
Solution of the 2D Incompressible Navier-Stokes Equations
on a Moving Voronoi Mesh

Ronald Chan, Mike Howland, Suhas Jain Suresh, and Aaron Wienkers

February 17, 2018

1 Introduction
An incompressible 2D Navier-Stokes solver was implemented on a moving Voronoi mesh grid. The
implementation of general Voronoi polygons for computational fluid dynamics (CFD) algorithms
has recently gained interest due to the desire to simulate flows with complex physical phenomena.
The solver has been implemented on a periodic domain and has been verified using a viscous
Taylor Green vortex, diffusion of a shear layer, and simulations of the development of Kelvin-
Helmholtz instabilities. The control volumes (CVs) are advected with the local velocity field to
utilize the advantages of a Lagrangian fluid dynamics formulation. Python and the associated
scientific computing packages [3] were used for coding. The algorithm is shown to be first order
convergent in space and time.

1.1 Motivation
A fundamental choice in the design of any CFD algorithm is the selection of the mesh type.
Typically and historically, CFD simulations have been performed on Eulerian grids which have high
numerical errors associated with regions of local complexity (i.e. near physical barriers) or in flows
with large mean bulk velocities [2]. To address some of these challenges, there has been a recent
push toward Lagrangian based flow solvers in which the CVs are free to advect and deform according
to the flow field. As such, significant topological complexities are introduced in mixed element CV-
based advection schemes. In order to reduce the topological complexity, general Voronoi polygon
mesh schemes have been proposed [1, 2]. As recently described in the CTR Summer Program
2016 by Sanjeeb Bose, 3D Voronoi schemes have the potential to significantly increase the scale
resolving capabilities in complex terrain simulations at high Reynolds numbers [5].

Voronoi polygons are computed on a domain of n points such that each polygon has one
generating point and that each point in the associated polygon is closer to that generating point
than any other [4]. The Voronoi tessellation is continuously adaptive in nature and has sharp
resolution at discontinuities. There is also reduced numerical diffusion and mixing associated with
the Voronoi tessellation. The points for the Voronoi tessellation may be selectively seeded near
regions of physical or flow complexity in order to decrease numerical uncertainty.

2 Voronoi Mesh
Definition: Let P be the set of n sites in the domain. Then, point q lies in the cell corresponding
to a site Pi if and only if

dist(q, Pi) < dist(q, Pj) ∀Pj ∈ P, j 6= i (1)

where dist(a, b) is the Euclidean distance between a and b. Voronoi diagrams can be generated in
Python using the open-source library scipy.spatial.voronoi [6]. It takes in the locations of the sites
as input parameters and generates an unbounded Voronoi diagram, consisting of infinite half-edges
as shown in Figure 1. It returns the locations of the two vertices of the ridges (for finite half-edges)
or one vertex of the ridge (for infinite half-edges) indexed by the ridges between two cells.

This library uses Fortune’s line sweep algorithm to construct the Voronoi diagram, wherein
a horizontal line sweeps the set of sites from the top to the bottom of the domain generating a

1



Figure 1: Schematic of a Voronoi diagram and its construction using the line sweep algorithm. The
solid black curves on the right figure represent the beach line, the horizontal line represents the
sweep line and the red squares represent the break points.

beach line - a minimum locus of the points equidistant from the sites above the sweep-line and
the sweep-line itself as shown in Figure 1 - and the trace of breakup points form the ridges of the
Voronoi diagram.

2.1 Properties of Voronoi Tessellations
Voronoi tessellations have some advantageous properties compared to a traditional structured
mesh:

• Ridges are perpendicular to the line connecting the sites by construction. This increases the
accuracy of gradient calculations and in turn the accuracy of fluxes.

• Voronoi tessellation meshing is a fully determined problem with a unique solution. Thus
inverted cells are prevented and also the problem becomes easily parallelizable.

• The generation sites are not coincident with the barycenters of the cells. This decreases the
accuracy of volume integrals when using the midpoint rule, and is necessary to take advantage
of these other properties.

2.2 Mesh Types
Since the generated Voronoi diagram is by default an infinite diagram, the sites in the domain are
repeated (for a periodic box) or mirrored (for a bounded domain) across all the boundaries of the
domain prior to generating the mesh as shown in Figure 2.

