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Lecture Plan

Recap • Oracles, minimization, efficiency, and iterative methods
• Continuity, smoothness, and critical points

Material • Continuity, 𝜖-nets, and lower bounds

• Smoothness revisited
• ConvexityThursday



Recap

Goal
• Objective function 𝑓:ℝ! → ℝ
• Constraint set 𝑆 ⊆ ℝ!

(Next few lectures, unconstrained 𝑆 = ℝ!)

• Optimize

min
"∈$⊆ℝ!

𝑓(𝑥)

provably efficiently with few 
assumptions

Access to f?
• Through an “oracle”

oracle

query
e.g. 𝑥 ∈ ℝ!

output
e.g. 𝑓(𝑥) ∈ ℝ [value]
e.g. ∇𝑓(𝑥) [gradient]



Recap
Minimize? Progress Measure?

𝝐-(sub)optimal point or a point with 𝝐-additive function error: 
• 𝑥 ∈ 𝑆 s.t. 𝑓 𝑥 ≤ 𝑓∗ + 𝜖 where 𝑓∗ = min

#∈%
𝑓(𝑥)

𝝐-critical point:

• 𝑥 ∈ 𝑆 s.t. ∇𝑓 𝑥 & ≤ 𝜖 where 𝑦 & ≝ ∑'∈[)]𝑦'&

Efficency? 

• Oracle complexity = #calls to oracle
• Runtime = # oracle calls × (average computational cost per call)

Goal
min
"∈ℝ"

𝑓(𝑥) given by an oracle provably 
efficiently with few assumptions



Recap

Iterative Method Approach
• Start at initial point 𝑥'
• For 𝑡 = 0,… , 𝑇 − 1
• Query oracle
• Take “local step” to obtain 𝑥()*
• Repeat

• Output aggregation of the 𝑥(

e.g.
• Last iterate: 𝑥+,*
• Average iteration: *

+
∑-∈[+,*] 𝑥-

Analysis
• Oracle complexity = # iterations
• Runtime = # iterations * cost per 

iteration (iteration complexity)



Recap: setting #0: impossible

• 𝑓:ℝ → ℝ (one dimensional)
• Have evaluation oracle (can compute 𝑓(𝑥) with 1 query)
• Promised ∃𝑥∗ ∈ [0,1] such that 𝑓 𝑥 = 𝑓∗ = inf

/∈ℝ
𝑓(𝑦)

• Promised 𝑓 𝑥 ∈ [0,1] for all 𝑥 ∈ ℝ
• Goal: compute 1/2-optimal  point
• i.e. compute 𝑥 with 𝑓 𝑥 ≤ 𝑓 𝑥∗ + 1/2

• Question: what oracle complexity achievable?
• Answer: ∞ is optimal
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We will discuss this lower 
bound more formally today.



Problem: oracle gives only pointwise information, no local information.

Solution:
• This is a class on continuous optimization
• Today: assume more structure and analyze a working method

Recap

ℝ

𝑓

Last class discussed how continuity is not enough and will prove today.



Recap: assuming more structure

𝑓 is 𝐿0-Lipschitz w.r.t. ‖ ⋅ ‖

𝑓 𝑥 − 𝑓 𝑦 ≤ ‖𝑥 − 𝑦‖
for all 𝑥, 𝑦 ∈ ℝ&

𝑓 is 𝐿1-Lipschitz

∇𝑓 𝑥 − ∇𝑓 𝑦 ' ≤ 𝐿' 𝑥 − 𝑦 '

for all 𝑥, 𝑦 ∈ ℝ&

ℝ

𝑓

(bounded slope)
(bounded 1st derivatives)

ℝ

𝑓

(bounded curvature)
(bounded 2nd derivative)



Recap: Gradient Descent Method for Critical Points

Algorithm / Method (for 𝐿-smooth 𝑓)
• Initial point: 𝑥' ∈ ℝ!

• For 𝑘 = 0,1,2, …
• 𝑥-)* = 𝑥- −

*
0
∇𝑓(𝑥-)

• If ∇𝑓 𝑥- 1 ≤ 𝜖 then output 𝑥-

Theorem
𝜖-critical point in ≤ 2𝐿[𝑓 𝑥' − 𝑓∗]/𝜖1

steps / queries for 𝑓∗ = inf
"∈ℝ!

