Introduction to Optimization Theory

Lecture #3 - 9/22/20 MS&E 213 / CS 2690

Aaron Sidford sidford@stanford.edu

Lecture Plan

Thursday

- Smoothness revisited
- Convexity

<u>Goal</u>

- Objective function $f: \mathbb{R}^n \to \mathbb{R}$
- Constraint set $S \subseteq \mathbb{R}^n$

(Next few lectures, unconstrained $S = \mathbb{R}^n$)

• Optimize

 $\min_{x\in S\subseteq\mathbb{R}^n}f(x)$

provably efficiently with few assumptions

Access to f?

• Through an "oracle"

Goal $\min_{x \in \mathbb{R}^n} f(x)$ given by an oracle provably efficiently with few assumptions

Minimize? Progress Measure?

 ϵ -(sub)optimal point or a point with ϵ -additive function error:

• $x \in S$ s.t. $f(x) \le f_* + \epsilon$ where $f_* = \min_{x \in S} f(x)$

ϵ -critical point:

•
$$x \in S$$
 s.t. $\|\nabla f(x)\|_2 \le \epsilon$ where $\|y\|_2 \stackrel{\text{def}}{=} \sqrt{\sum_{i \in [n]} y_i^2}$

Efficency?

- Oracle complexity = #calls to oracle
- Runtime = # oracle calls × (average computational cost per call)

Iterative Method Approach

- Start at initial point x_0
- For t = 0, ..., T 1
 - Query oracle
 - Take "local step" to obtain x_{t+1}
 - Repeat
- Output aggregation of the x_t

e.g.

- Last iterate: x_{T-1}
- Average iteration: $\frac{1}{T} \sum_{k \in [T-1]} x_k$

<u>Analysis</u>

- Oracle complexity = # iterations
- Runtime = # iterations * cost per iteration (iteration complexity)

Recap: setting #0: impossible

- $f: \mathbb{R} \to \mathbb{R}$ (one dimensional)
- Have evaluation oracle (can compute f(x) with 1 query)
- Promised $\exists x_* \in [0,1]$ such that $f(x) = f_* = \inf_{y \in \mathbb{R}} f(y)$
- Promised $f(x) \in [0,1]$ for all $x \in \mathbb{R}$
- Goal: compute 1/2-optimal point
 - i.e. compute x with $f(x) \le f(x_*) + 1/2$
- Question: what oracle complexity achievable?
- Answer: ∞ is optimal

We will discuss this lower bound more formally today.

0

0

 χ_*

Problem: oracle gives only pointwise information, no local information.

Solution:

- This is a class on *continuous* optimization
- Today: assume more structure and analyze a working method

Last class discussed how continuity is not enough and will prove today.

Recap: assuming more structure

(bounded slope) (bounded 1st derivatives)

 $\frac{f \text{ is } L_2\text{-Lipschitz}}{\|\nabla f(x) - \nabla f(y)\|_2 \le L_2 \|x - y\|_2}$ for all $x, y \in \mathbb{R}^n$

(bounded 2nd derivative)

Recap: Gradient Descent Method for Critical Points

Algorithm / Method (for L-smooth f)

- Initial point: $x_0 \in \mathbb{R}^n$
- For k = 0, 1, 2, ...

•
$$x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$

• If $\|\nabla f(x_k)\|_2 \le \epsilon$ then output x_k

<u>Theorem</u>

 ϵ -critical point in $\leq 2L[f(x_0) - f_*]/\epsilon^2$ steps / queries for $f_* = \inf_{x \in \mathbb{R}^n} f(x)$

Today: ϵ -(sub)optimal points

Setting #1: 1d-Lipschitz Function Minimization

- $f: \mathbb{R} \to \mathbb{R}$ (one dimensional)
- Have evaluation oracle (can compute f(x) with 1 query)
- $\exists x_* \in [0,1]$ such that $f(x) = f_* = \inf_{y \in \mathbb{R}} f(y)$
- $f(x) \in [0,1]$ for all $x \in \mathbb{R}$
- f is L-Lipschitz with respect to ℓ_∞
- **Goal**: compute ϵ -optimal point for $\epsilon \in (0,1)$

- Question #1: what oracle complexity achievable?
- Question #0: what does L-Lipschitz mean? Imply?

