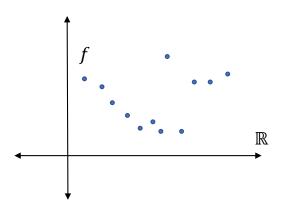
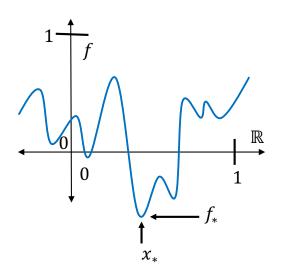
Introduction to Optimization Theory

Lecture #18 - 11/16/20 MS&E 213 / CS 2690



Aaron Sidford sidford@stanford.edu



Plan for Today

Recap

• Rates, subgradients, FTRL, and mirror descent

Feasibility Problem

• An abstraction for separation oracles

Cutting Plane Methods

• Methods for solving feasibility problem

How to obtain improved rates when more structure.

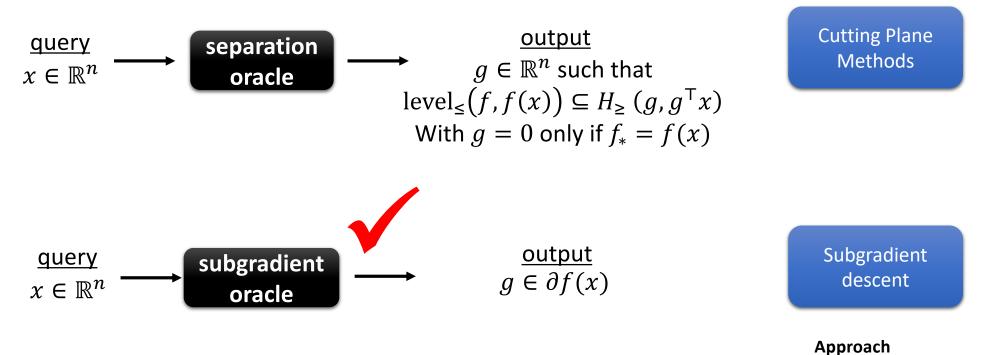
Recap

$\frac{\text{Problem}}{\min_{x \in \mathbb{R}^n} f(x)}$

Regularity	Oracle	Goal	Algorithm	Iterations
$n = 1, f(x) \in [0,1], x_* \in [0,1]$	value	¹ /2-optimal	anything	8
$n = 1, x_* \in [0,1], L$ -Lipschitz	value	ϵ -optimal	<i>∈</i> -net	$\Theta(L/\epsilon)$
$x_* \in [0,1], L$ -Lipschitz in $\ \cdot\ _{\infty}$	value	ϵ -optimal	ϵ -net	$\left(\Theta(L/\epsilon)\right)^n$
L-smooth and bounded	value, gradient	ϵ -optimal	<i>∈</i> -net	exponential
<i>L</i> -smooth	gradient	ϵ -critical	gradient descent	$O(L(f(x_0) - f_*)\epsilon^{-2})$
L-smooth μ -strongly convex	gradient	ϵ -optimal	gradient descent	$O((L/\mu)\log([f(x_0)-f_*]/\epsilon))$
L-smooth convex	gradient	ϵ -optimal	gradient descent	$O(L x_0 - x_* _2^2/\epsilon)$
L-smooth μ -strongly convex	gradient	ϵ -optimal	gradient descent	$O(\sqrt{L/\mu}\log([f(x_0) - f_*]/\epsilon))$
L-smooth μ -strongly convex	gradient	ϵ -optimal	gradient descent	$O\left(\sqrt{L\ x_0 - x_*\ _2^2/\epsilon}\right)$
<i>L</i> -Lipschitz, convex	subgradient	ϵ -optimal	Mirror descent, FTRL	$O(L^2 x_0 - x_* _2^2 / \epsilon^2)$