Figure 2: Illustration of bounded domain and periodic domain created by mirroring and repeating
the sites outside the domain of interest.

2.3 Meshing
The scipy.spatial.voronoi library returns vertex locations which is sufficient to determine all
the properties of the Voronoi diagram. With the vertex location outputs generated, each of the
properties explicated in §A can be calculated and stored for future use in constructing the numerical

2



algorithms. The update of these properties is done by looping over the faces instead of the sites
so that the complexity of the meshing process is O(N) as shown in Figure 3.

Figure 3: Complexity of meshing process estimated to be O(N) up to 1 million grid cells.

The mesh properties calculated were validated for basic mesh types such as Cartesian grids and
stretched grids (shown in Figure 4) by ordering the input sites before the implementation of the
actual solver for a generic Voronoi tessellation.

Figure 4: Cartesian grid and stretched grid generated using the scipy.spatial.voronoi library.

3 Numerical Methods

3.1 Control Volume Advection
The CVs are advected directly with the local cell center velocities, and marched forward in time
using the first order explicit Forward Euler. The locations of the CV centers are approximated by

xn+1
i = xn

i + ∆tun
i (2)

where ui is the velocity and xi is the corresponding location of the cell center for the i-th CV
at time n. Thus the overall solution will be at most first order [1]. As a result of the direct
cell-center advection, the nonlinear advection terms in the Navier-Stokes equations do not appear
in the formulation, and so the Lagrangian derivatives may be evaluated directly.

3.2 Differential Operators on a Voronoi Mesh
Following the analysis in Ref. [1], discrete operators for the Laplacian, divergence, and gradient
were formulated for the Voronoi problem. These operators (detailed in §A) are then used in
constructing the numerical solution to the Navier-Stokes equations for the 2D system. Importantly,
since the CVs are advected directly with the flow, the nonlinear advection terms may be neglected
in these operators.

3



3.3 Navier-Stokes Solver
Python libraries are used for the sparse linear algebra solver to reduce the programming complexity
of the code. The Scientific Tools package in Python (SciPy) [3] contains cheap direct and iterative
sparse matrix solvers. For the matrices in this problem, the fastest routine (over CG variants or
GMRES) was determined to be the direct solver scipy.sparse.linalg.solve. This algorithm
rearranges the matrix into a nearly-banded form in order to back-solve quickly. Sparse matrix-
matrix products were also computed with SciPy, although data was stored and computed using
numpy, the scientific computing package in Python [3]. The solver algorithms can be seen in §A.

4 Code Validation

4.1 Parameters
The physical solution involves knowledge of the kinematic viscosity ν. In addition, the length of
the domain is given by L in meters. The Reynolds number is then given by Re = U

ν where we
set the reference U to be 1 m/s and the reference length to be 1 m. Other numerical parameters
include the time t in seconds, the number of points along a direction N (generating NCV = N2

CVs and a characteristic grid size ∆x0), and the time step ∆t in seconds.

4.2 Timing
One main detraction from any moving mesh numerical method is the relatively large expense of
remeshing after every timestep compared to that time actually solving the PDE of interest. The
scaling of this additional expense is investigated by solving the Taylor-Green Vortex test problem
using the backward Euler solution scheme described in §3. Figure 5 shows the relative meshing
and solving times scale proportionally to each other even for many degrees of freedom. It should
be noted that other more extreme or less well-behaved tests will spend significantly more time
solving than meshing, but still achieve similar scaling with the problem size, and so the two times
remain within an order or magnitude of each other.

102 103 104

Ntot

100

101

t[
s]

Solving
Meshing

Figure 5: The relative time spent solving and meshing in simulating the Taylor-Green vortex
problem for increasing problem size.

