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Plan for Today

Reca P Cutting plane methods

IPMs Newton’s method
* Improving cutting plane methods
* Interior point methods

- * Strutured optimization

Have a great

break!




Problem

Recap STy

XERMN

Regularity Oracle Goal Algorithm Iterations
n=1, f(x) €[01], x, € [0,1] value 2-optimal anything 0
n =1, x, € [0,1], L-Lipschitz value e-optimal e-net O(L/e)
x, € [0,1], L-Lipschitzin || - [le value e-optimal e-net (@(L/e))n
L-smooth and bounded value, gradient e-optimal €-net exponential
L-smooth gradient e-critical gradient descent O(L(f(xg) — f)e™?)
L-smooth u-strongly convex gradient €-optimal gradient descent 0((L/u) log([f (x) — ﬁ]/e))
L-smooth convex gradient €-optimal gradient descent O(L||xy — x.|5/€)
L-smooth p-strongly convex gradient e-optimal gradient descent  O(y/L/ulog([f (x,) — f.1/€))
L-smooth u-strongly convex gradient e-optimal gradient descent 0 (JLleO - x*||5/6>
. . . . Mirror descent, 2 27 2
L-Lipschitz, convex subgradient €-optimal FTRL O(L?||xg — x.1l5/€%)




Approach
* Reduce to feasibility problem

Convex Function Oracle . Solve feasibility probler

uer output Cutting Plane

separation -

level<(f, f(x)) € Hx (g,97x)
With g = O onlyif f, = f(x)

uer subgradient O_U;M Su(l;)gradlint
-_— ’ escen
x € R" oracle 9 € f(X)
. . . ) ) Approach
Subgradient: g is subgradient of f at x (i.e. g € 0f (x)) if + Reduce to online linear optimization

andonly if f(y) = f(x) + g" (y — x) forall y € R" * Solve online linear optimization



Analogous role to online linear optimization problem Box of radius R: {x € R"||[x — c||c, < R}

(R, r,n)-Feasibility Problem -

Given: - <
* n-dimensional box B of radius R: A <

e Separation oracle: when evaluated
at point x € B intime T either
outputs “success” or a halfspace <
with x on boundary. <

Goal:
e Get “success” or

* Prove that the intersection of
halfspaces and initial box does not :
contain a box of radius r Special Case: we obtain separating hyperplanes

for some convex set the is contain in a Box of
Note: Want O(poly(n, T,log(R/1))

radius R and contains a ball of radius 7.




Notation: k & nR/r

Cutting Plane Methods

* Maintain a convex set

Query separation oracle at “center” of convex set
* Update convex set

* Repeat until “size” is sufficiently small

Ellipsoid
[YN76,577,K80]

Center of Gravity
[L65,BV02]

Inscribed Ellipse
[KTE88,NN92]

Volumetric Center
[V89]

Analytic Center [AV95]
[LSW15]
[JLSW20]

* Implication: L-smooth, u-strongly convex e-opt given €q-initial error with O (n log(

* Implication: faster matroid intersection, semidefinite programming, submodular optimization

Ellipse

All half-spaces

All half-spaces

Some half-spaces

Some half-spaces
Some half-spaces

Some half-spaces

Ellipse

Gravity

John Ellipse

Volumetric

Analytic
Hybrid

Volumetric

Volume 0(n?T logk + n*log k)
Volume 0(nT logk + n®log®™W k)
Volume O(nT logk + n®*151og?M k)

Volume, width O(nT logk + n®*!logk)

0(nT 1og®™ k + n®M Jog®M )
0(nTlog k + n31log?™ k)

Volume, width
Volume, width

Volume, width 0(nTlogk + n3logk)

nLe
ue

)) gradient evaluations

w < 2.373 [W14]



Plan for Today

Recap

Cutting plane methods
* Strutured optimization
* Newton’s method
* Improving cutting plane methods
* Interior point methods

Have a great
break!




Structured Convex Programming

Motivation Before
* Goal: min f(x) * GD: O((L/u)log(ey/€))
x€ERM
* AGD: O((yL/n)log(eo/€))
Want * Cutting Plane: ~O(nlog(ey/€))
* Linearly convergent algorithm
Question
* e-optimal point in « Can we improve if have more
O(alo (EO/'%)) for problem structure?p
dependent {ideally small) e Can we reduce to more difficult

subproblem (than separation) and
have less iterations?



General Problem

Linear Optimization / Convex Programming

e min c"x for convex S
XESCRN

Why?

o . @ . @ . = .
min f(x) Jin, t [min t where § = epi(f)

Hope
* Leverage structure of S

* Get better rates
* Spoiler: there is theory supporting 0 (\/nlog(ey/€))



Motivating Example

Linear Programming

Input
e A € R™M" pheR™ ceR"

Goal
minc'x forP & {x : Ax > b}
XEP
. 0 Ax > D
e — T f ‘ﬂ -
;rel]%ll c'x +p(x) forhp(x) = {oo otherwise



(Closed) Half-space min ch

The Pictu re half(a;, b;) &€ Hs(a;, b;) & {x ER":alx > bi} XERM: Ax=b

Polytope Ax 2 b
1\

(T A1 /by \

[~ “ — ) (bsz\ “ ’ '

— Ay — bk r
- ay — by, What to
do here?