Approach

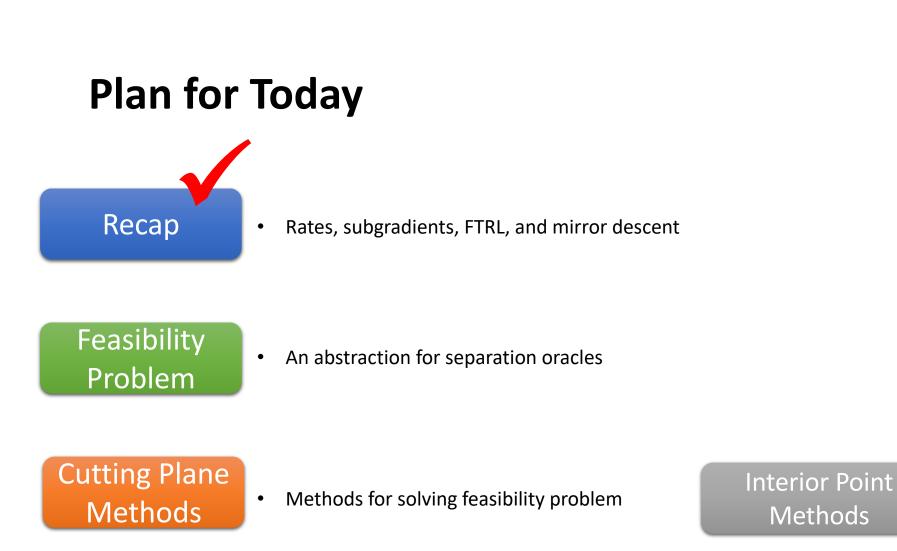
- Reduce to feasibility problem
- Solve feasibility problem



Subgradient: g is subgradient of f at x (i.e. $g \in \partial f(x)$) if and only if $f(y) \ge f(x) + g^{\top}(y - x)$ for all $y \in \mathbb{R}^n$

Convex Function Oracle

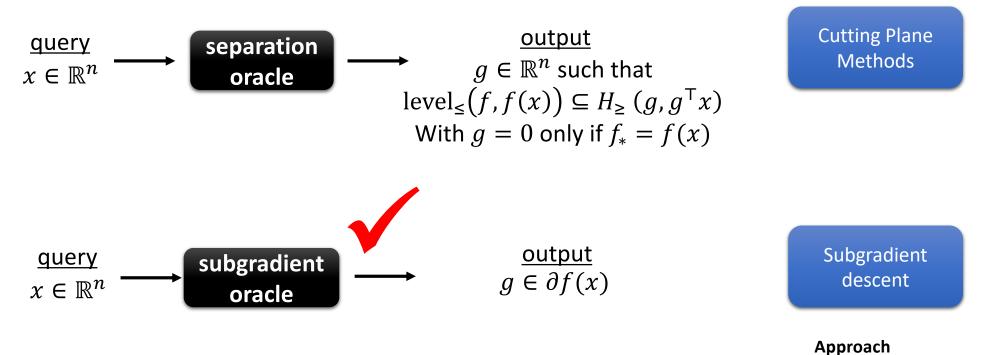
- Reduce to online linear optimization
- Solve online linear optimization



How to obtain improved rates when more structure.

Approach

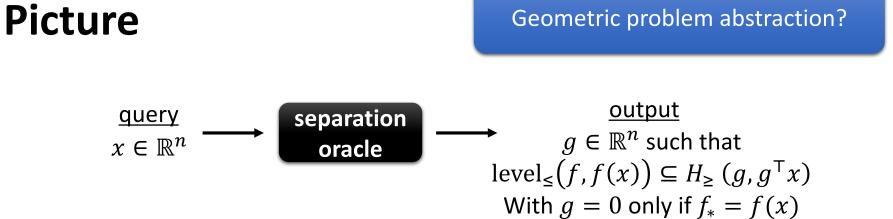
- Reduce to feasibility problem
- Solve feasibility problem



Subgradient: g is subgradient of f at x (i.e. $g \in \partial f(x)$) if and only if $f(y) \ge f(x) + g^{\top}(y - x)$ for all $y \in \mathbb{R}^n$

Convex Function Oracle

- Reduce to online linear optimization
- Solve online linear optimization



Analogous role to online linear optimization problem

(*R*, *r*, *n*)-Feasibility Problem

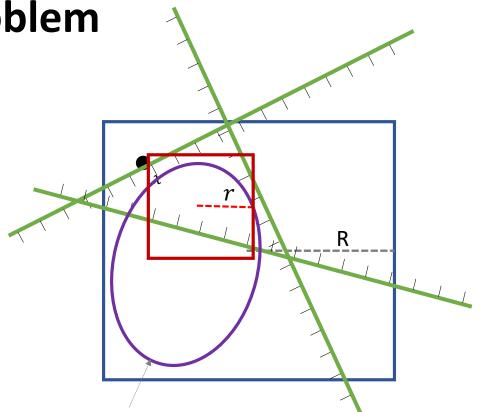
Given:

- *n*-dimensional box *B* of radius R:
- Separation oracle: when evaluated at point $x \in B$ in time T either outputs "success" or a halfspace with x on boundary.

