Introduction to Optimization Theory

Lecture #3 - 9/22/20 MS&E 213 / CS 2690

Aaron Sidford sidford@stanford.edu

Lecture Plan

- **Recap** Oracles, minimization, efficiency, and iterative methods **Recap** Continuity smoothness and critical points
	- Continuity, smoothness, and critical points

Material • Continuity, ϵ -nets, and lower bounds

Thursday : Smoothne

- Smoothness revisited
-

Goal

- Objective function $f \colon \mathbb{R}^n \to \mathbb{R}$
- Constraint set $S \subseteq \mathbb{R}^n$

(Next few lectures, unconstrained $S = \mathbb{R}^n$)

• Optimize

 $\min_{x \in S \subseteq \mathbb{R}^n} f(x)$

provably efficiently with few assumptions

Access to f?

• Through an "oracle"

Goal $\min_{x \in \mathbb{R}^n} f(x)$ given by an oracle provably efficiently with few assumptions

Minimize? Progress Measure?

 ϵ -(sub)optimal point or a point with ϵ -additive function error:

•
$$
x \in S
$$
 s.t. $f(x) \le f_* + \epsilon$ where $f_* = \min_{x \in S} f(x)$

-critical point:

•
$$
x \in S
$$
 s.t. $\|\nabla f(x)\|_2 \leq \epsilon$ where $\|y\|_2 \stackrel{\text{def}}{=} \sqrt{\sum_{i \in [n]} y_i^2}$

Efficency?

- Oracle complexity = #calls to oracle
- Runtime = # oracle calls \times (average computational cost per call)

Iterative Method Approach

- Start at initial point x_0
- For $t = 0, ..., T 1$
	- Query oracle
	- Take "local step" to obtain x_{t+1}
	- Repeat
- Output aggregation of the x_t

e.g.

- Last iterate: x_{T-1}
- Average iteration: $\frac{1}{T}\sum_{k\in [T-1]} x_k$

Analysis

- Oracle complexity = # iterations
- Runtime = # iterations * cost per iteration (iteration complexity)

Recap: setting #0: impossible

- $f: \mathbb{R} \to \mathbb{R}$ *(one dimensional)*
- Have evaluation oracle *(can compute* $f(x)$ *with 1 query)*
- Promised $\exists x_* \in [0,1]$ such that $f(x) = f_* = \inf_{y \in \mathbb{R}} f(y)$
- Promised $f(x) \in [0,1]$ for all $x \in \mathbb{R}$
- Goal: compute 1/2-optimal point
	- i.e. compute x with $f(x) \leq f(x_*) + 1/2$
- **Question**: what oracle complexity achievable?
- **Answer**: ∞ is optimal

We will discuss this lower bound more formally today. f_* R

1

 x_{\ast}

f

0

 Ω

1

Problem: oracle gives only pointwise information, no local information.

Solution:

- This is a class on *continuous* optimization
- **Today**: assume more structure and analyze a working method

Last class discussed how continuity is not enough and will prove today.

Recap: assuming more structure

(bounded 1st derivatives)

 f is L_2 -Lipschitz $\|\nabla f(x) - \nabla f(y)\|_2 \le L_2 \|x - y\|_2$ for all $x, y \in \mathbb{R}^n$

(bounded 2nd derivative)

Recap: Gradient Descent Method for Critical Points

Algorithm / Method (for L -smooth f)

- Initial point: $x_0 \in \mathbb{R}^n$
- For $k = 0, 1, 2, ...$

•
$$
x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)
$$

• If $\|\nabla f(x_k)\|_2 \leq \epsilon$ then output x_k

Theorem

 ϵ -critical point in $\leq 2L[f(x_0)-f_*]/\epsilon^2$ steps / queries for $f_* = \inf_{x \in \mathbb{R}^n} f(x)$

Today: ϵ -(sub)optimal points

Setting #1: 1d-Lipschitz Function Minimization

- $f: \mathbb{R} \to \mathbb{R}$ *(one dimensional)*
- Have evaluation oracle *(can compute* $f(x)$ *with 1 query)*
- $\exists x_* \in [0,1]$ such that $f(x) = f_* = \inf_{y \in \mathbb{R}} f(y)$
- $f(x) \in [0,1]$ for all $x \in \mathbb{R}$
- f is L-Lipschitz with respect to ℓ_{∞}
- **Goal**: compute ϵ -optimal point for $\epsilon \in (0,1)$

- **Question #1**: what oracle complexity achievable?
- **Question #0:** what does L-Lipschitz mean? Imply?

