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Introduction and formulation Stability analysis

Introduction and Motivation

motivation

bubbly flows are ubiquitous in
nature.

even at low void fractions, their
presence can significantly change

sound speed
attenuation characteristics
inertia of the medium

crucial to understand the dynamical
properties of the medium.

objectives

derive governing equations and
disturbance relations for
bubble-liquid mixture.

perform stability analysis of
spacewise problem of inviscid
bubbly shear flow, following
d’Agostino et al., JFM, 1997.

study the effect of presence of
bubbles.
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Basic equations

Individual phase continuity equation (IPCE):

∂ρiαi

∂t
+ ~∇ · (ρi~uiαi) = 0,

ρi and αi are the density and volume fraction of phase i.

Individual phase momentum equation (IPME):

∂ρi~ui

∂t
+ ~∇ · (ρi~ui ⊗ ~ui + pi1) = 0,
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Derivation of mixture continuity equation

Starting with IPCE for liquid phase:

∂ρlαl

∂t
+ ~∇ · (ρl~ulαl) = 0,

Rewrite,

1

ρl

Dρl

Dt
+

1

αl

Dαl

Dt
+ ~∇ · ~ul = 0,

If p = f(ρ, s), for an isentropic process,

Dp

Dt
= c2

Dρ

Dt

where, c is the speed of sound. Using this above,

1

ρlc
2
l

Dpl

Dt
+

1

αl

Dαl

Dt
+ ~∇ · ~ul = 0,
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Introducing terminologies

Let,

β - number of bubbles per unit liquid volume

n - number of bubbles per unit total volume

τ - individual bubble volume

αb - volume fraction of bubbles = nτ

Now,

1 + βτ = 1 +
( #

liq. vol.

)
τ = 1 +

gas vol.

liq. vol.
=
tot. vol.

liq. vol.

n =
#

tot. vol.
=

#

liq. vol.
∗
liq. vol

tot. vol
=

β

1 + βτ

αb =
βτ

1 + βτ
Substituting in the equation,

Mixture continuity equation:( 1

1 + βτ

)Dβτ
Dt
−

1

ρlc
2
l

Dpl

Dt
= ~∇ · ~ul,

where, D/Dt = ∂/∂t+ ~ul · ~∇ and τ = 4/3πR3

(assuming spherical bubbles)
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Mixture momentum equation

Start with IPME for liquid phase:

∂ρl~ul

∂t
+ ~∇ · (ρl~ul ⊗ ~ul + pl1) = 0,

Rewriting,

~ul

{∂ρlαl
∂t

+ ~∇ · (ρlαl~ul)
}

+ ρlαl

{∂~ul
∂t

+ ~ul · ~∇~ul
}

= −~∇pl,

Mixture momentum equation:

ρl(1− αb)
D~ul

Dt
= −~∇pl
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Closure

Assuming volumetric mode of oscillation of the bubbles,

modified Rayleigh-Plesset equation (also called as Keller-Miksis equation)

(
1−

1

cl
Ṙ
)
RR̈+

3

2
Ṙ2
(

1−
1

3cl
Ṙ
)

=
(

1 +
1

cl
Ṙ
){pR(t) + pl(t+R/cl)

ρl

}
+

R

ρlcl
˙pR(t)

where, dots are D/Dt, pR is the liquid pressure at bubble surface and pl is the
driving pressure.

Boundary condition

pb(t) = pR(t) + 2
σ

R
+

4µṘ

R

where, pb is the uniform bubble internal pressure,
σ is the surface tension and µ is the liquid
viscosity.

[Keller & Miksis, J. Acoust. Soc. Am., 1980.]
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Final system

Mixture continuity equation:( 1

1 + βτ

)Dβτ
Dt
−

1

ρlc
2
l

Dpl

Dt
= ~∇ · ~ul,

Mixture momentum equation:

ρl(1− αb)
D~ul

Dt
= −~∇pl

modified Rayleigh-Plesset equation (also called as Keller-Miksis equation):(
1−

1

cl
Ṙ
)
RR̈+

3

2
Ṙ2
(

1−
1

3cl
Ṙ
)

=
(

1 +
1

cl
Ṙ
){pR(t) + pl(t+R/cl)

ρl

}
+

R

ρlcl
˙pR(t)