Goal:

- Get "success" or
- Prove that the intersection of halfspaces and initial box does not contain a box of radius r

Note: Want $O(poly(n, T, \log(R/r))$



Special Case: we obtain separating hyperplanes for some convex set the is contain in a Box of radius R and contains a ball of radius r. Analogous role to online linear optimization problem

Box of radius R: $\{x \in \mathbb{R}^n | ||x - c||_{\infty} \le R\}$ $B_{\infty}(R) = \{x \in \mathbb{R}^n | ||x||_{\infty} \le R\}$

(R, r, n)-Feasibility Problem

Given:

- *n*-dimensional box *B* of radius R:
- Separation oracle: when evaluated at point $x \in B$ in time T either outputs "success" or a halfspace with x on boundary.

Goal:

- Get "success" or
- Prove that the intersection of halfspaces and initial box does not contain a box of radius r

Solution Concept:

• An algorithm is a (T_q, T_t) -solution if it solves the problem with $O(T_q)$ queries and $O(T_t)$ time.

Note

- Choice of norms somewhat arbitrary
- Consider solutions which depend polylogarithmically on nR/r and therefore, norm choice.

Why?
$$\xrightarrow{\text{query}}{x \in \mathbb{R}^n} \longrightarrow \overrightarrow{\text{separation}}_{g_x} \in \mathbb{R}^n \text{ with } \operatorname{level}_{\leq}(f, f(x)) \subseteq H_{\geq}(g_x, g_x^{\top}x)$$

With $g_x = \vec{0} \text{ only if } f_* = f(x)$

Lemma: Suppose $f: \mathbb{R}^n \to \mathbb{R}$ obtains its minimum value at $x_* \in B_{\infty}(R)$ and there is a box of radius r where every point in it is ϵ -optimal, then given a (T_q, T_t) -solution to the (R, r, n)-feasibility problem, can compute an ϵ -optimal point with $O(T_q)$ queries to a separation oracle and value oracle for f and $O(T_t)$ -time.

<u>Proof</u>: apply solution with separation oracle as oracle and output point queried which has minimum value.

- If query x and $g_x = \vec{0}$ then output minimizer!
- Otherwise, since intersection doesn't contain r-box, have for some x it is the case that $H_{\geq}(g_x, g_x^{\top} x)$ doesn't contain all ϵ -optimal points. Since $\text{level}_{\leq}(f, f(x)) \subseteq H_{\geq}(g_x, g_x^{\top} x) \Rightarrow x$ is ϵ -optimal



<u>Note</u>

- Can apply a similar approach to constrained optimization if have separation oracle for constraint set S, i.e. an oracle which when queried outputs $\vec{0}$ if $x \in S$ and $g \neq \vec{0}$ with $S \subseteq H_{\geq}(g, g^{\top}x)$ when $x \notin S$.
- Idea: apply feasibility solution and output separation oracle for S when queried point $\notin S$ and separation oracle for f otherwise.

Ball of radius *R* in $\|\cdot\|$: $B_{\|\cdot\|}(R, c) = \{x \in \mathbb{R}^n | \|x - c\| \le R\}$

Size of set of ϵ -opt points?

Lemma: If $f : \mathbb{R}^n \to \mathbb{R}$ convex and $\epsilon > 0$ and the set of ϵ -optimal points contains a ball of radius R in $\| \cdot \|$ then for all $\alpha \in (0,1)$ the set of $\alpha \epsilon$ -points contains a ball of radius αR in that norm.