L-Lipschitz Function

f is L-Lipschitz w.r.t. $\|\cdot\|$ if $|f(x)-f(y)| \leq L \|x-y\|$ for all $x, y \in \mathbb{R}^n$

- \Leftrightarrow $-L||x y|| \leq f(y) f(x) \leq L||x y||$ for all $x, y \in \mathbb{R}^n$
- $\Leftrightarrow f(x) L||x y|| \leq f(y) \leq f(x) + L||x y||$ for all $x, y \in \mathbb{R}^n$
- If $n = 1$ and $|| \cdot || = || \cdot ||_p$ *(i.e.* $||x|| = ||x||_p = (||x||^p)^{1/p} = ||x||$ then $\Leftrightarrow f(x) - L|d| ≤ f(x + d) ≤ f(x) + L|d|$ (slope at most L)

Setting #1: 1d-Lipschitz Function Minimization

- $f: \mathbb{R} \to \mathbb{R}$ *(one dimensional)*
- Have evaluation oracle *(can compute* $f(x)$ *with 1 query)*
- $\exists x_* \in [0,1]$ such that $f(x) = f_* = \inf_{y \in \mathbb{R}} f(y)$
- $f(x) \in [0,1]$ for all $x \in \mathbb{R}$
- f is L-Lipschitz with respect to ℓ_{∞}
- Goal: compute ϵ -optimal point for $\epsilon \in (0,1)$
- **Question #1**: what oracle complexity achievable?
- **Question #0:** what does L-Lipschitz mean? Imply?

Setting #1:

Theorem: there is method with query complexity $[L/\epsilon]$ for setting #1

Algorithm

- Pick $k \in \mathbb{Z}_{\geq 0}$
- For $i \in [k] = \{1, ..., k\}$
	- Let $x_i =$ \dot{l} \boldsymbol{k}
	- Query $f(x_i)$ for all $i \in [k]$
- Return $x_{\text{out}} = \arg\min f(x_i)$ x_i

Setting #1:

Theorem: there is method with query complexity $[L/\epsilon]$ for setting #1

Algorithm

- Pick $k \in \mathbb{Z}_{\geq 0}$
- For $i \in [k] = \{1, ..., k\}$
	- Let $x_i =$ $\mathbf{1}$ \boldsymbol{k}
	- Query $f(x_i)$ for all $i \in [k]$
- Return $x_{\text{out}} = \arg\min f(x_i)$ x_i

Analysis

•
$$
x_* \in \left[\frac{i-1}{k}, \frac{i}{k}\right]
$$
 for some $i \in [k]$

•
$$
\exists i_* \in [k] \text{ s.t. } \left| x_* - \frac{i_*}{k} \right| \leq \frac{1}{k}
$$

$$
\bullet \ |f(x_{i_*}) - f(x_*)| \le L \left\| x_* - \frac{i_*}{k} \right\|_{\infty} \le \frac{L}{k}
$$

$$
\bullet \ f(x_{i_*}) \le f_* + \frac{L}{k}
$$

- $f(x_{\text{out}}) \leq f(x_{i})$
- $k \ge L/\epsilon \Rightarrow f(x_{out})$ is ϵ -optimal

Improvements? Lower bound?

