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Plan for Today

Recap

IPMs

Have a great 
break!

• Strutured optimization
• Newton’s method
• Improving cutting plane methods
• Interior point methods

• Cutting plane methods



Recap 
Regularity Oracle Goal Algorithm Iterations

𝑛 = 1, 𝑓 𝑥 ∈ [0,1], 𝑥∗ ∈ [0,1] value ½-optimal anything ∞
𝑛 = 1, 𝑥∗ ∈ [0,1], 𝐿-Lipschitz value 𝜖-optimal 𝜖-net Θ 𝐿/𝜖

𝑥∗ ∈ [0,1], 𝐿-Lipschitz in ‖ ⋅ ‖" value 𝜖-optimal 𝜖-net Θ 𝐿/𝜖 #

𝐿-smooth and bounded value, gradient 𝜖-optimal 𝜖-net exponential

𝐿-smooth gradient 𝜖-critical gradient descent 𝑂 𝐿 𝑓 𝑥$ − 𝑓∗ 𝜖%&

𝐿-smooth 𝜇-strongly convex gradient 𝜖-optimal gradient descent 𝑂 𝐿/𝜇 log 𝑓 𝑥$ − 𝑓∗ /𝜖

𝐿-smooth convex gradient 𝜖-optimal gradient descent 𝑂 𝐿 𝑥$ − 𝑥∗ &
&/𝜖

𝐿-smooth 𝜇-strongly convex gradient 𝜖-optimal gradient descent 𝑂 𝐿/𝜇 log 𝑓 𝑥$ − 𝑓∗ /𝜖

𝐿-smooth 𝜇-strongly convex gradient 𝜖-optimal gradient descent 𝑂 𝐿 𝑥$ − 𝑥∗ &
&/𝜖

𝐿-Lipschitz, convex subgradient 𝜖-optimal Mirror descent, 
FTRL 𝑂 𝐿& 𝑥$ − 𝑥∗ &

&/𝜖&

Problem
min
!∈ℝ"

𝑓(𝑥)



separation 
oracle

query
𝑥 ∈ ℝ&

output
𝑔 ∈ ℝ& such that 

level' 𝑓, 𝑓 𝑥 ⊆ 𝐻( 𝑔, 𝑔)𝑥
With 𝑔 = 0 only if 𝑓∗ = 𝑓(𝑥)

Cutting Plane 
Methods

subgradient
oracle

query
𝑥 ∈ ℝ&

output
𝑔 ∈ 𝜕𝑓(𝑥)

Subgradient: 𝑔 is subgradient of 𝑓 at 𝑥 (i.e. 𝑔 ∈ 𝜕𝑓(𝑥)) if 
and only if 𝑓 𝑦 ≥ 𝑓 𝑥 + 𝑔#(𝑦 − 𝑥) for all 𝑦 ∈ ℝ$

Subgradient
descent

Approach
• Reduce to online linear optimization
• Solve online linear optimization

Convex Function Oracle

ü

Approach
• Reduce to feasibility problem
• Solve feasibility problem



𝑹, 𝒓, 𝒏 -Feasibility Problem
Given:
• 𝑛-dimensional box 𝐵 of radius R:
• Separation oracle: when evaluated 

at point 𝑥 ∈ 𝐵 in time 𝑇 either 
outputs “success” or a halfspace
with 𝑥 on boundary.

Goal:
• Get “success” or
• Prove that the intersection of 

halfspaces and initial box does not 
contain a box of radius 𝑟

𝑟
𝑥

R

Box of radius 𝑅: 𝑥 ∈ ℝ9| 𝑥 − 𝑐 : ≤ 𝑅

Special Case: we obtain separating hyperplanes
for some convex set the is contain in a Box of 

radius R and contains a ball of radius 𝑟.