<u>Proof</u>

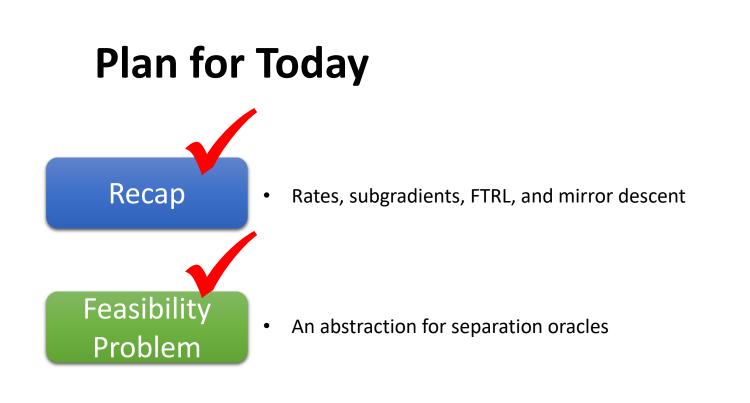
- By assumption, there is x_0 with $B_{\|\cdot\|}(R, x_0) \subseteq \text{level}_{\leq}(f, f_* + \epsilon)$
- Let $S = B_{\parallel \cdot \parallel}(\alpha R, \alpha x_0 + (1 \alpha)x_*)$
- If $x \in S$ then $||x \alpha x_0 (1 \alpha)x_*|| \le \alpha R$ and $x = \alpha y + (1 \alpha)x_*$ where $||\alpha(y - x_0)|| \le \alpha R$, i.e. $y \in B_{\|\cdot\|}(R, x_0)$
- $\bullet \Rightarrow f(x) \le \alpha f(y) + (1 \alpha) f(x_*) \le \alpha \cdot (f_* + \epsilon) + (1 \alpha) f_* = f_* + \alpha \epsilon$

Minimizing Bounded Convex Functions

Lemma: Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable, convex, minimized in $B_{\infty}(R)$, and has $|f(x)| \leq M$ for al $x \in B_{\infty}(R)$. Then given a first order oracle for f and a (T_q, T_t) -solution to the $(R, \frac{\epsilon R}{2M}, n)$ -feasibility problem can compute an ϵ -optimal point with $O(T_q)$ -queries and $O(T_t)$ -time.

<u>Proof</u>: run solution with -gradient oracle and output queried point of min value

- -gradient oracle is separation oracle
- Every point in $B_{\infty}(R)$ is 2*M*-optimal
- The set of ϵ -optimal points contain a box of radius $\frac{\epsilon R}{2M}$ by preceding lemma



Cutting Plane Methods

• Methods for solving feasibility problem

How to obtain improved rates when more structure.

Analogous role to online linear optimization problem

Box of radius R: $\{x \in \mathbb{R}^n | ||x - c||_{\infty} \le R\}$ $B_{\infty}(R) = \{x \in \mathbb{R}^n | ||x||_{\infty} \le R\}$

(R, r, n)-Feasibility Problem

Given:

- *n*-dimensional box *B* of radius R:
- Separation oracle: when evaluated at point $x \in B$ in time T either outputs "success" or a halfspace with x on boundary.

Goal:

- Get "success" or
- Prove that the intersection of halfspaces and initial box does not contain a box of radius r

Solution Concept:

• An algorithm is a (T_q, T_t) -solution if it solves the problem with $O(T_q)$ queries and $O(T_t)$ time.

Algorithm Idea?

• Warmup: 1-dimension?

One Dimensional Problem

Theorem: Can solve the (R, r, 1)-problem using $O\left(\log\left(\frac{R}{r}\right)\right)$ queries.

n-Dimensional Problem

Grunbaum's Theorem: Intersecting convex body with halfspace through center of gravity decreases volume by at least (1 - 1/e)

Algorithm: repeatedly query center of gravity of intersection of box and all halfspaces

Analysis: volume starts at $(2R)^n$ and if volume $\leq (2r)^n$ algorithm ends

Theorem: Can solve the (R, r, n)-problem using $O\left(n \cdot \log\left(\frac{R}{r}\right)\right)$ queries

Algorithm Framework

• Start with "set" containing the box

What set?

• Get separating hyperplane through "center"

What center?

• Update set (must contain intersection of halfspaces)

How update?

• Repeat until "size" is small

How measure size?

- **Given**: *n*-dimension box of radius *R*
- **Given**: Separating oracle takes time T
- **Goal**: Prove intersection doesn't contain box radius *r*
- Notation: $\kappa \stackrel{\text{\tiny def}}{=} nR/r$



Goal:

- Minimize total running time:
 - Number of times call oracle (oracle complexity)
 - Additional running time (overhead)

Ellipsoid Method

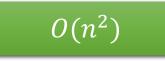
• Start with "set" containing the box

Ellipsoid

• Get separating hyperplane through "center"

Center of ellipsoid

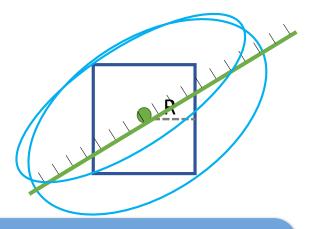
• Update set (must contain intersection of halfspaces)