4.3 Convergence
4.3.1 Viscous Taylor-Green Vortex

The canonical test case of the Taylor-Green vortex with a known, analytical solution was used for
the validation and convergence characterization of the code. The Taylor-Green (TG) vortex was
simulated on a periodic domain x, y ∈ [0, 2π] with Re = 6 & 600. Four vortices will be present in
this domain, centered at [x, y] = ([π/2, π/2], [3π/2, π/2], [π/2, 3π/2], [3π/2, 3π/2]). It is important
to keep the Reynolds number for the TG vortex low since the turbulent energy cascade can manifest

4



due to the inherent instabilities present in vortices. The initial conditions for the simulation are

u(x, y) = sin (x) cos (y)

v(x, y) = cos (x) sin (y)
(3)

with the analytical solution

u(x, y) = sin (x) cos (y) e−2νt

v(x, y) = cos (x) sin (y) e−2νt

P (x, y) =
ρ

4
(cos(2x) + cos (2y))e−4νt

(4)

The TG vortex was used to characterize the spatial (discretization) and temporal (N-S solver)
errors in the code. For the purposes of the error convergence, a weighted L2 norm was used,
computed as

E2 =

√∑NCV

i Ai(u∗i − ui)2√∑NCV

i Aiu2
i

(5)

where Ai is the area of the CV, u∗i is the analytical solution at the associated CV, and ui is the
numerical solution at the same CV. The analytical velocities were computed at the final CV center
locations upon the completion of the simulation. The CVs are initially randomly seeded in the
domain.

Figure 6: Example snapshots at t = 0 and t = 2.96 showing the deformation of the Voronoi CVs
with NCV = 2500. Contour colored with u velocity.

Figure 7: Example snapshots at t = 0.06 and t = 2.96 showing the error contributions per CV in
the domain with NCV = 2500. The error is represented as a percentage error in the given CV with
respect to the overall area in the domain, such that each CV is colored with their contributions to
the total error in order to display regions where the local error is pronounced.

The error shown in Figure 7 is shown to be increased near the locations of high magnitude ve-
locities, occurring directly in the middle of two vortex centers. The bulk velocity in this simulation

5



is not significantly large to have Voronoi advantage. Errors are introduced at the locations where
the CVs are significantly deforming and large velocity gradients may be present across the large
deformed CV arising from the fact that the barycenters is not coincident with the cell sites.

4.3.2 Spatial Convergence

In order to characterize the discretization convergence, the TG vortex was simulated at Re = 6
for a range of NCV with a fixed time step. The time step was chosen to be sufficiently small such
that the discretization error is not contaminated with the solver error (∆t << 1/max(NCV )). The
discretization convergence can be seen in Figure 8. The spatial order of accuracy is indeed first
order, as specified in Ref. [1].

10
1

10
2

10
3

√

NCV s

10
0

10
1

10
2

E
r
r
o
r
[%

]

Error

1st Order

Figure 8: Spatial discretization error computed with Eq. 5 showing first order convergence.

4.3.3 Temporal Convergence

In order to characterize the temporal convergence, the TG vortex was simulated at Re = 6 for a
range of time-step sizes ∆t with fixed NCV and for a fixed number of steps. In order to capture
only the temporal convergence of the solver, NCV must be selected such that min(∆t) << 1/NCV .
The solver convergence was computed for backward Euler and Crank-Nicolson solver types. As
mentioned in Ref. [1] the temporal convergence is first order. This was found to be independent
of the solver type, because the Lagrangian cell advection scheme is still first order. Therefore, the
use of the cheaper backward Euler scheme over the more expensive semi-implicit Crank-Nicolson
is justified. The convergence results are summarized in Figure 9.

10
-2

10
-1

10
0

∆t [s]

10
0

10
1

10
2

E
r
r
o
r
[%

]

Error, CN

1st Order

10
-2

10
-1

10
0

∆t [s]

10
0

10
1

10
2

E
r
r
o
r
[%

]

Error,BEuler

1st Order

Figure 9: Solver temporal error computed with Eq. 5 showing first order convergence above a
threshold ∆t.

Notably, as ∆t → 0, the solver convergence is no longer first order. This result is likely due
to the introduction of spatial errors contaminating the first order convergence of the solver. The
temporal error can be approximated as

ετ =
−∆t

2

(
∂2φ

∂t2

)n
j

− v∆x2

6

(
∂3φ

∂x3

)n
j

+O
[
(∆x)4, (∆t)4

]
. (6)

6



Equation 6 carries dependence on ∆x as well as ∆t. As ∆t→ 0, the ∆x error will dominate.