Setting #1:

Algorithm

- Pick $k \in \mathbb{Z}_{\geq 0}$
- For $i \in \{0, 1, ..., k\}$
	- Let $x_i =$ \dot{l} \boldsymbol{k}
	- Query $f(x_i)$ for all $i \in [k]$
- Return $x_{\text{out}} = \arg\min f(x_i)$ x_i

Improvements? **Lower bound?**

Analysis

•
$$
x_* \in \left[\frac{i-1}{k}, \frac{i}{k}\right]
$$
 for some $i \in [k]$

•
$$
\exists i_* \in \{0, ..., k\} \text{ s.t. } \left| x_* - \frac{i_*}{k} \right| \leq \frac{1}{2k}
$$

$$
\bullet \ |f(x_{i_*}) - f(x_*)| \le L \left\| x_* - \frac{i_*}{k} \right\|_{\infty} \le \frac{1}{2k}
$$

$$
\bullet \ f(x_{i_*}) \le f_* + \frac{L}{2k}
$$

Theorem: there is method with query

complexity $1 + [L/2\epsilon]$ for setting #1

- $f(x_{\text{out}}) \leq f(x_{i})$
- $k \ge L/(2\epsilon) \Rightarrow f(x_{out})$ is ϵ -optimal

Lower bound proof strategy

Called a **resisting oracle**

Arbitrary Algorithm

- For $k = 1, ..., K$
	- Compute point x_k based on previous oracle output (and randomness)
	- Query oracle at x_k
- Output a point x_{out} based on previous points, oracle

Any algorithm must take at least K steps.

Lower Bound Strategy

- From oracle output at $x_1, ..., x_{k-1}$ specify oracle output at x_k .
- Show that there are two valid functions f_1 and f_2 consistent with oracle output on $x_1, ..., x_{k-1}$ with no common valid output point.

Why? Algorithm outputs incorrect answer on either f or g.

Setting #0

- : ℝ → ℝ *via evaluation oracle*
- $\exists x_* \in [0,1]$ such that $f(x) = f_*$
- $f(x) \in [0,1]$ *for all* $x \in \mathbb{R}$
- *Goal: compute ½ -optimal point*

Candidate f_i

• For all $z \in [0,1]$ let

$$
f_z(x) = \begin{cases} 1 & x \neq z \\ 0 & x = z \end{cases}
$$

Note: f_{z_1} and f_{z_2} have disjoint ½-optimal points for $z_1 \neq z_2$

Arbitrary Algorithm

- For $k=1,...,K$
	- Compute point x_k based on previous oracle output (and randomness)
	- Query oracle at x_k
- Output a point x_{out} based on previous points, oracle

Any algorithm must take at least K steps.

Lower Bound Strategy

• From oracle output at $x_1, ..., x_{k-1}$ specify oracle output at x_k .

Output $= 1$

• Show that there are two valid functions f_1 and f_2 consistent with oracle output on $x_1, ..., x_{k-1}$ with no common valid output point.

> f_{z_1} and f_{z_2} for any $z_1 \neq z_2$ with $z_1, z_2 \notin \{x_1, ..., x_k\}$

Since holds for all , an infinite number of steps are needed.

Setting #1

• : ℝ → ℝ *via evaluation oracle* $\exists x_* \in [0,1]$ *such that* $f(x) = f_*$ • $f(x) \in [0,1]$ for all $x \in \mathbb{R}$ f is *L*-Lipschitz w.r.t $\|\cdot\|_{\infty}$ • *Goal: compute -optimal point*

•
$$
f_{z,\alpha}(x) = \min\{1, -\alpha + L|x - z|\}
$$

Claims

- x' is ϵ -optimal for $f_{z,\alpha}$ for $\alpha > \epsilon$ if and only if $|x'-z|\leq L/\epsilon$
- $f_{z,\alpha}$ is *L*-Lipschitz w.r.t $\|\cdot\|_{\infty}$

Lower bound idea

• If oracle outputs 1 and not enough queries, consistent with two $f_{z,\alpha}$

What should the candidate f_i be? χ $\int f(x)$ $rac{1}{1}$ 0 0 $Z-\frac{\alpha}{l}Z$ L $z +$ α \overline{L} 1 *Interval of length* $2L/\epsilon$ which contains *all -optimal points.*

Valid functions with disjoint -optimal points.