• Repeat until "size" is small

Volume of ellipsoid decreases by (1-1/n) each iteration

- **Given**: *n*-dimension box of radius *R*
- **Given**: Separating oracle takes time T
- **Goal**: Prove intersection doesn't contain box radius *r*
- Notation: $\kappa \stackrel{\text{\tiny def}}{=} nR/r$



<u>Result</u>

- Time $O(n^2 T \log \kappa + n^4 \log \kappa)$
- Great cost per iteration
- Bad oracle complexity

Center of Gravity

• Start with "set" containing the box

Intersection of all halfspaces

• Get separating hyperplane through "center"

Center of gravity

• Update set (must contain intersection of halfspaces)

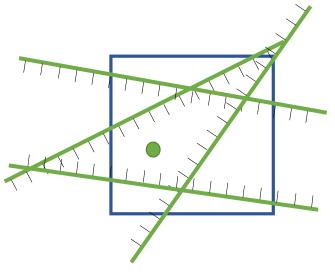
Can approximate center in poly time

• Repeat until "size" is small

Grunbaum's Theorem

Intersecting convex body with halfspace through center of gravity decreases volume by at least (1 - 1/e).

- **Given**: *n*-dimension box of radius *R*
- **Given**: Separating oracle takes time T
- **Goal**: Prove intersection doesn't contain box radius *r*
- Notation: $\kappa \stackrel{\text{\tiny def}}{=} nR/r$



<u>Result</u>

- Time $O(nT \log \kappa + (n \log \kappa)^{O(1)})$
- Great oracle complexity
- Bad cost per iteration

John Ellipse

• Start with "set" containing the box

Intersection of all halfspaces

• Get separating hyperplane through "center"

Center of maximum volume ellipse in set

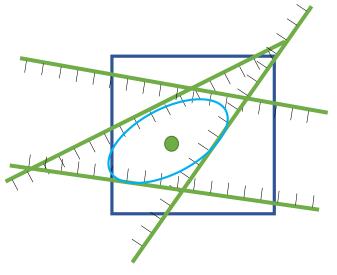
• Update set (must contain intersection of halfspaces)

Polynomial time

• Repeat until "size" is small

Volume of maximum volume ellipse decreases by constant.

- **Given**: *n*-dimension box of radius *R*
- **Given**: Separating oracle takes time T
- **Goal**: Prove intersection doesn't contain box radius *r*
- Notation: $\kappa \stackrel{\text{\tiny def}}{=} nR/r$



<u>Result</u>

- Time $O(nT \log \kappa + (n \log \kappa)^{O(1)})$
- Great oracle complexity
- Better but still high iteration cost

Practice : Analytic Center

• Start with "set" containing the box

Intersection of some halfspace

• Get separating hyperplane through "center"

Barrier – analytic center

• Update set (must contain intersection of halfspaces)

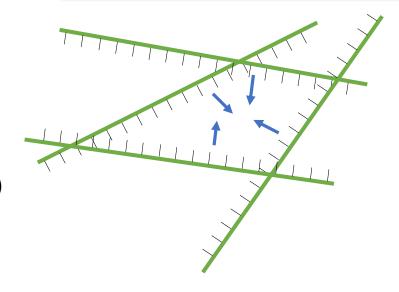
Fast - comparable to interior point

• Repeat until "size" is small

Sometimes good in practice, various theoretical guarantees, hard to analyze

Barrier

A nice function from interior of set to the reals that goes to infinity as you approach boundary of set



- For polytope $P = \{x: Ax \ge b\}$
- Let $s_x = Ax b$
- Log barrier $b_l(x) = -\sum_i \log s_x(i)$
- Analytic center $\operatorname{argmin} b_l(x)$

Volumetric center

• Start with "set" containing the box

Intersection of some halfspace

• Get separating hyperplane through "center"

Volumetric center

• Update set (must contain intersection of halfspaces)

Matrix multiplication time

• Repeat until "size" is small

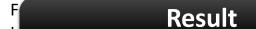
Dropping constraint decreases $b_v(x)$ by small constant but adding constant increases $b_v(x)$ by larger constant.

Fact

Volume of ellipse is approximately volume of set at center if not too many constraints.