4.3.4 Number of Faces

In addition to the mesh advection scheme, another factor which makes the Voronoi tessellation a
more expensive mesh to use in the numerical algorithms is the larger number of faces per cell on
average. Compared to a Cartesian mesh with 4 faces, or a tetrahedral mesh with 3 faces per cell,
the average number of faces of a randomly distributed Voronoi mesh is nearly constant at 6. Alone,
this is already at least a 50% increase in operations per time step. The evolution of the maximum
number of faces per cell (and so the maximum number of elements in each discrete operator) is
shown in Figure 10. Although there is a trend of an increasing maximum number of faces with the
degrees of freedom of the system, the distribution of Nface (as is the mean) is nearly invariant of
the problem size.

0 1 2 3 4 5 6 7
t/τvortex

0

2

4

6

8

10

12

14

16

N
fa
ce

N=100
N=900
N=2500
N=4900
N=8100

Figure 10: The evolution of the maximum number of faces a single cell contains as the simulation
progresses, and for different resolutions.

4.4 Diffusion of Shear Layer
The diffusion of a shear layer was also investigated to verify the numerical properties of the code
and to validate the code by comparison with expected physical scalings.

In this validation, we devised a numerical setup with periodic boundaries where a forward-
moving (towards positive x) layer is sandwiched between two backward-moving (towards negative
x) regions. This was accomplished through the imposition of the following initial velocity profile

u(y) =
1

2

{
tanh

[
200

(
y +

1

6

)]
− tanh

[
200

(
y − 1

6

)]
− 1

}
, (7)

where the origin of the coordinate system is located at the bottom-left corner of the domain and
y ∈ [0, L]. Figure 11 illustrates this setup for Re = 10, L = 2, ∆x0

L ≈ 6.7×10−3 and ∆t ≈ 3.3×10−3

with snapshots of the flow at the beginning of the simulation and after some time has elapsed. We
see that the shear layer indeed diffuses outwards after some time as expected.

Figure 12 describes the evolution of the total momentum and energy in the system over time.
The first-order accurate advection of the Voronoi cell centers incurs some errors in the time-
advancement of the velocities, which manifest themselves in the conservation of the total momen-
tum. However, we see that the energy of the system decreases over time, reflecting the numerical
dissipation inherent in the developed scheme, as well as indicating the stability of the scheme.

7



Figure 11: Concentration of tracer particles initially confined in the forward-moving (central)
section of a shear layer at (left) t = 0.01 and (right) t = 0.20. The shear layer in the middle
diffuses over time towards the top and bottom regions of the domain, which are initially traveling
backwards.

The periodic boundary conditions allow us to approximate the shear layer as infinite in length.
Although the Reynolds number of the system is not exceeding low, we can, to some approximation,
analyze the system in a manner similar to Stokes’ first problem for the flow in a semi-infinite region
above an impulsively driven flat plate, which yields a growth rate of t0.5. (This approximation
is justified for small times t � 1 when the elapsed time is much smaller than the characteristic
inertial time scale.) Figure 13 plots the growth of the shear layer in our simulation, which yields a
reasonably close growth rate of t0.57. This disagreement is attributed to the finite vertical bounds
of the domain which, for this periodic domain increases the momentum transfer.

Figure 12: Evolution of momentum (left) and energy (right) in the computational domain over
time.

Figure 13: Evolution of the width of the shear layer over time in linear (left) and logarithmic
(right) axes.

8



4.5 Kelvin-Helmholtz Instability
The final test case considered in validating this implementation is the Kelvin-Helmholtz shear layer
instability. The problem set-up is physically similar to that of Section 4.4 but with a much higher
Reynolds number. With little diffusion, the vortex sheet initialised at the shear layer interfaces
rolls up into the prototypical vortex rolls reminiscent of a breaking wave. Linear instability analysis
for a shear layer with constant density gives an ideal growth rate of

σ =
1

2
k∆U (8)

for small amplitude perturbations. Thus as expected, small scale perturbations on the interface
grow the fastest (in the absence of surface tension).

An initial n = 2 mode perturbation, v′ = sin(kx), was given to the background shear with
v = ±1/2 to seed the instability so that the ideal growth rate is σ = 2π. The ensuing evolution
after 0.85 e-folding times is displayed in Figure 14, showing the tracer concentration field which
(solely for visualization purposes) was allowed to diffuse at the same rate as momentum (ν).

Figure 14: Tracer concentration showing the evolution of the Kelvin-Helmholtz instability for
Re = 103 of an initial discontinuous shear band, shown at t = 0.85 e-folding times for NCV = 1502

cells (left) and NCV = 502 cells (right).