Analogous role to online linear optimization problem 

Note: Want 𝑂(𝑝𝑜𝑙𝑦(𝑛, 𝑇, log 𝑅/𝑟 )



Method Set Center Size Tracked Time (𝜿 = 𝒏𝑹/𝝐)

Ellipsoid 
[YN76,S77,K80] Ellipse Ellipse Volume 𝑂(𝑛%𝑇 log 𝜅 + 𝑛& log 𝜅)

Center of Gravity 
[L65,BV02] All half-spaces Gravity Volume 𝑂 𝑛𝑇 log 𝜅 + 𝑛' log((*) 𝜅

Inscribed Ellipse 
[KTE88,NN92] All half-spaces John Ellipse Volume 𝑂(𝑛𝑇 log 𝜅 + 𝑛,-*.' log((*) 𝜅)

Volumetric Center 
[V89] Some half-spaces Volumetric Volume, width 𝑂(𝑛𝑇 log 𝜅 + 𝑛,-* log 𝜅)

Analytic Center [AV95] Some half-spaces Analytic Volume, width 𝑂(𝑛𝑇 log((*) 𝜅 + 𝑛((*) log((*) 𝜅)
[LSW15] Some half-spaces Hybrid Volume, width 𝑶(𝒏𝑻 𝐥𝐨𝐠 𝜿 + 𝒏𝟑 𝐥𝐨𝐠𝑶(𝟏) 𝜿)

[JLSW20] Some half-spaces Volumetric Volume, width 𝑶 𝒏𝑻 𝐥𝐨𝐠 𝜿 + 𝒏𝟑 𝐥𝐨𝐠 𝜿

Cutting Plane Methods
• Maintain a convex set
• Query separation oracle at “center” of convex set
• Update convex set
• Repeat until “size” is sufficiently small

𝜔 < 2.373 [W14]

• Implication: 𝐿-smooth, 𝜇-strongly convex 𝜖-opt given 𝜖2-initial error with 𝑂 𝑛 log $34!
54

gradient evaluations
• Implication: faster matroid intersection, semidefinite programming, submodular optimization

Notation: 𝜅 ≝ 𝑛𝑅/𝑟
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Recap
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Have a great 
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• Strutured optimization
• Newton’s method
• Improving cutting plane methods
• Interior point methods

• Cutting plane methods
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Structured Convex Programming

Motivation
• Goal: min

!∈ℝ;
𝑓(𝑥)

Want
• Linearly convergent algorithm 

• 𝜖-optimal point in 
𝑂(𝛼 log(𝜖$/𝜖)) for problem 
dependent (ideally small) 𝛼

Before
• GD: 𝑂( 𝐿/𝜇 log(𝜖$/𝜖))
• AGD: 𝑂(( 𝐿/𝜇) log(𝜖$/𝜖))
• Cutting Plane: ~𝑂(𝑛 log(𝜖$/𝜖))

Question
• Can we improve if have more 

structure?
• Can we reduce to more difficult 

subproblem (than separation) and 
have less iterations?



General Problem

Linear Optimization / Convex Programming
• min
!∈%⊆ℝ;

𝑐'𝑥 for convex 𝑆

Why?
• min
!∈ℝ;

𝑓(𝑥)⇔ min
( ! )*

𝑡 ⇔ min
!,* ∈%

𝑡 where 𝑆 = epi(𝑓)

Hope
• Leverage structure of 𝑆
• Get better rates
• Spoiler: there is theory supporting 𝑂( 𝑛 log 𝜖$/𝜖 )



Linear Programming

Input
• 𝐴 ∈ ℝ(×*, 𝑏 ∈ ℝ(, 𝑐 ∈ ℝ*

Goal
• min
+∈-

𝑐.𝑥 for 𝑃 ≝ 𝑥 ∶ 𝐴𝑥 ≥ 𝑏

• = min
+∈ℝ;

𝑐.𝑥 + 𝜓-(𝑥) for 𝜓- 𝑥 ≝ 70 𝐴𝑥 ≥ 𝑏
∞ otherwise

Motivating Example



The Picture min
R∈ℝ!∶ 𝑨R(U

𝑐)𝑥

− 𝑎V −
− 𝑎W −

⋮
− 𝑎X −

⋮
− 𝑎Y −

𝑥 ≥

𝑏V
𝑏W
⋮
𝑏X
⋮
𝑏Y

𝑨𝒙 ≥ 𝑏

𝑐8𝑥

Solution : 𝑥∗

(Closed) Half-space
half 𝑎6 , 𝑏6 ≝ 𝐻7 𝑎6 , 𝑏6 ≝ 𝑥 ∈ ℝ$ ∶ 𝑎6

#𝑥 ≥ 𝑏6

What to 
do here?