Algorithm [V89]

- If constraint has high *leverage score* $[S_{\chi}A(AS_{\chi}^{-2}A)^{-1}A^{\top}S_{\chi}]_{ii}$ drop it and compute new center.
- Otherwise, add call oracle at center, add nearby, and re-center.
- Repeat



V • Time $O(nT \log \kappa + n^{\omega+1} \log \kappa)$

x

 $\omega < 2.373$ [W14]

Cutting Plane Methods

- Maintain a convex set
- Query separation oracle at "center" of convex set
- Update convex set
- Repeat until "size" is sufficiently small

Method	Set	Center	Size Tracked	Time ($\kappa=nR/\epsilon$)
Ellipsoid [YN76,S77,K80]	Ellipse	Ellipse	Volume	$O(n^2 T \log \kappa + n^4 \log \kappa)$
Center of Gravity [L65,BV02]	All half-spaces	Gravity	Volume	$O(nT\log\kappa + n^5\log^{O(1)}\kappa)$
Inscribed Ellipse [KTE88,NN92]	All half-spaces	John Ellipse	Volume	$O(nT\log \kappa + n^{\omega+1.5}\log^{O(1)}\kappa)$
Volumetric Center [V89]	Some half-spaces	Volumetric	Volume, width	$O(nT\log \kappa + n^{\omega+1}\log \kappa)$
Analytic Center [AV95]	Some half-spaces	Analytic	Volume, width	$O(nT\log^{O(1)}\kappa + n^{O(1)}\log^{O(1)}\kappa)$

 $\omega < 2.373$ [W14]

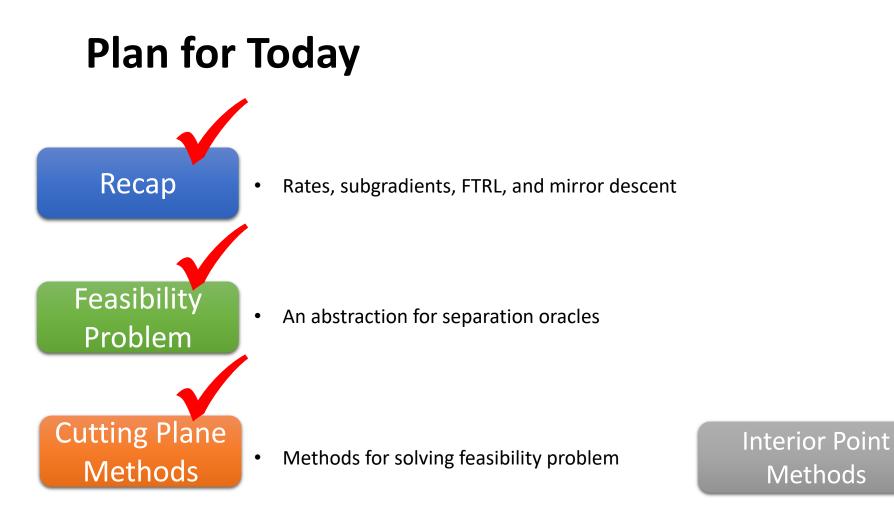
Cutting Plane Methods

- Maintain a convex set
- Query separation oracle at "center" of convex set
- Update convex set
- Repeat until "size" is sufficiently small

Method	Set	Center	Size Tracked	Time ($\kappa=nR/\epsilon$)
Ellipsoid [YN76,S77,K80]	Ellipse	Ellipse	Volume	$O(n^2 T \log \kappa + n^4 \log \kappa)$
Center of Gravity [L65,BV02]	All half-spaces	Gravity	Volume	$O(nT\log\kappa + n^5\log^{O(1)}\kappa)$
Inscribed Ellipse [KTE88,NN92]	All half-spaces	John Ellipse	Volume	$O(nT\log \kappa + n^{\omega+1.5}\log^{O(1)}\kappa)$
Volumetric Center [V89]	Some half-spaces	Volumetric	Volume, width	$O(nT\log \kappa + n^{\omega+1}\log \kappa)$
Analytic Center [AV95]	Some half-spaces	Analytic	Volume, width	$O(nT \log^{O(1)} \kappa + n^{O(1)} \log^{O(1)} \kappa)$
[LSW15]	Some half-spaces	Hybrid	Volume, width	$O(nT\log \kappa + n^3\log^{O(1)}\kappa)$
[JLSW20]	Some half-spaces	Volumetric	Volume, width	$O(nT\log\kappa + n^3\log\kappa)$

• Implication: L-smooth, μ -strongly convex ϵ -opt given ϵ_0 -initial error with $O\left(n\log\left(\frac{nL\epsilon_0}{\mu\epsilon}\right)\right)$ gradient evaluations

• Implication: faster matroid intersection, semidefinite programming, submodular optimization $\omega < 2.373$ [W14]



How to obtain improved rates when more structure.