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Abstract
Sounds generated by underwater bubbles is an important phenomenon and has been studied

for over many decades. The aim of this project is to systematically derive the reduced-order
models used to study sounds generated by underwater bubbles. Procedure to synthesize the
sound using these models will be described.

1 Introduction
Sound generated by underwater bubbles has wide range of passive and active acoustic sensing
applications and has been an active research area for almost a century starting with the monumental
contributions by Rayleigh (1917), Minnaert (1933), Strasberg (1953). While most of the previous
studies were theoretical and experimental (Leighton 2012), a successful computational approach (a
direct computation of sound) hasn’t been performed yet for other than a single or at-most multiple
bubbles of simple configurations due to its inherent cost and accuracy requirements. An alternative
approach is to model the sound generated by bubbles with incompressibility approximations and
using reduced-order models for bubble vibration behavior (such as a spring-mass-damper system).
This approach eliminates the acoustic CFL constraints of the compressible solution techniques and
makes it cost effective and computationally feasible. These techniques have also recently sought
attention in the graphics community (Langlois et al. 2016).

2 Spring-mass-damper system
A bubble in a liquid when excited by an external force (a pressure impulse) oscillates. This
oscillation has many modes, out of which the zeroth-order mode (also called as a breathing mode)
is the predominant one (see, Section 3) where the bubble pulsates with its volume oscillating
about its mean in an approximately simple harmonic motion. Hence a simple spring-mass-damper
analogy can be brought in to study this mechanism with spring being the gas inside the bubble,
mass being the inertia due to the gas and surrounding liquid and damping due to viscous effects,
thermal conduction and the radiation of sound itself.

2.1 Frames of reference
The equation of motion of a bubble in this reduced-order model of spring-mass-damper system
can be expressed in four different frames of reference. If the bubble is excited by a force F or an
equivalent pressure P , then the response of the bubble can be expressed in terms of the radius
of the bubble as a function of time R(t) = R0 − Rεe

iωot or as an equivalent spherical volume
V (t) = V0 − Vεeiωot, where R0 and V0 are the equivalent radius and volumes, Rε and Vε are the
amplitude of radius and volume change, negative sign implies that the radius and volume reduces
with the increase in pressure or force. Then the four frames of reference can be written as

1. radius-pressure frame
mrpR

′′
ε + brpR

′
ε + krpRε = Peiωt (1)

2. volume-pressure frame
mvpV

′′
ε + bvpV

′
ε + kvpVε = Peiωt (2)

3. radius-force frame
mrfR

′′
ε + brfR

′
ε + krfRε = Feiωt (3)
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4. volume-force frame
mvfV

′′
ε + bvfV

′
ε + kvfVε = Feiωt (4)

where m, b and k being the effective mass, effective damping coefficient and effective spring
constant of the system. Assuming that bubbles are acoustically compact (KR0 � 1) sound sources,
force can be related to the pressure on the surface of the bubble as

F = P4πR2
0 (5)

Making another assumption that the bubble shape is spherical and the oscillation amplitude is as-
sumed to be small, change in volume of the bubble dV = Vε can be linearized about the equilibrium
value R0 as

Vε = dV = 4πR2
0dR = 4πR2

0Rε (6)
Using the relations in Equations (5,6) one can relate the coefficients for mass, spring constant
damping coefficient in different frames of reference used in Equations (1-4).

2.2 Stiffness
The gas within the bubble acts as a spring by changing its pressure as it contracts and expands.
If the gas can be modeled to follow a polytropic law PV γ = constant, then for a small change
(increase) in volume dV , the change (decrease) in pressure is

dP = −γP0
dV

V0
(7)

where P0 is the equilibrium pressure. The force acting on the bubble due to this change in pressure
is F = 4πR2

0dP . Using this relation with the relations in Equations (5,7), force can be related
to change in radius as F = −12πR0P0Rε. Hence from the analogy of a spring (F = −kx), the
equivalent stiffness of the bubble in the radius-force frame can be derived as

krf = 12πγR0P0 (8)

Using the relations in Equations (5,6), we can express the stiffness in other frames of reference as
krp = kvf = 3γ

R0
P0 and kvp = γ

V0
P0.