Polytope

Recall: as 𝑚 → ∞ problem converges to arbitrary convex programming



Feasibility is as Difficult as Optimization

Optimization

min
+∈ℝ;∶ 1+23

𝑐.𝑥

Why?
𝐴4𝑥 ≥ 𝑏′ = 𝑐.𝑥 ≤ 𝑡

𝐴𝑥 ≥ 𝑏
and binary search on 𝑡

Feasibility

Find 𝑥 ∈ ℝ* with 𝐴𝑥 ≥ 𝑏

Note
More difficult than solving 𝐴𝑥 = 𝑏
𝐴
−𝐴 𝑥 ≥ 𝑏

−𝑏 ⇔ 𝐴𝑥 ≥ 𝑏
𝐴𝑥 ≤ 𝑏 ⇔ 𝐴𝑥 = 𝑏



Assuming a Feasible Point

How?
(here is one simple transformations)

min
1+56723 89: 72;

𝑐.𝑥 + 𝑀 ⋅ 𝛼

Algorithms today will assume one

min
R∈ℝ!∶ 𝑨R(U

𝑐)𝑥



New Problem

Goal given 𝑥; such that 𝐴𝑥; > 𝑏 solve min
+∈ℝ;∶ 1+23

𝑐.𝑥

Solution : 𝑥∗

Initial point : 𝑥%

How?
• iterative algorithm
• Improve quality each step
• Idea: more powerful oracle

Problem: improving is difficult at boundary
Solution: use barrier to penalize approaching boundary

Problem: GD converges fast when level sets are ~ ℓ< balls
Solution: work in local norm – Newton’s method



Barrier Function

Idea
• Trade off minimizing cost and minimizing barrier

Core concept explicit / implicit in many IPMs 

Barrier	function
A	“nice”	function		𝑝 from	
interior	to	ℝ	s.t.

lim
8→:;<$=>?@

𝑝(𝑥) → ∞

min
R ∶ 𝑨R(U

𝑐)𝑥



Path Following Methods

Approach
• Approximately follow the 

central path
• Start near the path
• Take step to converge to 

next path point
• Repeat

Barrier	function
A	“nice”	function		𝑝 from	
interior	to	ℝ	s.t.

lim
8→:;<$=>?@

𝑝(𝑥) → ∞

Penalized	Objective
𝑓A 𝑥 = 𝑡 ⋅ 𝑐#𝑥 + 𝑝(𝑥)

Discretization* of the central path

𝑥2

𝑥B

𝑥A

min
R ∶ 𝑨R(U

𝑐)𝑥

Central	Path
For	path	parameter	𝑡 > 0 the 
minimizers  𝑥A = argminC𝑓A(𝑥)

form the central path a continuous 
curve from center (𝑥2) to solution (𝑥B).

center

optimum

Are many ways of using barrier, this is just one

How take step?
• Gradient descent / steepest descent in “local norm”
• Want 𝑧=∇𝑓 𝑥 𝑧 ≈ 𝑧 < so pick 𝑧 = 𝑧 ∇? @

<

• (Damped Newton Step) 𝑥 ≔ 𝑥 − 𝜂 𝛻<𝑓A 𝑥
BC𝛻𝑓A(𝑥)

One example in larger active area of research on 
“higher order” optimization methods.



Path Following Methods

Algorithm
• Initialize: 𝑡 > 0 and 𝑥 ≈ 𝑥A
• Iterate: repeat until 𝑐#𝑥 small

• Move path parameter
• 𝑡 ≔ 1 + 𝑐 𝑡

• Center (i.e. Newton Steps)
• Until 𝑥 ≈ 𝑥A
• 𝑥 ≔ 𝑥 − 𝜂 𝛻%𝑓A 𝑥

D*
𝛻𝑓A(𝑥)

Barrier	function
A	“nice”	function		𝑝 from	
interior	to	ℝ	s.t.

lim
8→:;<$=>?@

𝑝(𝑥) → ∞

Penalized	Objective
𝑓A 𝑥 = 𝑡 ⋅ 𝑐#𝑥 + 𝑝(𝑥)

Discretization* of the central path

𝑥2

𝑥B

𝑥A

min
R ∶ 𝑨R(U

𝑐)𝑥

Central	Path
For	path	parameter	𝑡 > 0 the 

minimizers  𝑥A = 𝑎𝑟𝑔𝑚𝑖𝑛8𝑓A(𝑥)
form the central path a continuous 

curve from center (𝑥2) to solution (𝑥B).

