Introduction to Optimization Theory

Lecture #2 - 9/17/20 MS&E 213 / CS 2690

Aaron Sidford sidford@stanford.edu

Lecture Plan

Recap

Oracles, minimization, efficiency, and iterative methods

Material

• Continuity, smoothness, and critical points

Tuesday

Continuity, ϵ -nets, and lower

Goal

- Objective function $f: \mathbb{R}^n \to \mathbb{R}$
- Constraint set $S \subseteq \mathbb{R}^n$ (Next few lectures, unconstrained $S = \mathbb{R}^n$)
- Optimize

$$\min_{x \in S \subseteq \mathbb{R}^n} f(x)$$

provably efficiently with few assumptions

Access to f?

Through an "oracle"

 $\min_{x \in S \subseteq \mathbb{R}^n} f(x)$ provably efficiently with few assumptions

Minimize? Progress Measure?

 ϵ -(sub)optimal point or a point with ϵ -additive function error:

•
$$x \in S$$
 s.t. $f(x) \le f_* + \epsilon$ where $f_* = \min_{x \in S} f(x)$

ϵ -critical point:

•
$$x \in S$$
 s.t. $\|\nabla f(x)\|_2 \le \epsilon$ where $\|y\|_2 \stackrel{\text{def}}{=} \sqrt{\sum_{i \in [n]} y_i^2}$

Efficency?

- Oracle complexity = #calls to oracle
- Runtime = # oracle calls × (average computational cost per call)

Iterative Method Approach

- Start at initial point x_0
- For t = 0, ..., T 1
 - Query oracle
 - Take "local step" to obtain x_{t+1}
 - Repeat
- Output aggregation of the x_t

e.g.

- Last iterate: x_{T-1}
- Average iteration: $\frac{1}{T}\sum_{k\in[T-1]}x_k$

Analysis

- Oracle complexity = # iterations
- Runtime = # iterations * cost per iteration (iteration complexity)

Recap: an impossible setting

- $f: \mathbb{R} \to \mathbb{R}$ (one dimensional)
- Have evaluation oracle (can compute f(x) with 1 query)
- Promised $\exists x_* \in [0,1]$ such that $f(x) = f_* = \inf_{y \in \mathbb{R}} f(y)$
- Promised $f(x) \in [0,1]$ for all $x \in \mathbb{R}$
- Goal: compute 1/2-optimal point
 - i.e. compute x with $f(x) \le f(x_*) + 1/2$

- Question: what oracle complexity achievable?
- Answer: ∞ is optimal

We will discuss lower bound a little more formally next week.

Problem: oracle gives only pointwise information, no local information.

Solution:

- This is a class on *continuous* optimization
- Today: assume more structure and analyze a working method

Lecture Plan

• Oracles, minimization, efficiency, and iterative methods

Material

• Continuity, smoothness, and critical points

Tuesday

• Continuity, ϵ -nets, and lower

Continuous Function Minimization

Problem: oracle gives only pointwise information, no local information.

Idea:

- Make assumptions so oracle give some local / global information
- Frequent assumption: continuity

Question: is continuity enough?

- $f: \mathbb{R} \to \mathbb{R}$ (one dimensional)
- Have evaluation oracle (can compute f(x) with 1 query)
- Promised $\exists x_* \in [0,1]$ such that $f(x) = f_* = \inf_{y \in \mathbb{R}} f(y)$
- Promised $f(x) \in [0,1]$ for all $x \in \mathbb{R}$
- Promised f is continuous: $\lim_{y \to x} f(y) = f(x)$
- Goal: compute 1/2-optimal point
 - i.e. compute x with $f(x) \le f(x_*) + 1/2$
- Question: what oracle complexity achievable?
- Answer: ∞ is optimal

Proof Sketch by Picture

Only ½-optimal point

Idea: assume bounded slope / quantify continuity

Problem: can make slope arbitrarily large

Quantifying Continuity

Are many different assumptions that could be made. Will discuss one family of assumptions for now.

Lipschitz Continuous:

• $f: \mathbb{R}^n \to \mathbb{R}$ is L-Lipschitz with respect to a norm $\|\cdot\|$ if and only if $|f(x) - f(y)| \le L \cdot \|x - y\|$

Recall: $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$ is a norm if and only if $\forall \alpha \in \mathbb{R}$ and $x, y \in \mathbb{R}^n$

- $\|\alpha x\| = |\alpha| \cdot \|x\|$ (absolute homogeneity)
- $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- $||x|| = 0 \Leftrightarrow x = 0$ (called a "semi-norm" if doesn't necessarily hold)

Examples:

Default if unspecified

- $||x||_2 \stackrel{\text{def}}{=} \sqrt{\sum_i x_i^2}$ (Euclidean or ℓ_2 norm)
- $||x||_p \stackrel{\text{def}}{=} (\sum_i |x_i|^p)^{1/p}$ (p-norm or ℓ_p -norm for $p \ge 1$)
- $||x||_{\infty} \stackrel{\text{def}}{=} \max_{i} |x_{i}|$

We will see many more in class.

