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Lecture Plan

Recap * Oracles, minimization, efficiency, and iterative methods

* Continuity, smoothness, and critical points

Tuesday  Continuity, e-nets, and lower




Recap

Goal Access to f?
* Objective function f: R" - R * Through an “oracle”
e Constraintset S € R" uer
(Next few lectures, unconstrained S = R") e.g. x €R"
* Optimize 1
min X
B3 ) =3
provably efficiently with few 1
assumptions output

e.g. f(x) € R [value]
e.g. Vf(x) [gradient]



xer?gulzan f(x) provably efficiently with

Reca p few assumptions

Minimize? Progress Measure?

€-(sub)optimal point or a point with e-additive function error:
* x ESst f(x) < f. +ewheref, = mei?f(x)
X

e-critical point:
* x € Sst |[VF(X)l; < € where ||y, = /Zie[n] Vi

Efficency?

* Oracle complexity = #calls to oracle
* Runtime = # oracle calls X (average computational cost per call)



Recap

Iterative Method Approach
e Start at initial point x
e Fort=0,..T—1

* Query oracle

* Take “local step” to obtain x;, ¢
* Repeat

* Qutput aggregation of the x;

e.g.
* Last iterate: x;_4

: .1
* Average iteration: ;Zke[T—u X

Analysis
* Oracle complexity = # iterations

* Runtime = # iterations * cost per
iteration (iteration complexity)



Recap: an impossible setting

* f:R = R (one dimensional)

* Have evaluation oracle (can compute f (x) with 1 query)

* Promised 3x, € [0,1] suchthat f(x) = f. = ig&f()’) }
y 1

* Promised f(x) € [0,1] forallx € R

* Goal: compute 1/2-optimal point
* i.e. compute x with f(x) < f(x,) +1/2 0

* Question: what oracle complexity achievable?

* Answer: o is optimal We will discuss lower bound a

little more formally next week.




Recap

Problem: oracle gives only pointwise information, no local information.

Solution:
 This is a class on continuous optimization
* Today: assume more structure and analyze a working method
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Continuous Function Minimization

Problem: oracle gives only pointwise information, no local information.

T]: /\/ﬂf

Idea:
* Make assumptions so oracle give some local / global information

* Frequent assumption: continuity



Question: is continuity enough?

* f:R = R (one dimensional)
* Have evaluation oracle (can compute f(x) with 1 query)
* Promised 3x, € [0,1] such that f(x) = f, = inf f(¥)

y

* Promised f(x) € [0,1] forallx € R
* Promised f is continuous: lim f(y) = f(x)
y—Xx

* Goal: compute 1/2-optimal point
* i.e. compute x with f(x) < f(x,) +1/2

* Question: what oracle complexity achievable?
* Answer: o is optimal



Proof Sketch by Picture

Problem: can make slope arbitrarily large
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Can make arbitrarily small

Only ¥%-optimal point

Idea: assume bounded slope / quantify continuity



Are many different assumptions

Qu a nt ifyi ng CO nti n u ity that could be made. Will discuss one

family of assumptions for now.

Lipschitz Continuous:
* f:R™ - Ris L-Lipschitz with respect to a norm || - || ifand only if |[f(x) — f(¥)| < L - ||x — y||

Recall: || - ||: R™ — Ris a norm if and only if V& € Rand x,y € R"

o |lax|| = |a| - ||x]|| (absolute homogeneity)

o |lx + vl < llx|l + ||y|| (triangle inequality)

* ||x]]| = 0 © x = 0 (called a “semi-norm” if doesn’t necessarily hold)

Examples: / Default if unspecified

o x|, & Zixiz (Euclidean or £, norm)

We will see many

 lxll, = (X;1x;1P)Y/P (p-norm or tp-norm forp = 1) :
more in class.

o & max ||



Can we minimize Lipschitz functions?

+f:R->R We will discuss Tuesday

e Have evaluation oracle
* Promised 3x, € [0,1] suchthat f(x) = f, =

* Promised f(x) € [0,1] forallx € R
* Promised f is L-Lipschitz (with respect to £,)
» Goal: compute 1/2-optimal point

* i.e. compute x with f(x) < f(x,) +1/2

;gﬂg f)
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L-Lipschitz implies that slope of
lines is at most L.