L-Lipschitz Function

f is L-Lipschitz w.r.t. $\|\cdot\|$ if $|f(x) - f(y)| \le L ||x - y||$ for all $x, y \in \mathbb{R}^n$

- $\Leftrightarrow -L ||x y|| \le f(y) f(x) \le L ||x y||$ for all $x, y \in \mathbb{R}^n$
- $\Leftrightarrow f(x) L ||x y|| \le f(y) \le f(x) + L ||x y||$ for all $x, y \in \mathbb{R}^n$
- If n = 1 and $\|\cdot\| = \|\cdot\|_p$ (i.e. $\|x\| = \|x\|_p = (|x|^p)^{1/p} = |x|$) then $\Leftrightarrow f(x) - L|d| \le f(x+d) \le f(x) + L|d|$ (slope at most L)

Setting #1: 1d-Lipschitz Function Minimization

- $f: \mathbb{R} \to \mathbb{R}$ (one dimensional)
- Have evaluation oracle (can compute f(x) with 1 query)
- $\exists x_* \in [0,1]$ such that $f(x) = f_* = \inf_{y \in \mathbb{R}} f(y)$
- $f(x) \in [0,1]$ for all $x \in \mathbb{R}$
- f is L-Lipschitz with respect to ℓ_∞
- Goal: compute ϵ -optimal point for $\epsilon \in (0,1)$

- Question #1: what oracle complexity achievable?
- Question #0: what does L-Lipschitz mean? Imply?

Setting #1:

Theorem: there is method with query complexity $[L/\epsilon]$ for setting #1

<u>Algorithm</u>

- Pick $k \in \mathbb{Z}_{\geq 0}$
- For $i \in [k] = \{1, ..., k\}$
 - Let $x_i = \frac{i}{k}$
 - Query $f(x_i)$ for all $i \in [k]$
- Return $x_{out} = \underset{x_i}{\operatorname{argmin}} f(x_i)$

Setting #1:

Theorem: there is method with query complexity $[L/\epsilon]$ for setting #1

<u>Algorithm</u>

- Pick $k \in \mathbb{Z}_{\geq 0}$
- For $i \in [k] = \{1, ..., k\}$
 - Let $x_i = \frac{1}{k}$
 - Query $f(x_i)$ for all $i \in [k]$
- Return $x_{out} = \underset{x_i}{\operatorname{argmin}} f(x_i)$

<u>Analysis</u>

•
$$x_* \in \left[\frac{i-1}{k}, \frac{i}{k}\right]$$
 for some $i \in [k]$

•
$$\exists i_* \in [k] \text{ s.t. } \left| x_* - \frac{i_*}{k} \right| \le \frac{1}{k}$$

•
$$\left|f(x_{i_*}) - f(x_*)\right| \le L \left\|x_* - \frac{i_*}{k}\right\|_{\infty} \le \frac{L}{k}$$

•
$$f(x_{i_*}) \leq f_* + \frac{L}{k}$$

- $f(x_{\text{out}}) \le f(x_{i_*})$
- $k \ge L/\epsilon \Rightarrow f(x_{out})$ is ϵ -optimal

Improvements?

Lower bound?

Setting #1:

<u>Algorithm</u>

- Pick $k \in \mathbb{Z}_{\geq 0}$
- For $i \in \{0, 1, ..., k\}$
 - Let $x_i = \frac{\iota}{k}$

Improvements?

• Query $f(x_i)$ for all $i \in [k]$

Lower bound?

