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1 Introduction
Many engineering applications and natural phenomena require accurate understanding and treat-
ment of interfaces between difference phases of matter. Whether one is interested in capillary
flows in porous media, blood flow with suspension of blood cells or lubrication, at the interface
between two phases there is a big separation in scales which introduces multiphysics and geometric
complexities [10].

The velocity boundary condition across a solid-fluid interface has been especially debated,
despite more than a century of study of this problem [4, 9]. This condition defines the transfer of
tangential momentum. Most engineering problems are solved by assumption of no-slip velocity on
the wall, but in cases such as moving contact line (MCL) this boundary condition breaks down
[10, 6]. There have been advocates for slip boundary conditions since Navier [3] and Maxwell [2],
but these models assume constant slip length which experimentally has been proven to be incorrect.

In this project we use MD simulations to support the unified slip boundary condition as pro-
posed by Thalakkottor and Mohseni [7]:

Us = Lsδ · ∇u · s (1)

where Us is the slip velocity, Ls is the slip length, δ is the unit direction vector of incident fluid
molecules, u is the fluid velocity adjacent to the wall and s is the wall-tangent unit vector. This
relation is based on previous work by Thompson and Troian [8], who showed that for single-phase
Couette flow, the slip length and shear rate for a variety of conditions collapse on a single curve
when properly scaled:

Ls

Lo
s

=

(
1− γ̇

γ̇c

)−1/2

(2)

where Lo
s and γ̇c are the asymptotic values of the slip length and the shear rate for the corresponding

conditions.
We do this through two simple simulations: a single-phase Couette flow and a two-phase Couette

flow. In addition to this we study two other problems which concern fluid flow in nanoconfined
pores: nanodroplet in shearing flow between two plates and a sliding nanodroplet in a channel
under the effect of a body force.

The rest of this report is organized as follows. In Section 2, we present the computational and
simulation details, and define the problems. Then, in Section 3 we explain the findings through data
analysis of the simulations described in the previous section. Finally, in Section 4 we summarize
the key results and propose further directions for this study.

2 Methods and Problem Description
The simulations for this project are all run in LAMMPS with standard 12-6 Lennard-Jones po-
tential (pair_style lj/cut). A cut-off radius of rc = 2.5σ is used. Fluids are maintained at
temperature of T = 1.1ε/kB with temperature rescale thermostat (fix temp/rescale). The ther-
mostat enforces rescaling every 200 steps with window size of 0.02 and a fraction of 1. Each time
step is 0.002 τ .
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Figure 1: Schematic of the problems setup: Single-phase Couette flow (left), Moving contact line
(right).
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Figure 2: Schematic of the problems setup: Nanodroplet in a shearing flow (left), Sliding drop in
a channel (right).

The problems we are trying to study are shown schematically in Fig. 1-2. An infinitely long
channel is bounded by two parallel walls. The channel is periodic in x and z directions, and we
use non-periodic and shrink-wrapped boundary condition in the y-direction. In the Couette flow
problems (Fig. 1 and 2a) the walls are moving in opposite directions with constant velocity U . In
the sliding drop problem, we are applying a uniform body force on all of the fluid in the x-direction.

For all problems, we use a domain size of 153σ× 27.4σ× 27.4σ. Here there are total of 117,114
atoms, 81,153 of which are in the fluid and 35,961 in the solid walls. The number of atoms in the
walls increases proportionally when we change the wall density. The fluid number density in all
simulations is 0.73σ−3.

In problems where we define a wall velocity U , we vary this value to explore different applied
shear rates on the fluid. The values of U studied are between 0.17 and 5.5 σ/τ . To prescribe this
velocity to the solid walls, we use the velocity command. The velocity magnitude on both walls is
equal, but its direction is opposite; with the top wall moving to -x and bottom wall moving to +x.
We also use the fix setforce command to assign zero force on the walls, i.e. prevent wall-wall
interactions or forces exerted from the fluid on the walls. In the sliding drop problem, where we
apply a body force on the fluid, to study range of conditions we vary the body force magnitude to
0.01, 0.05, 0.1, 0.5 and 1 ε/σ. The body force is prescribed using the fix gravity command.