center

optimum

Are many ways of using barrier, this is just one

How get to initial point? (one technique)
• Initial 𝑥2 is central path for some 𝑐
• Let 𝑡 ≔ 1 − 𝑐 𝑡
• When 𝑡 small, switch cost



Analysis
Algorithm
• Initialize: 𝑡 > 0 and 𝑥 ≈ 𝑥A
• Iterate: repeat until 𝑐#𝑥 small

• Move path parameter
• 𝑡 ≔ 1 + 𝑐 𝑡

• Center (i.e. Newton Steps)
• Until 𝑥 ≈ 𝑥A
• 𝑥 ≔ 𝑥 − 𝜂 𝛻%𝑓A 𝑥

D*
𝛻𝑓A(𝑥)

Barrier	function
A	“nice”	function		𝑝 from	
interior	to	ℝ	s.t.

lim
8→:;<$=>?@

𝑝(𝑥) → ∞

Penalized	Objective
𝑓A 𝑥 = 𝑡 ⋅ 𝑐#𝑥 + 𝑝(𝑥)

Discretization* of the central path

𝑥2

𝑥B

𝑥A

min
R ∶ 𝑨R(U

𝑐)𝑥

Central	Path
For	path	parameter	𝑡 > 0 the 

minimizers  𝑥A = 𝑎𝑟𝑔𝑚𝑖𝑛8𝑓A(𝑥)
form the central path a continuous 

curve from center (𝑥2) to solution (𝑥B).

center

optimum
Self-conccordance
• If 𝑝 is a 𝜈-self concordant barrier then can pick 𝑐 ≈ *

(( E)
and 

𝑂( 𝜈 log 𝜖/𝜖2 ) iterations suffice
• Self concordance measures tradeoff of Hessian stability and size
• Theorem: every convex set has an 𝑂 𝑑 self-concordant barrier (and 

can be better sometimes)
• Upshot: if structure, barrier then 𝛻%𝑓A 𝑥

D*
𝛻𝑓A(𝑥) queries suffice



Example
Algorithm
• Initialize: 𝑡 > 0 and 𝑥 ≈ 𝑥A
• Iterate: repeat until 𝑐#𝑥 small

• Move path parameter
• 𝑡 ≔ 1 + 𝑐 𝑡

• Center (i.e. Newton Steps)
• Until 𝑥 ≈ 𝑥A
• 𝑥 ≔ 𝑥 − 𝜂 𝛻%𝑓A 𝑥

D*
𝛻𝑓A(𝑥)

Barrier	function
A	“nice”	function		𝑝 from	
interior	to	ℝ	s.t.

lim
8→:;<$=>?@

𝑝(𝑥) → ∞

Penalized	Objective
𝑓A 𝑥 = 𝑡 ⋅ 𝑐#𝑥 + 𝑝(𝑥)

Discretization* of the central path

𝑥2

𝑥B

𝑥A

min
R ∶ 𝑨R(U

𝑐)𝑥

Central	Path
For	path	parameter	𝑡 > 0 the 

minimizers  𝑥A = 𝑎𝑟𝑔𝑚𝑖𝑛8𝑓A(𝑥)
form the central path a continuous 

curve from center (𝑥2) to solution (𝑥B).

center

optimum
Logarithmic Barrier

• 𝑝 𝑥 = −∑6∈ $ ln
*

>"
#8D:"

= ∑6∈ $ − ln 𝑠 𝑥 6 where 𝑠 𝑥 = 𝐴𝑥 − 𝑏 is a 

𝑂(𝑚) self-concordant barrier
• ∇𝑝 𝑥 = −𝐴#𝑆81 and ∇%𝑝 𝑥 = 𝐴#𝑆8D%𝐴 where 𝑆8 = diag(𝑠 𝑥 )
• Upshot: ~𝑂( 𝑚 log(𝜖/𝜖2)) linear system solves suffice



What Else?

Active Area of Research
• Improve iteration count
• Decrease iteration cost
• Multiple recent results
• Improvements for special 

important cases (e.g. maximum 
flow, geometric median, etc.)

More Optimization Theory
• Higher-order methods
• Structured problems
• Minimax problems
• Stochastic
• Nonconvex
• Practice
• And more…



Plan for Today

Recap

IPMs

Have a great 
break!

• Strutured optimization
• Newton’s method
• Improving cutting plane methods
• Interior point methods

• Cutting plane methods

ü
ü