• Return $x_{out} = \underset{x_i}{\operatorname{argmin}} f(x_i)$

Theorem: there is method with query complexity $1 + \lfloor L/2 \epsilon \rfloor$ for setting #1

<u>Analysis</u>

•
$$x_* \in \left[\frac{i-1}{k}, \frac{i}{k}\right]$$
 for some $i \in [k]$

•
$$\exists i_* \in \{0, ..., k\}$$
 s.t. $\left| x_* - \frac{i_*}{k} \right| \le \frac{1}{2k}$

•
$$|f(x_{i_*}) - f(x_*)| \le L ||x_* - \frac{i_*}{k}||_{\infty} \le \frac{1}{2k}$$

•
$$f(x_{i_*}) \leq f_* + \frac{L}{2k}$$

- $f(x_{\text{out}}) \leq f(x_{i_*})$
- $k \ge L/(2\epsilon) \Rightarrow f(x_{out})$ is ϵ -optimal

Lower bound proof strategy

Called a <u>resisting oracle</u>

Arbitrary Algorithm

- For k = 1, ..., K
 - Compute point x_k based on previous oracle output (and randomness)
 - Query oracle at x_k
- Output a point x_{out} based on previous points, oracle

Any algorithm must take at least *K* steps.

Lower Bound Strategy

- From oracle output at $x_1, ..., x_{k-1}$ specify oracle output at x_k .
- Show that there are two valid functions f_1 and f_2 consistent with oracle output on x_1, \ldots, x_{k-1} with no common valid output point.

Algorithm outputs incorrect answer on either f or g.

Setting #0

- $f: \mathbb{R} \to \mathbb{R}$ via evaluation oracle
- $\exists x_* \in [0,1]$ such that $f(x) = f_*$
- $f(x) \in [0,1]$ for all $x \in \mathbb{R}$
- Goal: compute ½ -optimal point

<u>Candidate f_i</u>

For all $z \in [0,1]$ let

$$f_z(x) = \begin{cases} 1 & x \neq z \\ 0 & x = z \end{cases}$$

• Note: f_{z_1} and f_{z_2} have disjoint ½-optimal points for $z_1 \neq z_2$

Arbitrary Algorithm

- For k = 1, ..., K
 - Compute point x_k based on previous oracle output (and randomness)
 - Query oracle at x_k
- Output a point x_{out} based on previous points, oracle

Any algorithm must take at least *K* steps.

Lower Bound Strategy

• From oracle output at $x_1, ..., x_{k-1}$ specify oracle output at x_k .

Output = 1

• Show that there are two valid functions f_1 and f_2 consistent with oracle output on x_1, \ldots, x_{k-1} with no common valid output point.

 f_{z_1} and f_{z_2} for any $z_1 \neq z_2$ with $z_1, z_2 \notin \{x_1, \dots, x_k\}$

Since holds for all K, an infinite number of steps are needed.

Setting #1

f: ℝ → ℝ via evaluation oracle
∃x_{*} ∈ [0,1] such that f(x) = f_{*}
f(x) ∈ [0,1] for all x ∈ ℝ
f is L-Lipschitz w.r.t || · ||_∞
Goal: compute ε-optimal point

•
$$f_{z,\alpha}(x) = \min\{1, -\alpha + L|x-z|\}$$

<u>Claims</u>

- x' is ϵ -optimal for $f_{z,\alpha}$ for $\alpha > \epsilon$ if and only if $|x' - z| \le L/\epsilon$
- $f_{z,\alpha}$ is *L*-Lipschitz w.r.t $\|\cdot\|_{\infty}$

Lower bound idea

• If oracle outputs 1 and not enough queries, consistent with two $f_{z,\alpha}$

Valid functions with disjoint ϵ -optimal points.

