimization
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Pictu re Geometric problem abstraction?

uer OUtQUt

separation "

level<(f, f(x)) € H: (g,97x)
With g = O only if f, = f(x)




Analogous role to online linear optimization problem Box of radius R: {x € R"||[x — c||c, < R}

(R, r,n)-Feasibility Problem -

Given: - <
* n-dimensional box B of radius R: A <

e Separation oracle: when evaluated
at point x € B intime T either
outputs “success” or a halfspace <
with x on boundary. <

Goal:
e Get “success” or

* Prove that the intersection of
halfspaces and initial box does not :
contain a box of radius r Special Case: we obtain separating hyperplanes

for some convex set the is contain in a Box of
Note: Want O(poly(n, T,log(R/1))

radius R and contains a ball of radius 7.




i . n _
Analogous role to online linear optimization problem Box of radius R: {;C ER Hlx Cllo < R}
B (R) = {x € R"||lx]lc < R}

(R, r, n)-Feasibility Problem

Given: Solution Concept:
* n-dimensional box B of radius R: * An algorithm is a (Tq,_Tt)—sqution if it
* Separation oracle: when evaluated solves the problem with 0 (T, ) queries

at point x € B intime T either and O(T) time.

outputs “success” or a halfspace
with x on boundary. Note

Goal: * Choice of norms somewhat arbitrary

“ ” * Consider solutions which depend
* Get “success” or polylogarithmically on nR/rpand
* Prove that the intersection of therefore, norm choice.
halfspaces and initial box does not
contain a box of radius r



query X separation output
Why? x €R" oracle gx € R* with level(f, f(x)) € Hs (gx, g x)

With g, = 0 only if f = f(x)

Lemma: Suppose f: R™ — R obtains its minimum value at x, € B,,(R) and
there is a box of radius r where every point in it is e-optimal, then given a

(Tq, Tt)-solution to the (R, r, n)-feasibility problem, can compute an e-

optimal point with O(T,) queries to a separation oracle and value oracle for
f and O(T,)-time.

Proof: apply solution with separation oracle as oracle and output point
queried which has minimum value.

* If query x and g, = 0 then output minimizer!

* Otherwise, since intersection doesn’t contain r-box, have for some x it is
the case that H(g,, g5 x) doesn’t contain all e-optimal points. Since
level. (f,f(x)) C H. (g, g5 x) = x is e-optimal



query X separation output
x € R" oracle gx € R* with level<(f, f(x)) € Hs (gx, gr x)

ConStraints With g, = Bonly if . = f(x)

Note

* Can apply a similar approach to constrained optimization if have
separation oracle for constraint set S, i.e. an oracle which when queried

outputs6 ifx€eSandg # 0 with § < H.(g,g9"x)whenx & S.

* Idea: apply feasibility solution and output separation oracle for S when
queried point € S and separation oracle for f otherwise.




Ball of radius R in || - ||: By (R, ¢) = {x € R"|||x — c|| < R}

Size of set of e-opt points?

Lemma: If f: R™ — R convex and € > 0 and the set of e-optimal points
contains a ball of radius R in || - || then for all « € (0,1) the set of ae-
points contains a ball of radius @R in that norm.

Proof
* By assumption, there is xo with By (R, x¢) € level.(f, f. + €)
* Let S = B j(aR, axg + (1 — a)x,)

elfx e Sthen||x —axy, — (1 —a)x, || <aRandx = ay + (1 — a)x,
where |la(y — xo)|| < aR,i.e.y € B (R, xp)

SO Saf+A-a)f@)Sa (f+e)+(1—af. =f +ae




Can apply to smooth, strongly convex functions!

Minimizing Bounded Convex Functions

Lemma: Suppose f: R™ — R is differentiable, convex, minimized in B, (R), and
has |f(x)| < M for al x € B,,(R). Then given a first order oracle for f and a

(Ty, T¢)-solution to the (R,% ,n)-feasibility problem can compute an e-optimal
point with O(T, )-queries and O (T;)-time.

Proof: run solution with -gradient oracle and output queried point of min value
e -gradient oracle is separation oracle
* Every point in B, (R) is 2M-optimal

: : : . €R :
* The set of e-optimal points contain a box of radlusze—M by preceding lemma
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i . n _
Analogous role to online linear optimization problem Box of radius R: {;C ER Hlx Cllo < R}
B (R) = {x € R"||lx]lc < R}

(R, r, n)-Feasibility Problem

Given: Solution Concept:

* n-dimensional box B of radius R: * An algorithm is a (Tq, Tt)—solution if it
: , lves the problem with O (T,)

* Separation oracle: when evaluated 50 q

at point x € B intime T either queries and O(T) time.

outputs “success” or a halfspace
with x on boundary. Algorithm Idea?

Goal: « Warmup: 1-dimension?

* Get “success” or

* Prove that the intersection of

halfspaces and initial box does not
contain a box of radius r



One Dimensional Problem

Theorem: Can solve the (R, r, 1)-problem using O (log (i:)) qgueries.



n-Dimensional Problem

Grunbaum’s Theorem: Intersecting convex body with halfspace
through center of gravity decreases volume by at least (1 — 1/¢)

Algorithm: repeatedly query center of gravity of intersection of box and
all halfspaces

Analysis: volume starts at (2R)™ and if volume < (2r)" algorithm ends

Theorem: Can solve the (R, r,n)-problem using O (n - log (R)) qgueries

r



* Given: n-dimension box of radius R

* Given: Separating oracle takes time T
Goal: Prove intersection doesn’t
contain box radius r

Algorithm Framework

def

* Notation: k £ nR/r

Start with “set” containing the box

What set?