Can we minimize Lipschitz functions?

- $f: \mathbb{R} \to \mathbb{R}$
- Have evaluation oracle
- Promised $\exists x_* \in [0,1]$ such that $f(x) = f_* = \inf_{y \in \mathbb{R}} f(y)$
- Promised $f(x) \in [0,1]$ for all $x \in \mathbb{R}$
- Promised f is L-Lipschitz (with respect to ℓ_2)
- Goal: compute 1/2-optimal point
 - i.e. compute x with $f(x) \le f(x_*) + 1/2$

L-Lipschitz implies that slope of lines is at most L.

Today: Smoothness & Critical Points

Recall: $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at $x \in \mathbb{R}^n$ if exists $g \in \mathbb{R}^n$ such that

(Note: choice of norm does not affect definition)

$$\lim_{h \to 0} \frac{|f(x+h) - [f(x) + g^{\mathsf{T}}h|}{\|h\|_2} = 0$$

Further, when this holds, $g = \nabla f(x)$, i.e. $g_i = \frac{\partial}{\partial x_i} f(x)$.

Smoothness: f is L-smooth (with respect to ℓ_2) if differentiable and for all $x, y \in \mathbb{R}^n$ we have $\|\nabla f(x) - \nabla f(y)\|_2 \le L \cdot \|x - y\|_2$.

Picture

We will characterize more later

Lipschitz (bounded slope) (bounded 1st derivatives)

Smooth (bounded curvature) (bounded 2nd derivative)

Problem

Discuss more next week.

Many local queries are required to approximately find approximate minimizer.
(Discuss more Tuesday)

Today: seek critical points

Smooth
(bounded curvature)
(bounded 2nd derivative)

Today's Setting

• **Problem**: Assume $f: \mathbb{R}^n \to \mathbb{R}$ is L-smooth and given some $x_0 \in \mathbb{R}^n$ such that function error, $f(x_0) - f_*$, is bounded.

• Oracle: gradient oracle

$$\underbrace{x \in \mathbb{R}^n} \longrightarrow \underbrace{\text{oracle}} \longrightarrow \underbrace{\nabla f(x) \in \mathbb{R}^n}$$

• Question: how many queries needed to compute ϵ -critical point, i.e. $\|\nabla f(x)\|_2 \le \epsilon$?

Why?

Critical Point Computation

<u>Idea</u>

Locally

$$f(x+h) \approx f(x) + \nabla f(x)^{\mathsf{T}} h$$

- So if $h = -\eta \nabla f(x)$ for small η (or more broadly $\nabla f(x)^{\mathsf{T}} h < 0$ for small enough h) function value decreases!
- **Hope**: smoothness makes progress substantial whenever non-critical.

Gradient Descent Method for Critical Points

Algorithm / Method

- Initial point: $x_0 \in \mathbb{R}^n$
- For k = 0,1,2,...
 - $x_{k+1} = x_k \eta_k \nabla f(x_k)$
 - If $\|\nabla f(x_k)\|_2 \le \epsilon$ then output x_k

Step Size

- η_k = "step size"
- Many step size schemes
- Often in this class, fixed step size, $\eta_k = \eta$

Convergence Analysis

<u>Theorem</u>: Gradient descent on L-smooth function with $\eta = (TBD)$ computes an ϵ -critical point with $\leq 2L[f(x_0) - f_*]/\epsilon^2$ queries

Lemma: If
$$f$$
 is L -smooth and $y = x - \eta \nabla f(x)$ then $|f(y) - [f(x) - \eta || \nabla f(x) ||_2^2]| \le \frac{\eta^2 L}{2} || \nabla f(x) ||_2^2$

Plan: (1) Prove theorem using lemma (2) prove lemma (3) build some more intuition

Tool

<u>Theorem</u>: $\leq 2L[f(x_0) - f_*]/\epsilon^2$ queries suffices to compute ϵ -critical point of L-smooth function.

<u>Lemma</u>: If f is L-smooth and $y = x - \eta \nabla f(x)$ then $\left| f(y) - [f(x) - \eta \|\nabla f(x)\|_2^2] \right| \leq \frac{\eta^2 L}{2} \|\nabla f(x)\|_2^2$

- $x_{k+1} = x_k \eta \nabla f(x_k)$ so apply lemma with $x = x_k$ and $y = x_{k+1}$
- $f(x_{k+1}) \le f(x_k) \eta \|\nabla f(x_k)\|_2^2 + \frac{\eta^2 L}{2} \|\nabla f(x_k)\|_2^2$
- "best" η ?
 - $g(\eta) = -\eta + \frac{\eta^2 L}{2}$ has $g'(\eta) = -1 + \eta L$. minimizer $\eta = \frac{1}{L}$
- $\Rightarrow f(x_{k+1}) \le f(x_k) \frac{1}{2L} \|\nabla f(x_k)\|_2^2$

Function value decreases by amount depending on norm of gradient!!