𝑓(𝑥)

𝑥#

ℝ

𝑓

𝑇$! 𝑥 = 𝑓 𝑥# + ∇𝑓 𝑥# %(𝑥 − 𝑥#)

𝑈$! 𝑥 = 𝑓 𝑥# + ∇𝑓 𝑥# % 𝑥 − 𝑥# +
𝐿
2
𝑥 − 𝑥# &

&

𝑥'

Today: 𝜖-(sub)optimal points



Lecture Plan

Recap • Oracles, minimization, efficiency, and iterative methods
• Continuity, smoothness, and critical points

Material • Continuity, 𝜖-nets, and lower bounds

• Smoothness revisited
• ConvexityThursday

ü



Setting #1: 1d-Lipschitz Function Minimization

• 𝑓:ℝ → ℝ (one dimensional)
• Have evaluation oracle (can compute 𝑓(𝑥) with 1 query)
• ∃𝑥∗ ∈ [0,1] such that 𝑓 𝑥 = 𝑓∗ = inf

3∈ℝ
𝑓(𝑦)

• 𝑓 𝑥 ∈ [0,1] for all 𝑥 ∈ ℝ
• 𝑓 is 𝐿-Lipschitz with respect to ℓ4
• Goal: compute 𝜖-optimal point for 𝜖 ∈ (0,1)

• Question #1: what oracle complexity achievable?
• Question #0: what does 𝐿-Lipschitz mean? Imply? 
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L-Lipschitz Function

• ⇔ −𝐿‖𝑥 − 𝑦‖ ≤ 𝑓 𝑦 − 𝑓 𝑥 ≤ 𝐿‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ ℝ&

• ⇔ 𝑓 𝑥 − 𝐿‖𝑥 − 𝑦‖ ≤ 𝑓 𝑦 ≤ 𝑓 𝑥 + 𝐿‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ ℝ&

• If 𝑛 = 1 and ‖ ⋅ ‖ = ‖ ⋅ ‖2 (i.e. 𝑥 = 𝑥 2 = 𝑥 2 3/2 = |𝑥|) then
⇔𝑓 𝑥 − 𝐿 𝑑 ≤ 𝑓 𝑥 + 𝑑 ≤ 𝑓 𝑥 + 𝐿|𝑑| (slope at most 𝐿)

𝑓 is 𝐿-Lipschitz w.r.t. ‖ ⋅ ‖ if 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝐿‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ ℝ&

ℝ

𝑥

𝑓(𝑥)

𝑦
𝑑

𝑓 𝑥 + 𝐿𝑑

𝑓 𝑥 − 𝐿𝑑

Value of 𝑓 lies in this range



Setting #1: 1d-Lipschitz Function Minimization

• 𝑓:ℝ → ℝ (one dimensional)
• Have evaluation oracle (can compute 𝑓(𝑥) with 1 query)
• ∃𝑥∗ ∈ [0,1] such that 𝑓 𝑥 = 𝑓∗ = inf

3∈ℝ
𝑓(𝑦)

• 𝑓 𝑥 ∈ [0,1] for all 𝑥 ∈ ℝ
• 𝑓 is 𝐿-Lipschitz with respect to ℓ4
• Goal: compute 𝜖-optimal point for 𝜖 ∈ (0,1)

• Question #1: what oracle complexity achievable?
• Question #0: what does 𝐿-Lipschitz mean? Imply? 
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Setting #1:

Algorithm
• Pick 𝑘 ∈ ℤ23
• For 𝑖 ∈ 𝑘 = {1, . . , 𝑘}
• Let 𝑥4 =

4
5

• Query 𝑓(𝑥4) for all 𝑖 ∈ [𝑘]
• Return 𝑥678 = argmin

9"
𝑓(𝑥4)

Theorem: there is method with query 
complexity ⌈𝐿/𝜖⌉ for setting #1

𝑥

𝑓(𝑥)

1

1

0

0

1
𝑘

2
𝑘

3
𝑘

𝑥' 𝑥& 𝑥( 𝑥)

⋯

⋯

𝑥*+,



Setting #1:

Algorithm
• Pick 𝑘 ∈ ℤ23
• For 𝑖 ∈ 𝑘 = {1, . . , 𝑘}
• Let 𝑥4 =

0
5

• Query 𝑓(𝑥4) for all 𝑖 ∈ [𝑘]
• Return 𝑥678 = argmin

9"
𝑓(𝑥4)

Analysis

• 𝑥∗ ∈
;<3
=
, ;
=

for some 𝑖 ∈ [𝑘]

• ∃𝑖∗ ∈ [𝑘] s.t. 𝑥∗ −
;∗
=
≤ 3

=

• 𝑓 𝑥;∗ − 𝑓 𝑥∗ ≤ 𝐿 𝑥∗ −
;∗
= >

≤ ?
=

• 𝑓 𝑥;∗ ≤ 𝑓∗ +
?
=

• 𝑓 𝑥@AB ≤ 𝑓(𝑥;∗)
• 𝑘 ≥ 𝐿/𝜖 ⇒ 𝑓(𝑥CDE) is 𝜖-optimal

Theorem: there is method with query 
complexity ⌈𝐿/𝜖⌉ for setting #1

Improvements? Lower bound?