2.3 Inertia
In class it was shown that for a pulsating sphere, surrounding fluid can be assumed to be incom-
pressible for small distances from the surface of the sphere. The incompressibility condition means
that the flux ~uA is constant on a spherical shell around the sphere. Hence a pulsating bubble
would setup a significant amount of liquid around it into motion, which contributes to the inertia
of the system. Specific acoustic impedance for a pulsating sphere emitting spherically symmetric
radial waves in the compact limit is given by Z = ρ0c0[(KR0)

2 + i(KR0)] (derived in class). We
can define a related quantity, radiation impedance (Zrad) as the ratio of force to particle velocity,
hence Zrad = Z4πR2

0. Hence the inertia of this system in the radius-force frame is then given by

mrf = Im{Zrad}/ω = ρ4πR3
0 (9)

Using the relations in Equations (5,6), we can express the effective mass in other frames of reference
as mrp = mvf = ρR0 and mvp =

ρ
4πR0

.

2.4 Damping
The real part of Zrad is the resistive contribution, brf = 4πR2

0ρ0c0(KR0)
2 and is responsible for

the damping that results from the radiation of energy away from the bubble as sound. Thermal
conduction and viscous dissipation also contributes to damping (Leighton 2012) and the derivation
of relations for those are beyond the scope of this report.

We can thus define the resonance frequency (Minnaert frequency) of the bubble (analogous to
spring-mass system) as

ω =

√
krf
mrf

=
1

R0

√
3γP0

ρ
(10)

which was first derived by Minnaert (1933) based on energy arguments. The effect of surface tension
is known to change the frequency by modifying the effective stiffness coefficient (see, Appendix A).
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3 Non-spherical bubble oscillations
Lamb (1932) studied the shape oscillations of inviscid drop immersed in a fluid. Following his
analysis, suppose there is bubble of radius of R0 in a fluid of density ρ and the shape of the bubble
be perturbed in an oscillatory fashion ε, given by

R(t) = R0 + ε(θ, φ, t) = R0 +AnY
0
n cos(ωnt) (11)

where Y 0
n is the zonal spherical harmonic of mode n, An is the amplitude and ωn is the temporal

oscillation frequency. In the incompressible limit, the linearized wave equation reduces to Laplace
equation for velocity potential. Hence using the method of separation of variables, the radial
component equation can be derived as

1

r2
∂

∂r

(
r2
∂φr
∂r

)
− n(n+ 1)

r2
φr = 0 (12)

and solving this, we can obtain the velocity potential outside the bubble as

φ =
ωnR0

n+ 1

(R0

r

)n+1

AnY
0
n sin(ωnt) (13)

that satisfies the boundary condition for the radial wall velocity

∂ε

∂t
|r=R0

=
∂φ

∂t
|r=R0

(14)

Now, calculating the acoustic pressure, we obtain

p = −ρ∂φ
∂t

= −ρω
2
nR0

n+ 1
(
R0

r
)n+1AnY

0
n cos(ωnt) (15)

Hence the pressure emitted by the zeroth mode (n = 0) decays as r−1 (a monopole), whereas
for higher order modes (n > 1), pressure field decays much quicker as r−(n+1) and hence are
more weaker when compared to the zeroth mode. However, Longuet-Higgins (1989) extended this
study with second-order perturbation theory and showed that the second-order terms results in a
monopole radiation (r−1) for higher order modes. But there is no experimental evidence supporting
this multi-frequency emission behavior for bubbles (Medwin & Beaky 1989) in real world forcing
conditions. Hence this behavior of multi-frequency emission by bubbles has been ignored in the
subsequent studies.

4 Excitation mechanism: Entrainment
Bubbles are excited during the entrainment process due to a sudden change in the pressure. Figure
1 shows the entrainment process along with the pressures in the bubble at various times. Pressure
of the gas inside the bubble is patm until the surface of the liquid closes, but increases to patm+ρgh+
2σ/R immediately after the liquid surface closes. This increase in pressure compresses the gas and
the inertia carried by the surrounding liquid further compresses the bubble to an extent such that
a pressure of approximately patm + 2(ρgh+ 2σ/R) is achieved, assuming a linear small-amplitude
pulsation. Further, the bubble oscillates back and forth until all the energy is damped.