Finally, to explore wall-smoothness and effect of fluid wettability on slip length, we vary the
unlike pair Lennard-Jones potential parameters for this problem. The droplet problems are studied
only for the case 1 parameters. The parameters for the wall-fluid pair and fluid-fluid pair interac-
tions are given in Table 3, where different cases corresponds to different slip lengths at the wall.
Parameters εf1f2 and σf1f2 are chosen such that the force between two fluids is purely repulsive,
which results in preserving immiscibility of the two fluids.
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Case εwf/ε σwf/σ ρw/ρ εf1f2/ε σf1f2/σ

1 1.0 1.0 1.1 0.2 2.0
2 0.6 1.0 1.1 0.2 2.0
3 0.6 0.75 4.5 0.2 2.0
4 0.4 0.75 4.5 0.2 2.0

Table 1: Lennard-Jones parameters for wall-fluid (wf) and fluid-fluid (f1f2) interactions.
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Figure 3: Averaged profiles of streamwise velocity as function of the wall normal coordinate for
single-phase (left) and two-phase (right) Couette flow.

Each problem was post-processed differently depending on the quantities we were after. In
the Appendix, we present representative temperature and pressure fluctuations for the simulations
over time. These were extracted from the output file and directly plotted with no post-processing.

Next, for the single-phase and two-phase Couette flow the post-processing concerned the out-
putted velocities in the dump (trajectory) file. The domain was binned in the y-direction in 25
bins, and was averaged in the x- and z-directions. Moreover, the results of the fully-developed flow
were also averaged over time to finally obtain a good statistically stable quantities. The x-velocity
as function of y-coordinate obtained this way for case 1 is shown in Fig. 3. We could compare the
velocity of fluid adjacent to the wall to the wall velocity to obtain the slip length according to

∆V = Lsγ̇ (3)

In the simulations of a nanodroplet in shear flow between two plates, to study droplet defor-
mation we used ImageJ [5]. This open-source software allows easy analysis of graphical images to
obtain range of geometric values. In this case over ten frames from the fully-developed flow, we
fitted an ellipse over the droplet and measured its major and minor axes. This data was averaged
over for statistical significance. We report the droplet’s aspect ratio as the ratio between the major
and minor axes.

When measuring the front and rear contact angles in the sliding droplet simulations, we also
used ImageJ. The front and rear contact angles are measured for each of ten frames from the
fully-developed, steady-state flow and then averaged over. The results are presented as the mean
value with the standard deviation representing the error bars in the next section.

3 Results and Discussion
The first step in our analysis was to show that using the Lennard-Jones parameters presented
above, the fluids are truly immiscible, i.e. that they will form a sharp two-phase interface. To do
this, we initialized a confined system with homogeneous mixture of Fluid 1 and Fluid 2 and ran an
NVT simulation for 200τ . The visualization of the system at the initial and final states is shown
in Figure 4. It is clear that the two phases coalesce and separate in the channel.

The next step is to measure the viscosity of the fluids. Both of them have the same viscosity
since they interact with the same like-like type Lennard-Jones parameters and have the same mass.
To do this, we set up a bulk system and sheared the fluid with constant shear rate of 0.01τ−1.
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Figure 4: Homogeneous mixture of the two fluids would separate and coalesce.
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Figure 5: Dependence of slip velocity on wall velocity for single-phase (left) and two-phase (right)
Couette flow. Each data point is one simulation.

Next, we analyze the shear stress fluctuations data to obtain the viscosity. To do this, we first
define a stress integral:

Σxy(t) =

∫ t

0

σxy(t
′
)dt

′
(4)

which allows us to calculate the equivalent of the mean-square displacement for the stress integral

MSDΣ(t) = 〈[Σxy(t)− Σxy(0)]2〉 ≈ 2µt (5)

where µ is the viscosity. Following this procedure, the viscosity is found to be µ = 2.17ετσ−3.
Now, we are finally ready to move to the simulations proposed in Section 2. For the simplest

simulation, single-phase Couette flow, the first parameter we look at is the slip velocity (Us) in the
direction parallel to walls’ velocity. As it can be seen in Figure 5, we notice that as we increase
the wall velocity magnitude (Uw), the fluid slip velocity, Us adjacent to the wall does not scale
linearly. Since, binning is performed in the y direction to obtain the slip velocity of the fluid at
the wall, we computed the standard error of the mean (SEM) and report them in Table ??, to
ensure statistical convergence of the data and to estimate the error associated with binning the
data. The SEM values show that the data is statistically converged and the error values are quite
small compared to the values of the mean.