Setting #1:

Algorithm
• Pick 𝑘 ∈ ℤ23
• For 𝑖 ∈ {𝟎, 1, . . , 𝑘}
• Let 𝑥4 =

4
5

• Query 𝑓(𝑥4) for all 𝑖 ∈ [𝑘]
• Return 𝑥678 = argmin

9"
𝑓(𝑥4)

Analysis

• 𝑥∗ ∈
;<3
=
, ;
=

for some 𝑖 ∈ [𝑘]

• ∃𝑖∗ ∈ {𝟎,… , 𝑘} s.t. 𝑥∗ −
;∗
=
≤ 3

𝟐=

• 𝑓 𝑥;∗ − 𝑓 𝑥∗ ≤ 𝐿 𝑥∗ −
;∗
= >

≤ 3
𝟐=

• 𝑓 𝑥;∗ ≤ 𝑓∗ +
?
𝟐=

• 𝑓 𝑥@AB ≤ 𝑓(𝑥;∗)
• 𝑘 ≥ 𝐿/(𝟐𝜖) ⇒ 𝑓(𝑥CDE) is 𝜖-optimal

Theorem: there is method with query 
complexity 𝟏 + ⌈𝐿/𝟐𝜖⌉ for setting #1

Improvements? Lower bound?ü



Lower bound proof strategy

Arbitrary Algorithm
• For 𝑘 = 1,… ,𝐾

• Compute point 𝑥- based on 
previous oracle output
(and randomness)
• Query oracle at 𝑥-

• Output a point 𝑥567 based on 
previous points, oracle 

Lower Bound Strategy
• From oracle output at 𝑥*, … , 𝑥-,*

specify oracle output at 𝑥-.  

• Show that there are two valid 
functions 𝑓* and 𝑓1 consistent with 
oracle output on 𝑥*, … , 𝑥-,* with 
no common valid output point.

Any algorithm must 
take at least 𝐾 steps. 

Called a resisting oracle

Algorithm outputs incorrect answer on either 𝑓 or 𝑔.Why? 



Setting #0

Arbitrary Algorithm
• For 𝑘 = 1,… ,𝐾

• Compute point 𝑥- based on 
previous oracle output
(and randomness)
• Query oracle at 𝑥-

• Output a point 𝑥567 based on 
previous points, oracle 

Lower Bound Strategy
• From oracle output at 𝑥*, … , 𝑥-,*

specify oracle output at 𝑥-.  

• Show that there are two valid 
functions 𝑓* and 𝑓1 consistent with 
oracle output on 𝑥*, … , 𝑥-,* with 
no common valid output point.

Any algorithm must 
take at least 𝐾 steps. 

• 𝑓:ℝ → ℝ via evaluation oracle
• ∃𝑥∗ ∈ [0,1] such that 𝑓 𝑥 = 𝑓∗
• 𝑓 𝑥 ∈ [0,1] for all 𝑥 ∈ ℝ
• Goal: compute ½ -optimal point

Candidate 𝑓"
• For all 𝑧 ∈ [0,1] let

𝑓# 𝑥 = 11 𝑥 ≠ 𝑧
0 𝑥 = 𝑧

• Note: 𝑓#! and 𝑓#" have disjoint ½-optimal points for 𝑧$ ≠ 𝑧%

Output = 1

𝑓8# and 𝑓8$ for any 𝑧* ≠ 𝑧1
with 𝑧*, 𝑧1 ∉ {𝑥*, … , 𝑥-}

Since holds for all 𝐾, an infinite number of steps are needed.



Setting #1

• 𝑓:,< 𝑥 = min 1,−𝛼 + 𝐿|𝑥 − 𝑧|

Claims
• 𝑥′ is 𝜖-optimal for 𝑓I,K for 𝛼 > 𝜖 if 

and only if 𝑥9 − 𝑧 ≤ 𝐿/𝜖
• 𝑓8,; is 𝐿-Lipschitz w.r.t ‖ ⋅ ‖4

Lower bound idea
• If oracle outputs 1 and not enough 

queries, consistent with two 𝑓8,;

• 𝑓:ℝ → ℝ via evaluation oracle
• ∃𝑥∗ ∈ [0,1] such that 𝑓 𝑥 = 𝑓∗
• 𝑓 𝑥 ∈ [0,1] for all 𝑥 ∈ ℝ
• 𝑓 is 𝐿-Lipschitz w.r.t ‖ ⋅ ‖&
• Goal: compute 𝜖-optimal point

What should the 
candidate 𝑓< be?

Valid functions with disjoint 𝜖-optimal points.