Get separating hyperplane through “center”

What center?

Update set (must contain intersection of halfspaces)

How update?

Repeat until “size” is small
P Goal:

How measure size? * Minimize total running time:

* Number of times call oracle (oracle complexity)
* Additional running time (overhead)




* Given: n-dimension box of radius R
° ° * Given: Separating oracle takes time T
E I I I pSO|d M EthOd * Goal: Prove intersection doesn’t
contain box radius r

def

* Notation: k £ nR/r

Start with “set” containing the box

Ellipsoid

Get separating hyperplane through “center”

Center of ellipsoid

Update set (must contain intersection of halfspaces)

Repeat until “size” is small

Result

* Time O(n?T log k + n* log k)
* Great cost per iteration
* Bad oracle complexity

Volume of ellipsoid decreases by

(1 — 1/n) each iteration




Center of Gravity

 Start with “set” containing the box

Intersection of all halfspaces

* Get separating hyperplane through “center”

Center of gravity

* Update set (must contain intersection of halfspaces)

Can approximate
center in poly time

* Repeat until “size” is small

Grunbaum’s Theorem

Intersecting convex body with halfspace through center of
gravity decreases volume by at least (1 — 1/e).

* Given: n-dimension box of radius R

* Given: Separating oracle takes time T

* Goal: Prove intersection doesn’t
contain box radius r

def

* Notation: k £ nR/r

@
|
///// Ly

Result

* Time O(nT log k + (nlog k)°M)

* Great oracle complexity
* Bad cost per iteration




* Given: n-dimension box of radius R
* Given: Separating oracle takes time T

JOh n E"ipse * Goal: Prove intersection doesn’t

contain box radius r

def

* Notation: k £ nR/r

 Start with “set” containing the box

Intersection of all halfspaces

* Get separating hyperplane through “center”

Center of maximum volume ellipse in set

* Update set (must contain intersection of halfspaces)

Polynomial time

* Repeat until “size” is small

T T

Result
* Time O(nT log k + (nlog k)°M)

Volume of maximum volume ellipse ,
* Great oracle complexity

* Better but still high iteration cost

decreases by constant.




Barrier

Pra Ctice . Ana |ytiC Ce nter A nice function from interior of set to

the reals that goes to infinity as you
* Start with “set” containing the box approach boundary of set

Intersection of some halfspace

* Get separating hyperplane through “center”

Barrier — analytic center

* Update set (must contain intersection of halfspaces)

Fast - comparable to interior point

* Repeat until “size” is small

* For polytope P = {x: Ax = b}
Sometimes good in practice, various * lets, =Ax—b

theoretical guarantees, hard to analyze * Log barrier by(x) = — X;logs,(i)

* Analytic center argmin b; (x)
X




Fact

VOI umetric center Volume of ellipse is approximately
volume of set at center if not too
* Start with “set” containing the box many constraints.

Intersection of some halfspace

* Get separating hyperplane through “center” * If constraint has high leverage score

[SxA (ASEZA)_lATSx] ii
Volumetric center

drop it and compute new center.
* Update set (must contain intersection of halfspaces) add nearby, and re-center.

* Otherwise, add call oracle at center,
* Repeat
Matrix multiplication time

* Repeat until “size” is small

Algorithm [V89]

Result

Dropping constraint decreases b, (x) by

small constant but adding constant
increases b,,(x) by larger constant. .

' - Time O(nT log k +n®*1logk)
‘ x o w< 2.373 [W14]



Cutting Plane Methods

* Maintain a convex set

Query separation oracle at “center” of convex set
* Update convex set

* Repeat until “size” is sufficiently small

Ellipsoid

[YN76,577,K80] Ellipse
Center of Gravity
[L65,BV02] All half—spaces

Inscribed Ellipse

[KTESS, NN92] All half-spaces

Volumetric Center
[V89]

Analytic Center [AV95] Some half-spaces

Some half-spaces

Ellipse

Gravity

John Ellipse

Volumetric

Analytic

Volume 0(n?T logk + n*log k)

Volume 0(nT logk + n®log®™W k)

Volume O(nT logk + n®*1510g%™ )
Volume, width O(nT logk + n®*!logk)
Volume, width 0(nT 1og®™ k& + n°M Jogo™ i)

w < 2.373 [W14]



Cutting Plane Methods

* Maintain a convex set

Query separation oracle at “center” of convex set
* Update convex set

* Repeat until “size” is sufficiently small

Ellipsoid
[YN76,577,K80]

Center of Gravity
[L65,BV02]

Inscribed Ellipse
[KTE88,NN92]

Volumetric Center
[V89]

Analytic Center [AV95]
[LSW15]
[JLSW20]

* Implication: L-smooth, u-strongly convex e-opt given €q-initial error with O (n log(

* Implication: faster matroid intersection, semidefinite programming, submodular optimization

Ellipse

All half-spaces

All half-spaces

Some half-spaces

Some half-spaces
Some half-spaces

Some half-spaces

Ellipse

Gravity

John Ellipse

Volumetric

Analytic
Hybrid

Volumetric

Volume, width

Volume, width

Volume 0(n?T logk + n*log k)
Volume 0(nT logk + n®log®™W k)
Volume O(nT logk + n®*151og?M k)

Volume, width O(nT logk + n®*!logk)

0(nT 1og®™ k + n®M Jog®M )
0(nTlog k + n31log?™ k)

Volume, width

O(nTlogk + n3logk)

nLe
ue

)) gradient evaluations

w < 2.373 [W14]
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