The Lagrangian nature of this technique helps to greatly reduce artificial diffusion of the so-
lution, allowing better representation of sharp discontinuities and interfaces. This means the
stream-wise velocity discontinuity is more faithfully captured, and consequently so is the shear
instability and growth rate.

To achieve the ideal growth rate, the damping rate (due to numerical diffusivity) must be much
smaller than the instability growth rate, σ. This is shown to be the case for the moving Voronoi
mesh even with as few as NCV = 502 cells, as seen in Figure 15. The initial disagreement before
t ∼ 0.1 is attributed to the phase adjustment of the two shear layers. The initial perturbation
independent of y is not actually the eigenfunction of this modified shear-band Kelvin-Helmholtz
instability. This is apparent from the staggered rolls between the top and bottom layers in Figure
14. Finally, saturation occurs near an amplitude of ∼ 1.5 due to nonlinear effects which are not
modeled by the linear stability analysis. After saturation, and with such low resolution, stable
compact vortices remain which diffuse over much longer times that the simulation.

9



0.0 0.2 0.4 0.6 0.8 1.0
t

10−2

10−1

v r
m
s

Voronoi
Static
Static Bulk Flow
Ideal

Figure 15: Vertical velocity amplitude growth using NCV = 502 cells, showing agreement with the
ideal Kelvin-Helmholtz growth rate. This is juxtaposed with the evolution using a static Cartesian
grid, which in extreme cases produces an artificially stable solution.

This test was also conducted with an arbitrary Galilean boost and achieves identical results.
Static-mesh codes, however, are not invariant to inertial boosts, and results in an increased trun-
cation error scaling with the boost velocity. This is clearly the case from Figure 15. Although
the instability is similarly captured on a static Cartesian mesh, when a mean bulk flow, vb = 100
is added to the initial condition, the numerical diffusion overwhelms the ability of the shear layer
to become unstable, and immediately decays. Thus a static-mesh scheme has difficulty resolving
small fluctuations, resulting in an artificially stable system (producing results similar to Section
4.4). Example snapshots of the static mesh codes for NCV = 322, 642 are reproduced in §A.

5 Conclusions
In this work we have designed, implemented, and validated a 2D incompressible Navier-Stokes
solver on a moving Voronoi mesh in Python. The scheme has been shown formally to be first
order, validated with an analytical viscous Taylor-Green Vortex test case. The scheme has also
been validated with a viscous shear layer and Kelvin-Helmholtz instabilities.

The implementation of this Voronoi scheme have revealed advantages over Cartesian grids
in: (1) better effective resolution due to Lagrangian nature and (2) Galilean invariance. These
advantages are seen specifically with the K-H instability validation test case, where the introduction
of a bulk velocity in the base flow on a coarse mesh eliminates the capabilities for a Cartesian
grid based code to resolve the instabilities through the growth rate metric. Conversely, meshing
increases the cost by about 2x, and the additional faces by another 2x. Additionally, extending
this moving Voronoi mesh method to an explicit or local Riemann-based schemes would allow for
easy iteration on the cells and parallelization. However, careful consideration of the stable CFL
number for the variable ∆x moving mesh is needed if utilizing an explicit scheme.

Future work would include the formulation of Dirichlet boundary conditions in order to allow
for the formulation of complex geometries and immersed boundaries.

10



A Appendix

A.1 Voronoi Mesh Properties
• N_neighbors - a list that stores the number of neighbors of each cell.

• neighbors - a list of lists that stores the site indices of the neighbors of each cell.

• length - a list of lists that stores the vectors to the neighbor site locations relative to its own.

• face - a list of lists that stores the lengths of the ridges between the cell and its neighbors.

• face_center - a list of lists that stores the vectors to the centers of the ridge locations relative
to the location of the site.

• grad_area - a list of lists that stores the values of the quantity ∂Ai/∂Xj .

• grad_area_t - a list of lists that stores the values of the quantity ∂Aj/∂Xi.

• is_boundary - a list that stores True if the cell is a boundary cell, and otherwise stores False.

• boundary - a list of lists that stores "Internal","East","West","North", or "South" depending
on the location of the ridge.