Hence the far-field pressure can be modeled as p(r, t) = PA
R0

r e
−β(t−r/c), where PA is the

pressure amplitude at the bubble wall given by PA = (2σ/R+ρgh)ei(ωt−kr). In real world scenarios,
entrainment is due to a breaking wave or rainfall on free surface, which entrains bubbles near the
water surface and hence this is typically modeled as a dipole given by

P (r, θ, t) = (
2σ + ρghR0

r
)2hkcosθe−β(t−k/r)ei(ωt−kr) (16)

Experimental results by Pumphrey & Elmore (1990) for the entrainment of bubbles in a drop-
surface impact problem also matches fairly well with this model prediction.
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Figure 1: Schematic showing the change in internal pressure of the bubble during the entrainment
process.

5 Synthesizing sound from underwater bubbles

5.1 Incompressible fluid simulation
Direct computation of sound from underwater bubbles could be expensive as was already pointed
out. Hence an incompressible flow solver is used here to solve for both the phases (air and water).
Fluid simulation requires solving an incompressible, variable-density Navier-Stokes equations along
with the surface tension

ρ(
∂u

∂t
+ ~u · ~∇~u) = −~∇p+ ~∇ · (2µD) + σK~n (17)

and a volume fraction advection equation ∂c
∂t +

~∇ · (c~u) = 0 and a projection method to achieve
divergence free condition for the velocity. Where ρ and µ are spatially varying density and viscosity
given by ρ = cρ1 + (1 − c)ρ2 and µ = cµ1 + (1 − c)µ2. We use an open source package Gerris
(Popinet 2003) to solve the equations along with the AMR capability to speed up the calculation.
An example problem of a falling droplet into a pool of water in a container is chosen as the test
case in the present study (see, Appendix B for further details and results).

5.2 Frequency estimation

Figure 2: Domain for the
solution of interior Laplace
equation.

Then to calculate the frequency of the sound emitted by each bub-
ble using the Equation 10, we need to compute the effective stiffness
k using the Equation 8 and an effective mass m (Equation 9). The
frequency computed this way do not take into account the effect of
near-field geometry and will not in general produce the observed
increase in frequency as the bubble rises to the surface (Langlois
et al. 2016). Hence a more sophisticated method proposed by Stras-
berg (1953) is used here, wherein an interior Laplace equation in
the liquid region (Figure 2) surrounding the bubble is solved for
each bubble to calculate the effective mass m (see, Appendix C for
more details on the equations used). This calculation requires the
geometry information of the air-water interface (free surface and
surface of the bubbles generated due to drop impact) and can be
obtained from the solution of the fluid flow solver. Laplace equa-
tion can be solved using the boundary integral formulation for the
Laplace’s equation.

5.3 Radiation
Once the frequency from each of the bubble is computed, an exterior Helmholtz problem (~∇ · p+
k2p = 0) can be solved for the radiation of the sound from the air-water interface (free surface) to
the listener position (3). Boundary conditions at the free surface can be obtained from the solution
of the interior Laplace equation (Section 5.2). To solve exterior Helmholtz BVP, an open-source
bempp solver (Śmigaj et al. 2015) can be used. A more challenging, practical task here is to
convert the volumetric data obtained from the fluid solver into a surface mesh that can be used in
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Figure 4: Overview of the bubble sound synthesis techniques.

Figure 5: Comparison of frequency response for a single bubble entrainment from the simulation
(top) with the experiments (bottom).

the bempp solver. This requires writing plugins to convert the volumetric data from "vtk" format
to surface data in "msh" format, which can be achieved in the future.

Figure 3: Domain for the solution
of exterior Helmholtz problem.

Bempp is a C++ library that uses Galerkin discretizations
of boundary integral equations to solve Laplace, Helmholtz
and Maxwell equations. A sample solution of scattering of
sound solved using bempp is included in Appendix D for the
illustration of capability to solve Helmholtz equation.