Moving contact line Single-phase Couette Flow
Case \Uw 0.275 0.55 1.375 2.75 5.5 0.275 0.55 1.375 2.75 5.5

1 1.318 1.304 1.196 1.404 2.467 1.311 1.303 1.248 1.494 2.386
2 1.323 1.316 1.22 1.48 2.35 1.311 1.305 1.285 1.505 2.192

Case \Uw 0.17 0.34 0.85 1.7 3.4 0.17 0.34 0.85 1.7 3.4

3 1.319 1.325 1.314 1.294 1.654 1.316 1.318 1.307 1.318 1.637
4 1.319 1.322 1.328 1.337 1.609 1.311 1.315 1.312 1.335 1.575

Table 2: Standard error of mean (SEM) in ×10−3σ/τ for the slip velocity at the wall for various
values of wall velocity, Uw in σ/τ .
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Figure 6: Dependence of slip length on shear rate for single-phase (left) and two-phase (right)
Couette flow. Each data point is one simulation.
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Figure 7: The universal scaling of Thompson and Troian applied to the data from Fig. 6. Better
collapse of data for single-phase flow.

For this case, we also study the variation of slip length with shear rate. Compiling the data
for various conditions and wall velocities (shear rates) on a single plot gives Fig. 6. We apply the
Thompson and Troian model to see good collapse of the data as shown in Fig. 7. This allows us
to conclude that there indeed is a universal scaling which defines a relation between the slip length
and the shear rate as discussed in reference [8].

Increasing the simulation complexity, we next turn our focus to the problem of a two-phase
Couette flow. Here we have a moving contact line along both the top and bottom walls. We follow
the same post-processing methodology as in the single-phase simulations. Figure 6 shows the plot
of the unscaled dependence of slip length on shear rate, while in Fig. 7 we present the scaled
results according to the Thompson and Troian model. It is noted that in this case the agreement
with the proposed law is less ideal than the agreement for a single-phase Couette flow. This is due
to the dependence on the the streamwise spatial gradient of the wall-normal direction as discussed
by Thalakkottor and Mohseni.

The final two configurations are simulations which were not studied by the study whose results
we tried to replicate. However, we believed that these would be interesting extension to this work
since they can represent problems in a variety of fields of study, most notably blood flows. The first
setup shown in Fig. 2, concerns a droplet in shearing flow. In these simulations, since both fluids in
this simulation have the same density and viscosity, the droplet would be neutrally buoyant. The
shearing is done by assigning velocity to the walls varying from 0.275 to 5.5 σ/τ . The droplet which
is placed in the center of the channel starts deforming under the influence of velocity gradients.
To quantify this deformation, once it reaches steady state we fit an ellipse over it and report the
aspect ratio of this fit. We did this procedure for ten frames extracted from the simulation, using
ImageJ, and then averaged over this data.

In Fig. 8, it is noticeable that as we increase the wall velocity the drop gets more sheared
up to wall velocity of ≈1.5 σ/τ , then the trend reverses. This goes in hand with the previous
observations for the single-phase and two-phase Couette flow where it was observed that there is
more slip as the wall velocity is increased. Note that in these simulations, while the droplet never
breaks down due to shear along the channel’s centerline, we do observe droplet break-up in the
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Figure 8: The aspect ratio of sheared nanodroplets in channel Couette flow field as function of
wall velocity. The dashed line represents the aspect ratio of the droplets’ initial state.

Figure 9: Rear (left) and front (right) contact angles of a neutrally-buoyant nanodroplet sliding
due to a body force. Power-law dependence emerges for the rear contact angle.

case with the highest wall velocity. In this simulation, the drop drifts closer to the wall due to
velocity field perturbations and enters the fast moving boundary layer which quickly causes it to
break apart.