Interesting, general, useful, recently popularized topic.

Today: Smoothness & Critical Points

Recall: f: R™ — R is differentiable at x € R" if exists g € R" such that

. T
(Note: choice of norm does lim |f(x + h) [f(X) T8 hl =0
not affect definition) h-0 ” h ” 2

Further, when this holds, g = Vf(x), i.e. g; = if(x).

axi

Smoothness: f is L-smooth (with respect to £, ) if differentiable and for
allx,y € R™ we have [|[Vf(x) = VfW)Il, < L - |[x—yll,.



Picture We will characterize more later
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Lipschitz Smooth
(bounded slope) (bounded curvature)

(bounded 15t derivatives) (bounded 2" derivative)



DI SCUSS more quy local guer:es aret requ:ref:f ?o .
approximately find approximate minimizer.

Pro b | em next week. (Discuss more Tuesday)
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Smooth
Today: seek critical points (bounded curvature)
(bounded 2" derivative)



Today’s Setting /e

* Problem: Assume f: R"™ — R is L-smooth
and given some x, € R" such that function !
error, f(xy) — f., is bounded.

_ uer output
* Oracle: gradient oracle xER" m _>Vf(x) c R™

* Question: how many queries needed to
compute e-critical point, i.e. ||Vf(x)|, < €?




Critical Point Computation

Idea
* Locally

flx+h) = fO)+Vf(x)'h

* Soif h = —nVf(x) for smalln (or
more broadly Vf(x)"h < 0 for
small enough h) function value
decreases!

* Hope: smoothness makes progress
substantial whenever non-critical.

/

_—_/ |R

v region of valid output

f(xo) + Vf(xo) T (x — xo)



Gradient Descent Method for Critical Points

Algorithm / Method

. .. . . n 4 f
Initial point: xy € R Y /

e Fork =0,1,2, ...
* X1 = X — N VS (xg)

% 1
« If ||Vf (xp)|l2 < € then output x;, . VZ/'\/_H?

Step Size

. nk — ustep Size” fxg) + Vf(xO)T(x — Xo)

* Many step size schemes
 Often in this class, fixed step size, n, =7



Convergence Analysis

Theorem: Gradient descent on L-smooth function with n = (TBD)
computes an e-critical point with < 2L[f(x,) — f.]/€? queries

Lemma: If f is L-smooth and y = x — nVf(x) then
2L
) = [f @) = nllVf @3] <= IVF )13

Plan: (1) Prove theorem using lemma (2) prove lemma (3) build some more intuition



Goal Tool

Theorem: < 2L[f(x,) — f.]/€2 queries suffices Lemma: If f is L-smooth and y = x — nVf(x) then

2
to compute e-critical point of L-smooth function. |f(y) — [f(x) — nIIVf(X)||§]| < 77_L IVF ()12
-2

* X411 = X —NVf(x;) so apply lemma with x = x;, and y = x3,44
2L
* fxs1) < f Q) = nllVE ()l +n—2 IVF )l
* “best” n?
n°L / ... 1
cgn) =—n +—-has g (n) = —1 + nL. minimizern ==

L
* = f(xpr1) < flxy) _2_1L ”vf(xk)”%

Function value decreases by amount Since function value can only decrease by
depending on norm of gradient!! f(x¢) — f. must find a small gradient!!



Goal Tool

Theorem: < 2L[f(x,) — f.]/€? queries suffices Lemma: If f is L-smooth and y = x — nVf(x) then

to compute e-critical point of L-smooth function.

[f ) = [f ) = nllVFOIIZ]] < e IVFCOllZ
2

o f(rsr) < Flx) — = ||Vf(xk>||%

2L
. Zie[k]f(xi) < Zie[k] [f(xi_l) —— ”Vf(xl 1)” ]

1
* f(xk) — f(xo) < —— Z ”Vf(xi_1)||2 Open for decades
(and when | first
taught this class)

1 2L[f (xo)—f(xx)] _ 2LIf (x0)—fi
 + TiepallVf (i DI < f""k”"]_ —

¢ =30 € [0,k — 1] st. [Vf (xp)lI < 20 [CDHS18]

* = e-critical point found when k > 2L[f (xy) — f.]/€* ! Yes 1!