Setting #1

- $f: \mathbb{R} \to \mathbb{R}$ via evaluation oracle
- $\exists x_* \in [0,1]$ such that $f(x) = f_*$
- $f(x) \in [0,1]$ for all $x \in \mathbb{R}$
- f is L-Lipschitz w.r.t || · ||_∞
 Goal: compute ε-optimal point
- $f_{z,\alpha}(x) = \min\{1, -\alpha + L|x-z|\}$

<u>Claims</u>

- x' is ϵ -optimal for $f_{z,\alpha}$ for $\alpha > \epsilon$ if and only if $|x' - z| \le L/\epsilon$
- $f_{z,\alpha}$ is *L*-Lipschitz w.r.t $\|\cdot\|_{\infty}$

Lower bound idea

• If oracle outputs 1 and not enough queries, consistent with two $f_{z,\alpha}$

Upper bound was
$$\frac{L}{2\epsilon}$$
 + 1. Can we improve?
Lower Bound
At least $\frac{L}{4\epsilon}$ - 2 queries are needed

Lower bound proof

- Algorithm makes *K*-queries
- Can partition [0,1] with $\leq K + 1$ intervals so points are on boundary
- At least one interval is length at least 1/(k + 1)
- If length is > $4\epsilon/L$ then there are two $f_{z,\alpha}$ consistent with disjoint ϵ -optimal points
- $\bullet \Rightarrow k+1 > L/4\epsilon$

Improve

- $f: \mathbb{R} \to \mathbb{R}$ via evaluation oracle
- $\exists x_* \in [0,1]$ such that $f(x) = f_*$
- $f(x) \in [0,1] \text{ for all } x \in \mathbb{R}$
- *f* is L-Lipschitz w.r.t || · ||_∞
 Goal: compute ε-optimal point
- Algorithm also fails if there are two disjoint intervals of length $> 2\epsilon/L$
- To succeed the total length of the intervals (1) satisfies

$$< k\left(\frac{2\epsilon}{L}\right) + \frac{4\epsilon}{L}$$

•
$$k \ge \frac{L}{2\epsilon} - 2$$

• Correct answer up to an additive 3!!!

Upper bound was
$$\frac{L}{2\epsilon}$$
 + 1. Can we improve?
Lower Bound
At least $\frac{L}{4\epsilon} - 1$ queries are needed

Lower bound proof

- Algorithm makes *K*-queries
- Can partition [0,1] with $\leq K + 1$ intervals so points are on boundary
- At least one interval is length at least 1/(k + 1)
- If length is > $4\epsilon/L$ then there are two $f_{z,\alpha}$ consistent with disjoint ϵ optimal points
- $\bullet \Rightarrow k+1 \geq L/4\epsilon$

Setting #2: Higher Dimensions

<u>Algorithm</u> (ϵ -net)

- Pick $k \in \mathbb{Z}_{\geq 0}$
- Query $\left(\frac{i_1}{k}, \frac{i_2}{k}, \dots, \frac{i_k}{k}\right)^{\mathsf{T}}$ for all possible $i_j \in [k]$
- Return point of minimum value

<u>Analysis</u>

- $\forall i \in [n], \exists j \in [k] \text{ s.t. } \left| x_*(i) \frac{j}{k} \right| \le \frac{1}{k}$
- $\exists q \text{ queried s.t. } \|x_* q\|_{\infty} \leq \frac{1}{k}$
- $f(q) \le f(x_*) + \frac{L}{k}$
- Point output is $\frac{L}{k}$ -optimal
- k^n queries are made
- $\left[\frac{L}{\epsilon}\right]^n$ -queries suffice
- How do we avoid this large dependence on dimension?

Optimal up to constants! $((cL/\epsilon)^n$ queries are needed)

- $f: \mathbb{R}^n \to \mathbb{R} \text{ via evaluation oracle} \\ \exists x_* \in [0,1] \text{ such that } f(x) = f_*$
- $f(x) \in [0,1]$ for all $x \in \mathbb{R}^n$
- f is L-Lipschitz w.r.t $\|\cdot\|_{\infty}$
- Goal: compute ϵ -optimal point