Since function value can only decrease by $f(x_0) - f_*$ must find a small gradient!!

<u>Theorem</u>: $\leq 2L[f(x_0) - f_*]/\epsilon^2$ queries suffices to compute ϵ -critical point of L-smooth function.

<u>Lemma</u>: If f is L-smooth and $y = x - \eta \nabla f(x)$ then $\left| f(y) - [f(x) - \eta \|\nabla f(x)\|_2^2] \right| \le \frac{\eta^2 L}{2} \|\nabla f(x)\|_2^2$

Tool

•
$$f(x_{k+1}) \le f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|_2^2$$

•
$$\sum_{i \in [k]} f(x_i) \le \sum_{i \in [k]} \left[f(x_{i-1}) - \frac{1}{2L} \|\nabla f(x_{i-1})\|_2^2 \right]$$

•
$$f(x_k) - f(x_0) \le -\frac{1}{2L} \sum_{i \in [k]} ||\nabla f(x_{i-1})||_2^2$$

$$\bullet \, \tfrac{1}{k} \sum_{i \in [k]} \lVert \nabla f(x_{i-1}) \rVert_2^2 \leq \tfrac{2L[f(x_0) - f(x_k)]}{k} \leq \tfrac{2L[f(x_0) - f_*]}{k}$$

•
$$\Rightarrow \exists i \in [0, k-1] \text{ s.t. } \|\nabla f(x_i)\|_2^2 \le \frac{2L[f(x_0)-f_*]}{k}$$

• $\Rightarrow \epsilon$ -critical point found when $k \geq 2L[f(x_0) - f_*]/\epsilon^2$!

Optimal?

Open for decades (and when I first taught this class)

[CDH**S**18] Yes !!!

(in worst-case up to constants, if depend on nothing else)

Proof Strategy

<u>Lemma</u>: If f is L-smooth and $y = x - \eta \nabla f(x)$ then $\left| f(y) - [f(x) - \eta \|\nabla f(x)\|_2^2] \right| \leq \frac{\eta^2 L}{2} \|\nabla f(x)\|_2^2$

- **Goal**: analyze f change for "gradient descent step" $y = x \eta \nabla f(x)$
- **Broader Goal**: analyze change in f between two points
- **How?** (common proof strategy this course)
 - Integrate: Taylor expansion
 - Bound: Cauchy Schwarz inequality

(A little multivariable-calculus recap, slower today. Faster / see notes / ask questions later classes.)

Lemma: If
$$f: \mathbb{R}^n \to \mathbb{R}$$
 is differentiable, $x, y \in \mathbb{R}^n$, $x_t = x + t(y - x)$ for $t \in [0,1]$:
$$f(y) - [f(x) + \nabla f(x)^{\mathsf{T}}(y - x)] = \int_0^1 (\nabla f(x_\alpha) - \nabla f(x))^{\mathsf{T}}(y - x) d\alpha$$

- Let $g(t) = f(x_t)$ for all $t \in [0,1]$
- $f(y) f(x) = g(1) g(0) = \int_0^1 g'(\alpha) d\alpha$ (fundamental theorem calculus)
- Since *f* is differentiable

$$0 = \lim_{h \to 0} \frac{|f(x_{\alpha} + h) - [f(x_{\alpha}) + \nabla f(x_{\alpha})^{\mathsf{T}}h]|}{\|h\|_{2}}$$

• Let
$$h = t(y - x)$$
 for $t \to 0$ so $f(x_{\alpha} + h) = g(\alpha + t)$

$$0 = \lim_{t \to 0} \frac{|g(\alpha + t) - [g(\alpha) + t \cdot \nabla f(x_{\alpha})^{\mathsf{T}}(y - x)]|}{\|t(y - x)\|_2}$$

- $\Rightarrow g'(\alpha) = \nabla f(x_{\alpha})^{\mathsf{T}}(y x)$
- $\Rightarrow f(y) f(x) = \int_0^1 \nabla f(x_\alpha)^{\mathsf{T}} (y x) d\alpha \ \odot$

Lemma: If
$$f: \mathbb{R}^n \to \mathbb{R}$$
 is differentiable, $x, y \in \mathbb{R}^n$, $x_t = x + t(y - x)$ for $t \in [0,1]$:
$$f(y) - [f(x) + \nabla f(x)^{\mathsf{T}}(y - x)] = \int_0^1 \left(\nabla f(x_\alpha) - \nabla f(x) \right)^{\mathsf{T}} (y - x) d\alpha$$