Boundary condition:

pb(t) = pR(t) + 2
σ

R
+

4µṘ

R
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Stability analysis of 2D parallel flows

Let,
ul = U(y)êx + ũ(x, y, t) and vl = ṽ(x, y, t)
pl = p0 + p̃(x, y, t)
Rl = R0 + R̃(x, y, t)

Let, αb → α, ρl → ρ, cl → c,
Substituting these in mass and momentum equations, linearizing and subtracting
base flow and (assuming β to be uniform),

disturbance mass equation( 3α

R0

) D̂R̃
D̂t
−

1

ρc2
D̂p̃

D̂t
= ~∇ · ~̃u,

where, D̂/D̂t = ∂/∂t+ U∂/∂x

disturbance momentum equation

ρ(1− α)
{∂ũ
∂t

+ U
∂ũ

∂x
+ U ′ṽ

}
= −

∂p̃

∂x

ρ(1− α)
{∂ṽ
∂t

+ U
∂ṽ

∂x

}
= −

∂p̃

∂y

where, prime denotes ∂/∂y
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Continued

If gas is assumed to behave polytropically, then,

pb = pb0

(R0

R

)3γ
Linearizing,

pb = pb0

(
1− 3γ

R0

R

)
Substituting these in Keller-Miksis equation and the boundary condition,
linearizing and subtracting base flow,

disturbance equation for bubble dynamic response

ρ ¨̃R+ pb0
3γR̃

R2
0

−
2σR̃

R3
0

+
4µ ˙̃R

R2
0

+ pb0
3γ ˙̃R

cR0
−

2σ ˙̃R

cR2
0

+
4µ ¨̃R

R0c
= −

p̃

R0

where, dots represent D̂/D̂t
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Normal mode assumption

Now, making an ansatz for the disturbance,

ũ = û(y)ei(kx−ωt)

ṽ = v̂(y)ei(kx−ωt)

p̃ = p̂(y)ei(kx−ωt)

R̃ = R̂(y)ei(kx−ωt)

Substituting these in the disturbance equations,

disturbance mass equation

ikû+ v̂′ = −i
3γ

R0
ωLR̂+ i

ωL

ρc2
p̂

disturbance momentum equation

ρ(1− α)(−iωLû+ U ′v̂) = −ikp̂

ρ(1− α)(iωLv̂) = p̂′

where, ωL = ω − Uk is the Lagrangian frequency.

Suhas S Jain Stability of bubbly flows 11 / 23



Introduction and formulation Stability analysis

Continued

disturbance equation for bubble dynamic response(
− ω2

L︸︷︷︸
inertial

− iωLλ︸ ︷︷ ︸
damping

+ ω2
b︸︷︷︸

compressiblity

)
R̂ = −

(
1 + i

ωLR0

c

) p̂

ρR0

where,

λ =
ω2
LR0

c︸ ︷︷ ︸
acoustical

−
4µ

ρR2
0︸ ︷︷ ︸

viscous

+
(
thermal = 0

)

is the damping coefficient and

ω2
b =

pb03γ

ρR2
0

−
2σ

R3
0

is the natural frequency of the bubble
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Dispersion relation for homogeneous medium

Let both x and y be homogeneous.

Repeating the whole process again,

Then eliminating û, v̂ and R̂ from the 4 disturbance equations ⇒ wave equation
for p̂, [{ 3α

R2
0

(1− α)(1 + iωR0
c

)

(−ω2 − iωλ+ ω2
b )

+
(1− α)

c2

}
ω2 −

{
k2x + k2y

}]
︸ ︷︷ ︸

=0 ⇒ dispersion relation

p̂ = 0

speed of propagation of harmonic disturbance ω in the bubbly mixture medium

1

c2m(ω)
=

3α

R2
0

(1− α)(1 + iωR0
c

)

(−ω2 − iωλ+ ω2
b )

+
(1− α)

c2
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Going back to the parallel flow setup

Eliminating R̂ and p̂ from the 4 disturbance equations,

equivalent Rayleigh system for bubbly flows

û′ = ikv̂ − i
U ′′

ωL
v̂ − i

U ′

kc2m(ωL)

(
iωLû− U ′v̂

)
v̂′ = −ikû+

ωL

kc2m(ωL)