5.4 Synthesis
Additionally, the excitation of the bubble during the process
of entrainment, bubble breakup, coalescence and popping can
be modeled as forces that are active for a short period of time.
Langlois et al. (2016) lists the forces used to model these phe-
nomenon, that are estimated from previous experimental stud-
ies. Hence after every time step of the fluid simulation, the
bubble geometry is processed to detect entrainment, breakup,
coalescence and popping phenomenon. The appropriate forc-
ing functions are activated and the frequencies are estimated
and the radiation is solved. Figure 4 summarizes, the process of synthesizing sound generated from
underwater bubbles using incompressible fluid simulation techniques.

Frequency response from the simulation of a single bubble entrainment, as computed by Langlois
et al. (2016) is compared against the experimental measurement in Figure 5 and shows the high
accuracy of the prediction obtained from the model.
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6 Summary
Direct computation of sound from the bubbles underwater is expensive. This warrants the de-
velopment of alternate methods to compute sound. Hence, the prediction of sound generated by
bubbles using reduced-order models along with an incompressible fluid flow solver is computation-
ally less expensive. This report includes the summary of derivation of such models along with the
procedure to synthesize sound developed by Langlois et al. (2016).
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Appendix B: Fluid simulation of a falling drop using Gerris

A falling drop was simulated with a density of 1000 for water, 1 for air, viscosity of 10−5 for both the
phases, surface tension of 0.072, gravity of 9.81. Non-dimensional initial radius of the drop is r = 1/12
and is initially located a distance of 2r from the free surface.

Using the AMR capability, grid was refined closest to the interfaces and had an equivalent resolution
of 1283. Simulation was performed in serial on the local workstation and took around 8hrs to complete.
Input script used to perform the simulation is included below along with results in the Figure below.

1 1 0 GfsSimulat ion GfsBox GfsGEdge {} {
2 Global {
3 #de f i n e rad iu s 1 . / 1 2 .
4 #de f i n e h 2 . / 1 2 .
5 #de f i n e rho (T) (1000 .∗T + (1 . − T) )
6 }
7 Time { end = 10 }
8 # I n i t i a l r e f inement
9 Ref ine 5

10

11 VariableTracerVOF T
12 I n i tF r a c t i on {} T ({
13 double drop = rad iu s ∗ rad iu s − ( x∗x + (y−rad iu s ) ∗(y−rad iu s ) + z∗z ) ;
14 double f s = y + h ;
15 r e turn i n t e r s e c t i o n ( drop ,− f s ) ;
16 })
17 VariableCurvature K T Kmax
18 SourceTension T 0.072 K
19 PhysicalParams { alpha = 1 ./ rho (T) }
20

21 AdaptGradient { i s t e p = 1} { maxlevel = 7 cmax = 1e−2 } T
22

23 SourceV i s co s i ty {} 0.00001
24

25 Source {} V −9.81
26

27 # Dynamic load−ba lanc ing
28 EventBalance { i s t e p = 1 } 0 .1
29

30 OutputTime { i s t e p = 1 } l og
31 OutputBalance { i s t e p = 1 } l og
32 OutputPro ject ionStats { i s t e p = 1 } l og
33 OutputTiming { i s t e p = 100 } l og
34

35 GModule g f sv i ew
36 OutputView { s tep = 4e−3 } { ppm2theora −s 2048 x1080 > f a l l i n g d r o p . ogv } {
37 format = PPM width = 2048 he ight = 1080
38 } f a l l i n g d r o p . g fv
39

40 # Save a ( s i n g l e ) snapshot every 100 t imes teps
41 OutputSimulation { i s t e p = 1 } snapshot−%ld . g f s { }
42 OutputSimulation { i s t e p = 1 } snapshot−%ld . vtk { format=VTK}
43 OutputSimulation { i s t e p = 1 } stdout
44

45 }
46 GfsBox {}
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t=0 t=0.2 t=0.2467

t=0.272 t=0.4636 t=0.5173

t=0.9295 t=1.242 t=1.976

Bottom view looking under the free surface

entrained
bubbles

drop

Figure 1: Results of the simulation of a falling droplet, showing the bubbles entrained.
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Appendix Procedure to calculate Radiation mass effeeline mass