Recall: as m — oo problem converges to arbitrary convex programming

AN

‘\\

y
]

Solution : x,



Feasibility is as Difficult as Optimization

Optimization Feasibility
ccpn c'x Find x € R™ with Ax > b
Why? Note
,_(cTx <t - .
Ax=b = {A >_b} More difficult than solving Ax = b
X
— A b Ax = b
and binary searchon t (_A)x > (—b) = Ax < b S Ax =D



Algorithms today will assume one

T

Assuming a Feasible Point L

How?
(here is one simple transformations)

_ min c'x+M- «
Ax+1a=b and a=0



New Problem

Goal given xy such that Ax, > b solve min c¢'x

XERM: Ax=b

How?

* iterative algorithm

* Improve quality each step
/\ * ldea: more powerful oracle

Initial point : x,
\ Problem: improving is difficult at boundary
Solution: use barrier to penalize approaching boundary

Problem: GD converges fast when level sets are ~ £, balls
Solution : x., Solution: work in local norm — Newton’s method

./



Core concept explicit / implicit in many IPMs

Barrier Function

Barrier function

A “nice” function p from
\ ; interior to R s.t.

4 lim p(x) — oo

x—boundary

Idea
* Trade off minimizing cost and minimizing barrier



Are many ways of using barrier, this is just one

Path Following Methods

One example in larger active area of research on
“higher order” optimization methods. Barrier function

\

/center

Approach

» Approximately follow the
central path

* Start near the path

A “nice” function p from
interior to R s.t.

4

lim p(x) — oo
x—boundary

X0

* Take step to converge to

Penalized Objective
next path point

feG) =t c'x+p(x)

* Repeat
Central Path
/ For path parameter t > 0 the
How take step? optimum minimizers x, = argmin, f; (x)
* Gradient descent / steepest descent in “local norm” form the central path a continuous

e Want ZTVf(X)Z ~ ||Z||2 SO piCk ||Z|| — ”Z”%f(x) curve from center (x,) to solution (x).

* (Damped Newton Step) x := x — U(szt(x))_lvft (x) Discretization* of the central path



Are many ways of using barrier, this is just one

Path Following Methods

Barrier function

A “nice” function p from
interior to R s.t.

Algorithm

* Initialize: t > 0 and x ~ x, center [ 4

lim p(x) — oo
x—boundary

* Iterate: repeat until ¢ " x small

* Move path parameter
e t:=(1+4+0)t

Penalized Objective
fi(x) =t -c"x+p()

* Center (i.e. Newton Steps)
* Untilx = x;

o xi=x— U(szt(x))_lVft(x) Central Path

For path parameter ¢t > 0 the

optimum minimizers x; = argmin, f;(x)
form the central path a continuous

curve from center (x,) to solution (x).

How get to initial point? (one technique)
* Initial x is central path for some ¢

e Lett:=(1—-c)t

* When t small, switch cost

Discretization* of the central path



Analysis
Algorithm

\

- center
* Initialize: t > 0 and x = x; v

* Iterate: repeat until ¢ " x small
* Move path parameter
e t:=10+0)t

* Center (i.e. Newton Steps)
e Until x = x;

¢« X =x— n(szt(x))_lvft(x) Va

Self-conccordance

If p is a v-self concordant barrier then can pick ¢ =

0(\/vlog(e/ey)) iterations suffice

Self concordance measures tradeoff of Hessian stability and size
Theorem: every convex set has an 0(d) self-concordant barrier (and
can be better sometimes)

Upshot: if structure, barrier then (szt(x))_lVft(x) queries suffice

Barrier function

A “nice” function p from
interior to R s.t.

lim p(x) — oo
x—boundary

Penalized Objective
fi(x) =t -c"x+p()

Central Path

For path parameter ¢t > 0 the
minimizers x; = argmin, f;(x)
form the central path a continuous
curve from center (x,) to solution (x).

Discretization* of the central path



Logarithmic Barrier

Example

Algorithm

\

/center

* Initialize: t > 0 and x = x;
* Iterate: repeat until ¢ " x small

* Move path parameter
e t:=10+0)t

* Center (i.e. Newton Steps)
e Until x = x;

¢« X =x— n(szt(x))_lvft(x) Va

optimum

p(x) = =Yg In (;) = Yiern) — In(s(x);) where s(x) = Ax — bis a

alTx—bi
O (m) self-concordant barrier
Vp(x) = —ATS, 1 and V2p(x) = ATS;2A4 where S, = diag(s(x))
Upshot: ~0(v/mlog(e/€y)) linear system solves suffice

Barrier function

A “nice” function p from
interior to R s.t.

lim p(x) — oo
x—boundary

Penalized Objective
fi(x) =t -c"x+p()

Central Path

For path parameter ¢t > 0 the
minimizers x; = argmin, f;(x)
form the central path a continuous
curve from center (x,) to solution (x).

Discretization* of the central path



What Else?

Active Area of Research

* Improve iteration count
* Decrease iteration cost
* Multiple recent results

* Improvements for special
important cases (e.g. maximum
flow, geometric median, etc.)

More Optimization Theory

* Higher-order methods
* Structured problems

* Minimax problems

* Stochastic

* Nonconvex

* Practice

e And more...



Plan for Today

Recap

Have a great
break!

Cutting plane methods

Strutured optimization

Newton’s method

Improving cutting plane methods
Interior point methods