The last set of simulations explores the effect of a body force on the fluid has on a nano-droplet’s
front and rear contact angles. Once again, the droplet is neutrally buoyant. We apply a body force
on both fluids in the +x direction. Physically this could represent the electric body force on
charged particles or effect of a uniform pressure gradient among other examples. As explained in
the previous section the body force absolute value is changed over two orders of magnitude.

The results shown in Fig. 9 are obtained with ImageJ. Both contact angles are defined as
measured from the +x axis. It is interesting to note that while there is a very clear trend in the
rear angle of the nanodroplet, the results for the front contact angle less conclusive. It is noticeable
that the contact angle value in both cases decreases as we increase the applied body force in the
fluid domain. Over the range of conditions studied, this relationship in non-linear. However, the
relation can be fitted to a power-law with exponent of −0.6 for the rear contact angle.

4 Conclusion
We successfully implemented in LAMMPS two-phase fluid simulations confined in nanochannels
to study a variety of fluid interface phenomena under a wide range of conditions. Based on the
discussion in the previous sections, we can conclude that Molecular Dynamics simulations can be
a very useful tool in studying interface problems and mechanisms. This approach could lay out
the base for boundary condition definitions at the continuum scale.

We were able to observe similar trends as Thalakkottor and Mohseni (2016) for the slip length
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in both single- and two-phase Couette flow. However, we extended this analysis to study two
additional problems: nanodroplet in a shearing flow and a sliding nanodroplet. In the first of these
two problems we observed that the relation between slip length and shear rate can be collapsed
to a single curve for single-phase Couette flow. This universal scaling holds to some extent for
two-phase Couette flow as well, however consideration of the wall-normal velocity is required for
better collapse. During these simulations we observe that increasing wall velocity, would decrease
the wall-normal gradient of the streamwise component of velocity. This goes hand in hand with
the observations for a nanodroplet in a shear flow between two plates, where we showed that
the droplet’s aspect ratio can increase as much as 3.5, yet the droplet will not experience break
up along the centerline since eventually the fluid near the walls starts slipping. Finally, in the
problem of a sliding nanodroplet, we confirmed the intuitive result that a stronger force would
extend the droplet more, decreasing the rear and front contact angles. While the front contact
angle didn’t change as significantly as hypothesized, we observed interesting power law behavior
for the nanodroplet’s rear contact angle.
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Appendix
The viscosity calculation was done as described in the main body, following the procedure used in
Tutorial 13 [1]. In Fig. 10 we present the stress integral as function of time.

In Fig. 11 we present sample temperature and pressure profiles for the simulations. As ex-
pected the both quantities oscillate, however we can easily notice the periodically repeating drop
in temperature due to re-scaling.

The temperature rescaling was chosen as the approach for controlling the temperature since
other thermostats were not working smoothly with the Lennard-Jones parameters used in this
study. In Fig. 12, we show temperature and pressure of a simulation ran with Nose-Hoover
thermostat. It can be seen that these are very similar to the fluctuations with the temperature
rescale approach. However, by visual inspection of the particle trajectories it was observed that
there was clustering of the fluid particles. We couldn’t pin point the origin of this behavior.

Finally in Fig. 13 we show the output of the simulation with a Langevin thermostat. Unlike
Figs. 11 and 12, here we do not see any fluctuations. This is behavior indicates that all the atoms
are frozen, an observation which was confirmed with a visual inspection of the trajectory output.
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Figure 10: Stress integral as function of time. Reader is referred to the main body for the approach
of calculating viscosity.

Figure 11: Temperature (left) and pressure (right) fluctuations. These are taken from the single-
phase Couette flow with wall velocity of U = 0.1σ/τ .

Figure 12: Temperature (left) and pressure (right) fluctuations with Nose-Hoover thermostat.
These are taken from the single-phase Couette flow with wall velocity of U = 0.1σ/τ .
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Figure 13: Temperature (left) and pressure (right) fluctuations with Langevin thermostat. These
are taken from the single-phase Couette flow with wall velocity of U = 0.1σ/τ .
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