𝑥

𝑓(𝑥)
1

0

0

𝑧𝑧 −
𝛼
𝐿

𝑧 +
𝛼
𝐿

1

Interval of length 
2𝐿/𝜖 which contains 
all 𝜖-optimal points.



Setting #1

• 𝑓:,< 𝑥 = min 1,−𝛼 + 𝐿|𝑥 − 𝑧|

Claims
• 𝑥′ is 𝜖-optimal for 𝑓I,K for 𝛼 > 𝜖 if 

and only if 𝑥9 − 𝑧 ≤ 𝐿/𝜖
• 𝑓8,; is 𝐿-Lipschitz w.r.t ‖ ⋅ ‖4

Lower bound idea
• If oracle outputs 1 and not enough 

queries, consistent with two 𝑓8,;

Lower bound proof
• Algorithm makes 𝐾-queries
• Can partition [0,1] with ≤ 𝐾 + 1

intervals so points are on 
boundary
• At least one interval is length at 

least 1/(𝑘 + 1)
• If length is > 4𝜖/𝐿 then there are 

two 𝑓:,< consistent with disjoint 
𝜖-optimal points
• ⇒ 𝑘 + 1 > 𝐿/4𝜖

• 𝑓:ℝ → ℝ via evaluation oracle
• ∃𝑥∗ ∈ [0,1] such that 𝑓 𝑥 = 𝑓∗
• 𝑓 𝑥 ∈ [0,1] for all 𝑥 ∈ ℝ
• 𝑓 is 𝐿-Lipschitz w.r.t ‖ ⋅ ‖&
• Goal: compute 𝜖-optimal point

Lower Bound
At least 0

=>
− 2 queries are needed

Upper bound was -
&.
+ 1. Can we improve?

𝑥

0 1𝑥' 𝑥&𝑥( 𝑥/



Improve

• Algorithm also fails if there are two 
disjoint intervals of length > 2𝜖/𝐿

• To succeed the total length of the 
intervals (1) satisfies

< 𝑘
2𝜖
𝐿

+
4𝜖
𝐿

• 𝑘 ≥ ?
'N
− 2

• Correct answer up to an additive 3!!!

Lower bound proof
• Algorithm makes 𝐾-queries
• Can partition [0,1] with ≤ 𝐾 + 1

intervals so points are on boundary
• At least one interval is length at 

least 1/(𝑘 + 1)
• If length is > 4𝜖/𝐿 then there are 

two 𝑓8,; consistent with disjoint 𝜖-
optimal points
• ⇒𝑘 + 1 ≥ 𝐿/4𝜖

• 𝑓:ℝ → ℝ via evaluation oracle
• ∃𝑥∗ ∈ [0,1] such that 𝑓 𝑥 = 𝑓∗
• 𝑓 𝑥 ∈ [0,1] for all 𝑥 ∈ ℝ
• 𝑓 is 𝐿-Lipschitz w.r.t ‖ ⋅ ‖&
• Goal: compute 𝜖-optimal point

Lower Bound
At least 0

=>
− 1 queries are needed

Upper bound was -
&.
+ 1. Can we improve?

𝑥

0 1𝑥' 𝑥&𝑥( 𝑥/



Setting #2: Higher Dimensions
• 𝑓:ℝ' → ℝ via evaluation oracle
• ∃𝑥∗ ∈ [0,1] such that 𝑓 𝑥 = 𝑓∗
• 𝑓 𝑥 ∈ [0,1] for all 𝑥 ∈ ℝ'
• 𝑓 is 𝐿-Lipschitz w.r.t ‖ ⋅ ‖&
• Goal: compute 𝜖-optimal point

Algorithm (𝜖-net)
• Pick 𝑘 ∈ ℤ23

• Query 4#
5
, 4$
5
, … , 4)

5

=
for all 

possible 𝑖> ∈ [𝑘]
• Return point of minimum value

Analysis

• ∀𝑖 ∈ [𝑛], ∃𝑗 ∈ [𝑘] s.t. 𝑥∗ 𝑖 − O
=
≤ 3

=

• ∃𝑞 queried s.t. 𝑥∗ − 𝑞 > ≤ 3
=

• 𝑓 𝑞 ≤ 𝑓 𝑥∗ + ?
=

• Point output is ?
=

-optimal

• 𝑘& queries are made

• ?
N

&
-queries suffice

0 1

1

0

Optimal up to constants!
( 𝑐𝐿/𝜖 ! queries are needed)

How do we avoid this large 
dependence on dimension?



Lecture Plan

Recap • Oracles, minimization, efficiency, and iterative methods
• Continuity, smoothness, and critical points

Material • Continuity, 𝜖-nets, and lower bounds

• Lipschitzness and smoothness elaborated / revisited
• ConvexityThursday

ü
ü