(
iωLû− U ′v̂

)
In the limit of cm →∞,

û′ = ikv̂ − i
U ′′

ωL
v̂

v̂′ = −ikû

Eliminating û, it reduces to the classical Rayleigh equation,

(U − c)(D2 − k2)v̂ − U ′′v̂ = 0

where, D is ∂/∂y
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Base flow and boundary conditions

Base flow:

Inviscid shear layer

U(y) =
U1 + U2

2
+
U2 − U1

2
tanh(

y

δ
)

Boundary conditions:
When y → ±∞⇒ U = const, then the system reduces to,

û′ = ikv̂

v̂′ = −ikû+ i
ω2
L

kc2m(ωL)
û

This admits a close form solution as,

Asymptotic solutions

v̂ = Ae±y(k
2−ω2

L/c
2
m)1/2

û = ±A
ik

(k2 − ω2
L/c

2
m)1/2

e±y(k
2−ω2

L/c
2
m)1/2

where A is an arbitrary complex constant.
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Solution procedure

Method: Shooting method.
Spacewise problem: complex k and real ω is assumed.

Procedure

Guess a complex eigenvalue k.

Choose A such that initial conditions at y = −nδ simplifies, where n� 1
(n = 5 in this project)

v̂ = 1

û =
ik

(k2 − ω2
L/c

2
m)1/2

Integrate upto y = nδ (using RK4 in this project).

Check if the solution is continuous with the asymptotic solution at y = nδ

û = −
ik

(k2 − ω2
L/c

2
m)1/2

v̂

Iteratively correct eigenvalue k until convergence (using 2D Newton-Raphson
method in this project)
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Verification of the solver

d’Agostino et al. (1997) verified their solver against Michalke, JFM, (1965)
results for cm →∞.
same reference used here.

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

Figure 1: Verification against values from Table 1. of Michalke, JFM, (1965). In the
present project, ω∗ values from 0 to 0.5 has been used with a step size of 0.005.
Solution is computed from lower ω∗ to higher. −k∗i values from previous ω∗ is used as
an initial guess for next ω∗.
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Effect of presence of bubbles
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Figure 2: Presence of bubbles have a stabilizing effect on the flow. Left: current work,
Right: d’Agostino et al., JFM, (1997). In all cases α = 0.01 and R0 = 0.01.

as ω∗b0 decreases (approaches towards excitation frequency ω∗), flow stabilizes.

ω∗b0 � ω∗ ⇒ fluid behaves barotropically → asymptotes to single-phase
behavior.
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Maximum amplification rate
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Figure 3: Maximum amplification rate −k∗MAX as a function of natural frequency of
the bubbles ω∗

b0 for different values of void fraction α. Left: current work, Right:
d’Agostino et al., JFM, (1997). In all cases R0 = 0.01.

as ω∗b0 decreases, −k∗MAX reduces and flow stabilizes as observed before.

ω∗b0 also decreases as α increases hence stabilizing the flow for higher void
fractions.
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Effect of bubble resonance

Numbers for ω∗b0 in previous two cases were picked that are relevant to
practical applications.
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Figure 4: Left: current work, Right: d’Agostino et al., JFM, (1997). In all cases
α = 0.003.

doesn’t match the paper exactly, since R∗0 values are missing in the paper,
but the results are close (I use R∗0 = 0.32).

as ω∗b0 decreases, flow again stabilizes.

at resonance ω∗b0 ≈ ω
∗, flow is more stable (a local minimum can be seen).
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Reasons for stabilizing effect of bubbles

Compressibility effect: “a certain amount basic flow energy must be used to
do work against the force due to the elasticity of the medium, before it
becomes available to initial instability” (Blumen et al. (1975)).

Bubble dynamic damping: this provides another source of energy absorption,
which at resonance is significant due to the large amplitude of bubble
response.
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Conclusion

summary

Governing equations of bubble-liquid mixtures along with the closure were
formally derived.

Disturbance relations were derived making appropriate assumptions.

Inviscid stability analysis of a bubbly inviscid shear flow was performed.

Stabilizing effect of presence of bubbles was studied.

Stability as a function of natural frequency of bubbles and void fraction was
also studied.

Stabilizing effect of bubbles at resonance was also investigated.

Work of d’Agostino et al., JFM, (1997) was successfully reproduced.
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THANK YOU
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