- New Goal: Upper bound $\left| \int_0^1 (\nabla f(x_\alpha) \nabla f(x))^\top (y x) d\alpha \right|$
- **Lemma**: (Cauchy-Schwarz Inequality) $\forall x, y \in \mathbb{R}^n$, $|x^\top y| \leq ||x||_2 ||y||_2$
- Proof:

•
$$||x||_2^2 \cdot ||y||_2^2 - |x^T y|^2 = (\sum_i x_i^2)(\sum_j y_j^2) - (\sum_i x_i y_i)(\sum_j x_j y_j)$$

$$\bullet = \sum_{i} \sum_{j} (x_i^2 y_j^2 - x_i y_i x_j y_j)$$

• =
$$\sum_{i < j} (x_i^2 y_j^2 + x_j^2 y_i^2 - 2x_i y_i x_j y_j) = \sum_{i < j} (x_i y_j - x_j y_i)^2 \ge 0$$
 ©

Strategy: to show $a \le b$ for $a, b \ge 0$, suffices to show $b^2 \ge a^2$ or equivalently $b^2 - a^2 \ge 0$.

Lemma: If
$$f: \mathbb{R}^n \to \mathbb{R}$$
 is differentiable, $x, y \in \mathbb{R}^n$, $x_t = x + t(y - x)$ for $t \in [0,1]$:
$$f(y) - [f(x) + \nabla f(x)^{\mathsf{T}}(y - x)] = \int_0^1 \left(\nabla f(x_\alpha) - \nabla f(x) \right)^{\mathsf{T}} (y - x) d\alpha$$

- New Goal: Upper bound $\left| \int_0^1 (\nabla f(x_\alpha) \nabla f(x))^{\top} (y x) d\alpha \right|$
- **Lemma**: (Cauchy-Schwarz Inequality) $\forall x, y \in \mathbb{R}^n$, $|x^\top y| \leq ||x||_2 ||y||_2$
- **Corollary:** if *f* is *L*-smooth

•
$$\left| \int_0^1 (\nabla f(x_\alpha) - \nabla f(x))^\top (y - x) d\alpha \right| |f(y) - [f(x) + \nabla f(x)^\top (y - x)]| \le \frac{L}{2} ||x - y||_2^2$$

•
$$\leq \int_0^1 |(\nabla f(x_\alpha) - \nabla f(x))^{\mathsf{T}} (y - x)| d\alpha$$

$$\bullet \le \int_0^1 \|\nabla f(x_\alpha) - \nabla f(x)\|_2 \|y - x\|_2 d\alpha$$

$$\bullet \le \int_0^1 L ||x_{\alpha} - x||_2 ||y - x||_2 d\alpha$$

• =
$$\int_0^1 L\alpha ||y - x||_2^2 d\alpha = \frac{L}{2} ||y - x||_2^2$$

Corollary: If *L*-smooth and $x, y \in \mathbb{R}^n$:

$$|f(y) - [f(x) + \nabla f(x)^{\mathsf{T}}(y - x)]| \le \frac{L}{2} ||x - y||_2^2$$

Corollary: If
$$L$$
-smooth and $x, y \in \mathbb{R}^n$:
$$|f(y) - [f(x) + \nabla f(x)^{\mathsf{T}} (y - x)]| \leq \frac{L}{2} ||x - y||_2^2$$

Simply apply with $y = x - \eta \nabla f(x)$

Lemma: If
$$f$$
 is L -smooth and $y = x - \eta \nabla f(x)$ then
$$\left| f(y) - [f(x) - \eta \|\nabla f(x)\|_2^2] \right| \le \frac{\eta^2 L}{2} \|\nabla f(x)\|_2^2$$

Theorem: $\leq 2L[f(x_0) - f_*]/\epsilon^2$ queries suffices to compute ϵ -critical point of L-smooth function.

Picture?

Corollary: If L-smooth and $x, y \in \mathbb{R}^n$: $|f(y) - [f(x) + \nabla f(x)^{\mathsf{T}} (y - x)]| \leq \frac{L}{2} ||x - y||_2^2$

$$L_{x_0}(x) = f(x_0) + \nabla f(x_0)^{\top}(x - x_0) - \frac{L}{2} ||x - x_0||_2^2 \qquad U_{x_0}(x) = f(x_0) + \nabla f(x_0)^{\top}(x - x_0) + \frac{L}{2} ||x - x_0||_2^2$$

$$f$$

$$T_{x_0}(x) = f(x_0) + \nabla f(x_0)^{\top}(x - x_0)$$

Corollary implies that $L_{x_0}(x) \le f(x) \le U_{x_0}(x)$ for all x!

Gradient descent? $x_{k+1} = \min_{x} U_{x_k}(x)$!!!

Will build on this idea later in the course

Lecture Plan

Tuesday •

• Continuity, ϵ -nets, and lower