(in worst-case up to
constants, if depend
on nothing else)



Lemma: If f is L-smooth and y = x — nVf (x) then

Proof Strategy F0) = 7 = nvF Gl < ZE i o

* Goal: analyze f change for “gradient descent step” y = x — nVf (x)
* Broader Goal: analyze change in f between two points

 How? (common proof strategy this course)

* Integrate: Taylor expansion
* Bound: Cauchy Schwarz inequality

(A little multivariable-calculus recap, slower today.
Faster / see notes / ask questions later classes.)



Goal

Lemma: If f: R™ — R is differentiable, x, y E R™, x; =x +t(y —x) fort € [0,1]:

FO) = [F@) + VF@)T( — )] = f (Vo) - V() Oy — ¥)da

* Let g(t) = f(x;) forallt € [0,1]
s f(y) —f(x)=g9(1)—g(0) = folg’(a)da (fundamental theorem calculus)

* Since f is differentiable
01 |f (g +h) = [f(xg) + Vf (xg) "R
= lim

h—0 1Al

e leth=t(y—x)fort >0so f(x, +h) =g(a+1t)

0 i l9@ D~ 9@+t Vf(x)T(r ~ 0]
50 1ty =)l

* =g (@) =Vf(x)"(y — x)

S f) — f(0) = [ V)T - x)da ©




Lemma: If f: R™ — R is differentiable, x, y E R™, x; =x +t(y —x) fort € [0,1]:

FO) = [f () + VF@)T(y — 1)] = f (Vo) - V() Oy — ¥)da

* New Goal: Upper bound ‘fol(Vf(xa) — Vf(x)) (y — x)da‘

 Lemma: (Cauchy-Schwarz Inequality) Vx,y € R™, |xTy| < |Ix]l, ||y,
* Proof:

||x||% yllg = 1xTy1? = (Z,%2)(Z;7) - Coxevd) (25 %7;)
_ Z Z (x y] _xlylx]y])

2
= Zz<1(x y] + x yi = in)’ixj)’j) = Zi<j(xiyj - xjyi) >00

Strategy: to show a < b for a,b > 0, suffices to show b? > a? or equivalently b? — a? > 0.



Lemma: If f: R"™ — R is differentiable, x,y € R"*, x; = x + t(y — x) fort € [0,1]:

1
FO) - [F (0 + V()T — 0)] = f (Vf(xa) - VF () @ — x)da
0

* New Goal: Upper bound ‘fol(Vf(xa) — Vf(x))T(y — x)da‘
 Lemma: (Cauchy-Schwarz Inequality) Vx,y € R™, |xTy| < [Ix]l, |y,
* Corollary: iff is L-smooth Corollary: If L-smooth and x,y € R":

Jy (T (ta) = VF () (v — x)da|  WICOORMTENCEO A ESTE
< [V () = V() (v — %)|da

< JiIVf () = VF @l lly — xllpder

< [ Lllxg — x|, lly — x|l da

1 L
= [ Lally - xll3da = 1ly - x|



Corollary: If L-smooth and x, y € R™:

fO) = [f () + V) (v — 0 Sg llx = yli3

l Simply apply withy = x — nVf(x)

Lemma: If f is L-smooth and y = x — nVf(x) then
2L
F@) = [FG) = nIVFCOIRI] < L 197 GOl

Theorem: < 2L[f (x,) — f.]/€? queries suffices to
compute e-critical point of L-smooth function.




Corollary: If L-smooth and x, y € R":

1 L
Picture? FO) =[G + VT = 0l <5 llx = 113
L
Ly, (x) = f(x0) + Vf(x0) T (x — %) —£21 llx — x,]l3 Ur, () = f(x0) + V£ (x0) T (x — x0) +§ [l — xol13
f
Xo
X1
R

A
«—
v

Ty, (x) = f(x0) + Vf(xo) " (x — xo)

Gradient descent? xy , = min Uy, (x) !!!
. . X
Corollary implies that Ly (x) < f(x) < Uy, (x) for all x! Will build on this idea later in the course
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