A.2 Differential Operators on a Voronoi Mesh
Laplacian Ln:

∇2ϕ ≈ 1

A

∫∫
∇ · ∇ϕ dA (9)

≈ Lnϕ ≡ 1

Ai

Nbi−1∑
j=0

(
fi,j

ϕj − ϕi
‖li,j‖

)
, (10)

Divergence Dn:

∇ · u = ∇ · usurf ≈
1

A

∫∫
DA

Dt
dA =

1

A

∫∫
u · ∇A dA (11)

≈ Dnu ≡ 1

Ai

Nbi−1∑
j=0

(
uj ·

∂Ai
∂Xj

)
(12)

=
1

Ai

Nbi−1∑
j=0

(
uj ·

fi,j
2

[
li,j
‖li,j‖

+
li,j − 2ci,j
‖li,j‖

])
, (13)

(14)

Gradient Gn:

∇ϕ ≈ 1

A

∫∫
∂ϕ

∂x
dA (15)

≈ Gnϕ ≡ 1

Ai

Nbi−1∑
j=0

(
−ϕj

∂Aj
∂Xi

)
(16)

=
1

Ai

Nbi−1∑
j=0

(
ϕj
fi,j
2

[
li,j
‖li,j‖

− li,j − 2ci,j
‖li,j‖

])
. (17)

A.3 Solvers
A.3.1 Backward Euler Solver

(I − ν∆tLn)u∗i = uni

DnGn∆P = Dnu∗i

un+1
i = u∗i −Gn∆P

(18)

11



A.3.2 Crank-Nicolson Solver

(I − ν∆tLn)u∗i = (I + ν∆tLn)− 1

2
∆tGnPn

u∗∗i = u∗i +
1

2
∆tGnPn

∆tDnGnPn+1 = 2Dnu∗∗i

un+1
i = u∗∗i −

1

2
∆tGnPn+1

(19)

A.4 Kelvin-Helmholtz Instability Static Code Validation

Figure 16: Tracer concentration showing the evolution of the Kelvin-Helmholtz instability for
Re = 103 of an initial discontinuous shear band, shown at τ = 0.85 e-folding times for NCV = 322

on a uniform Cartesian grid without a bulk translational velocity ub = 0 (left) and with bulk
translational velocity ub = 100 (right).

Figure 17: Tracer concentration showing the evolution of the Kelvin-Helmholtz instability for
Re = 103 of an initial discontinuous shear band, shown at τ = 0.85 e-folding times for N = 642 on
a uniform cartesian grid without a bulk translational velocity ub = 0 (left) and with translational
bulk velocity ub = 100 (right).

References
[1] Börgers, C. and Peskin, C. S. "A Lagrangian method based on the Voronoi diagram for the

incompressible Navier Stokes equations on a periodic domain." The Free-Lagrange method;
Proceedings of the First International Conference, Hilton Head Island, SC, March 4-6, 1985.

[2] Springel, Volker. "Hydrodynamic simulations on a moving Voronoi mesh." arXiv preprint
arXiv:1109.2218 (2011).

[3] Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific Tools for Python, 2001-,
http://www.scipy.org/ [Online; accessed 2017-03-23].

[4] Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier
mémoire. Sur quelques propriétés des formes quadratiques positives parfaites.. Journal für die
reine und angewandte Mathematik (Crelle’s Journal), 1908(133), doi:10.1515/crll.1908.133.97

12



[5] Bose, Sanjeeb: Large Eddy Simulation for Design. CTR Summer Program 2016. Stanford, CA.

[6] https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Voronoi.html.

13


	Introduction
	Motivation

	Voronoi Mesh
	Properties of Voronoi Tessellations
	Mesh Types
	Meshing

	Numerical Methods
	Control Volume Advection
	Differential Operators on a Voronoi Mesh
	Navier-Stokes Solver

	Code Validation
	Parameters
	Timing
	Convergence
	Viscous Taylor-Green Vortex
	Spatial Convergence
	Temporal Convergence
	Number of Faces

	Diffusion of Shear Layer
	Kelvin-Helmholtz Instability

	Conclusions
	Appendix
	Voronoi Mesh Properties
	Differential Operators on a Voronoi Mesh
	Solvers
	Backward Euler Solver
	Crank-Nicolson Solver

	Kelvin-Helmholtz Instability Static Code Validation