Setting #1

- : ℝ → ℝ *via evaluation oracle*
- $\exists x_* \in [0,1]$ such that $f(x) = f_*$
- $f(x) \in [0,1]$ for all $x \in \mathbb{R}$ f is *L*-Lipschitz w.r.t $\|\cdot\|_{\infty}$
- *Goal: compute -optimal point*
- $f_{z,\alpha}(x) = \min\{1, -\alpha + L|x z|\}$

Claims

- x' is ϵ -optimal for $f_{z,\alpha}$ for $\alpha > \epsilon$ if and only if $|x'-z|\leq L/\epsilon$
- $f_{z,\alpha}$ is L-Lipschitz w.r.t $\|\cdot\|_{\infty}$

Lower bound idea

• If oracle outputs 1 and not enough queries, consistent with two $f_{z,\alpha}$

Upper bound was
$$
\frac{L}{2\epsilon} + 1
$$
. Can we improve?

\n**Lower Bound**

\nAt least $\frac{L}{4\epsilon} - 2$ queries are needed.

Lower bound proof

- Algorithm makes K -queries
- Can partition $[0,1]$ with $\leq K+1$ intervals so points are on boundary
- At least one interval is length at least $1/(k + 1)$
- If length is > $4\epsilon/L$ then there are two $f_{z,\alpha}$ consistent with disjoint ϵ -optimal points
- $\bullet \Rightarrow k+1 > L/4\epsilon$

Improve

- : ℝ → ℝ *via evaluation oracle*
- $\exists x_* \in [0,1]$ *such that* $f(x) = f_*$
- $f(x) \in [0,1]$ for all $x \in \mathbb{R}$
- *f* is *L*-Lipschitz w.r.t $\|\cdot\|_{\infty}$ • *Goal: compute -optimal point*
- Algorithm also fails if there are two disjoint intervals of length $> 2\epsilon/L$
- To succeed the total length of the intervals (1) satisfies

$$
\frac{1}{2} < k\left(\frac{2\epsilon}{L}\right) + \frac{4\epsilon}{L}
$$

•
$$
k \geq \frac{L}{2\epsilon} - 2
$$

• Correct answer up to an additive 3!!!

Upper bound was
$$
\frac{L}{2\epsilon} + 1
$$
. Can we improve?

\n**Lower Bound**

\nAt least $\frac{L}{4\epsilon} - 1$ queries are needed.

Lower bound proof

- Algorithm makes K -queries
- Can partition $[0,1]$ with $\leq K + 1$ intervals so points are on boundary
- At least one interval is length at least $1/(k + 1)$
- If length is > $4\epsilon/L$ then there are two $f_{z,\alpha}$ consistent with disjoint ϵ optimal points

$$
\bullet \Rightarrow k+1 \geq L/4\epsilon
$$

Setting #2: Higher Dimensions • $f: \mathbb{R}^n \to \mathbb{R}$ via evaluation oracle

Setting #2: Higher Dimensions • $f(x) \in [0,1]$ for all $x \in \mathbb{R}^n$

Algorithm *(-net)*

- Pick $k \in \mathbb{Z}_{\geq 0}$
- Query $\left(\frac{i_1}{i_2}\right)$ $\frac{1}{k}$, $i₂$ $\frac{\iota_2}{k}$, ... , i_k \boldsymbol{k} \top for all possible $i_j \in [k]$
- Return point of minimum value

Analysis

- $\forall i \in [n], \exists j \in [k] \text{ s.t. } \left| x_*(i) \frac{j}{k} \right| \leq \frac{1}{k}$
- ∃ q queried s.t. $||x_* q||_{\infty} \leq \frac{1}{k}$
- $f(q) \le f(x_*) + \frac{L}{k}$
- Point output is $\frac{L}{L}$ \boldsymbol{k} -optimal
- k^n queries are made
- $\cdot \left[\frac{L}{2} \right]$ ϵ \boldsymbol{n} -queries suffice
- *How do we avoid this large dependence on dimension?*

Optimal up to constants! $((cL/\epsilon)^n$ queries are needed)

 $\exists x_* \in [0,1]$ *such that* $f(x) = f_*$ $f(x) \in [0,1]$ for all $x \in \mathbb{R}^n$ f is *L*-Lipschitz w.r.t $\|\cdot\|_{\infty}$ • *Goal: compute -optimal point*