Equating kinetic energyofthe oscillator tothe kinetic
Chuggof the

surrounding fluid
12 m

2 KEFD had

In volume pursue flame units of mini fu II II MI

auf
Bubbles are compactsomas Surrounding fluidis incompressible

ka 0.0136 and frrotational

Henne it satisfies
ooo F2047 0 for Ji Er

solving forlo
ooo KEF 1 51 dr

2

Meff f Fol dr

Green's first identity

ftp.rdv friends

if 01710 IT Flo du 14070 Fids

f Fol tt o dv 0F2odv fo F0 rids
r u s

using this for above problems

15015dr Later LolFeds
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Hence tocompute 01 an interior haplan problem needs tobe solved

10 To solve laplace equation inthis region
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12

2
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2T

10 0 is the BC atft

rigid walls k
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p fo infoof uniform on the surfaceofthebubb
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Once the interior Laplace equation is solved o
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to M Mb Only contribution from
thebubblesurface
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Volume velocity is givenby in a fadds2h
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µ 14
in the Laplace equation 0 canbe compiled andhence mud
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0.1 Appendix B: Solution of scattering from a unit sphere

Let the incident wave be uinc(x) = eikx

and the governing equation is the Helmholtz equation ∆u + k2u = 0
where u = us + uinc is the total acoustic field and us satisfies the Sommerfeld radiation condi-

tion.

In [ ]: import bempp.api
import numpy as np

In [2]: #wavenumber
k = 15.

In [3]: #spherical mesh
grid = bempp.api.shapes.regular_sphere(5)

In [4]: #piecewise constant basis function
piecewise_const_space = bempp.api.function_space(grid, "DP", 0)

In [6]: #intialising boundary operators
identity = bempp.api.operators.boundary.sparse.identity(

piecewise_const_space, piecewise_const_space, piecewise_const_space)
adlp = bempp.api.operators.boundary.helmholtz.adjoint_double_layer(

piecewise_const_space, piecewise_const_space, piecewise_const_space, k)
slp = bempp.api.operators.boundary.helmholtz.single_layer(

piecewise_const_space, piecewise_const_space, piecewise_const_space, k)

lhs = 0.5 * identity + adlp - 1j * k * slp

In [7]: #defining rhs
def combined_data(x, n, domain_index, result):

result[0] = 1j * k * np.exp(1j * k * x[0]) * (n[0]-1)

grid_fun = bempp.api.GridFunction(piecewise_const_space, fun=combined_data)

In [8]: #using gmres to solve
from bempp.api.linalg import gmres
neumann_fun, info = gmres(lhs, grid_fun, tol=1E-5)

1

D
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In [10]: #choosing the domain of interest

Nx = 200
Ny = 200
xmin, xmax, ymin, ymax = [-3, 3, -3, 3]
plot_grid = np.mgrid[xmin:xmax:Nx * 1j, ymin:ymax:Ny * 1j]
points = np.vstack((plot_grid[0].ravel(),

plot_grid[1].ravel(),
np.zeros(plot_grid[0].size)))

u_evaluated = np.zeros(points.shape[1], dtype=np.complex128)
u_evaluated[:] = np.nan

In [11]: #evaluating solution in the domain of interest
x, y, z = points
idx = np.sqrt(x**2 + y**2) > 1.0

from bempp.api.operators.potential import helmholtz as helmholtz_potential
slp_pot = helmholtz_potential.single_layer(

piecewise_const_space, points[:, idx], k)
res = np.real(np.exp(1j *k * points[0, idx]) - slp_pot.evaluate(neumann_fun))
u_evaluated[idx] = res.flat

In [17]: #plot the solution
%matplotlib inline

u_evaluated = u_evaluated.reshape((Nx, Ny))

from matplotlib import pyplot as plt
fig = plt.figure(figsize=(10, 8))
plt.imshow(np.real(u_evaluated.T), extent=[-3, 3, -3, 3])
plt.xlabel('x')
plt.ylabel('y')
plt.colorbar()
plt.title("Scattering from the unit sphere, solution shown in the plane z=0")

Out[17]: <matplotlib.text.Text at 0x7f76004f7400>

2
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