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Abstract

Bubbly flows are ubiquitous in nature. Stability analysis of parallel bubbly flows is crucial
to understand the dynamical properties of the medium, since the presence of bubbles can
significantly change the properties of the medium, such as sound speed, attenuation and inertia,
even at very low void fractions (d’Auria et al. 1995, d’Agostino et al. 1997). Hence, the aim of
this project is to perform the stability analysis of parallel bubbly flows in simple configurations
(such as an inviscid shear flow) to study the effect of presence of bubbles on the dynamics of
the medium by comparing it against the stability analysis of the single-phase medium.

1 Introduction

Stability of parallel single-phase flows for various configurations, such as jets, wakes, shear layer,
boundary layer, and internal flows, have been studied for over six decades (Betchov 2012, Drazin
et al. 1982) for both incompressible and compressible flows (Mack 1987). However, the literature
is still limited for two-phase flows. Hence, the focus of the current study is to perform stability
analysis of bubbly flows, following the works of d’Auria et al. (1995), d’Agostino et al. (1997),
d’Agostino & Brennen (1989) to study the effect of bubbles on the dynamical properties of the
underlying medium by comparing against single-phase flows.

In the current study, the governing equations (continuity and momentum equations) for the
bubble-liquid mixtures will be formally derived along with the closure relations (modified Rayleigh-
Plesset equation). Then, assuming small linear disturbances and normal mode representation for
disturbances, disturbance relations for all the governing equations will be derived. Assuming
parallel, two-dimensional base flow, the disturbance relations will be simplified, which can be later
solved using a shooting method to perform the spacewise stability analysis.

2 Governing equations

To derive the governing equations for the bubbly-liquid mixtures, we can start with the continuity
equation for individual phase i, as
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where, p; and «; are the density and volume fraction of phase ¢. Now, rewriting this for liquid
phase [, and expressing partial derivatives in terms of total derivatives, gives

+ V- (pitler) = 0, (1)
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Now, if we express pressure as, p = f(p,s), where, s is the entropy, then for an isentropic
process, taking total derivatives, we can write
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where, ¢ is the speed of sound. Using this in the Eq. (2), we can write it as
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Figure 1: Schematic of a bubble cloud. 7 represents individual bubble volume and is equal to
4/37R3.

Now, before proceeding further, we can introduce some terminologies. Consider the bubble
cloud shown in Figure 1. Let, 8 be the number of bubbles per unit liquid volume, n be the number
of bubbles per unit total volume, 7 be the individual bubble volume as shown in Figure 1 and
is equal to 4/37R3, where R(Z,t) is the radius of the bubble (assuming spherical bubbles), and
ap = n7 be the volume fraction of bubbles.

Now, we relate ap to 8 and 7 as follows. If we start with 1+ 87, then it can be written as

# of bubbles gas volume total volume
]_ = ]_ —_ = - . 5
+ 47 * (liquid volume) liquid volume  liquid volume (5)

Now, expressing number density n as

_ # of bubbles  # of bubbles . liquid volume (6)

"~ total volume  liquid volume ~ total volume

and using the above relation in Eq. (5), we get
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Hence void fractions «p, o can be related to 8 and 7 as
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Substituting this relation in Eq. (4) and simplyfying (see, Appendix A), we get the final form
of the continuity equation for bubble-liquid mixtures as
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where, D/Dt = 9/dt + ;- V.
Similarly, for the mixture momentum equation, starting with the momentum equation for liquid
phase,
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and expanding the derivatives,
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Figure 2: Oscillating single bubble, driven by external pressure.

and using Eq. (1), we get the final form of the momentum equation for bubble-liquid mixtures as
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Now, to close the system, we use a modified Rayleigh-Plesset equation, also called as Keller-
Miksis equation (Keller & Miksis 1980) that describes the bubble response under the influence of
external pressure. This equation is given by
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where dots represent D /Dt, pg is the liquid pressure at bubble surface and p; is the driving pressure
as shown in Figure 2.

Now, to relate the liquid pressure at the bubble surface pr with the internal pressure py, we
can balance the forces at the surface of the bubble, which gives us the boundary condition
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where, p; is the uniform bubble internal pressure, ¢ is the surface tension and p is the liquid
viscosity. Finally, if we assume that the gas behaves polytropically, we can relate p, to the radius

of the bubble as Rons
.
po=pio(=7) (15)

where, Ry is the equilibrium radius of the bubble, pyg is the bubble pressure in equilibrium, and ~
is the polytropic coefficient. Summarizing, the final system can be written as
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where, R, #; and p; are the unknown variables.



3 Disturbance equations

To study the linear stability of the system in Eqgs. (16)-(20), typically the variables are decomposed
into mean and disturbance quantities as

(21)

where ~represent the disturbance quantities, U(y) is the base flow velocity along z direction, pg
and Ry are the mean pressure and radius values. Substituting this in the continuity equation (Eq.
16) and making an assumption that 8 is uniform, and linearizing the equation assuming that the
disturbances are small and subtracting the base flow, we arrive at the form
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where, D/Dt = 8/dt + Ud/dx. Similarly for the momentum equation, we arrive at the form
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where, prime denotes 9/0y. See Appendix B for the derivation of Egs. (22)-(24). Similarly,
combining the modified Rayleigh-Plesset equation Eq. (18), boundary condition Eq. (19) and gas
law Eq. (20) and substituting the decomposition in Eq. (21), linearizing and subtracting the base
flow, we obtain the equation of the form
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where, dots represent ﬁ/ Dt. See Appendix C for the derivation of Eq. (25).
4 Linear stability equations
Making an ansatz for the disturbance as
i = a(y)e ket
7 = d(y)e'ke—wt)
p= ﬁi;e“‘”‘““ )
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where, k is the wavenumber and w is the frequency. Substituting this ansatz in the disturbance
equations, Eq. (22)-(25), we obtain the final system as
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where, wy, = w — Uk is the Lagrangian frequency as seen by the bubbles moving with the mean
flow. Inertial, damping and compressibility contributions to the bubble dynamic response has been
highlighted, where ,
LR@ - 47112 + (thermal = 0)
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viscous

is the damping coefficient. The thermal contribution to the damping coefficient is zero due to the
assumption of adiabatic law for the gas in the bubble.
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is the natural frequency of the bubble. See Appendix D for the derivation of the disturbance
equation for the bubble dynamic response in Eq. (30).

Now, if both z and y directions were homogeneous, then we can repeat the whole process of
deriving four disturbance relations for @, 0, R and p, and then eliminating @, v and R, a wave
equation for p can be derived as
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see Appendix E for the derivation of this wave equation for pressure p. The coefficient of pressure
is equal to zero and is called as the dispersion relation for the mixture medium. Using this, the
speed of sound in bubbly mixture medium c¢,,(w) for a harmonic disturbance w can be written as
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Now, going back to the parallel flow setup and eliminating R and p from the four disturbance
equations Eqgs. (27)-(30) and using the mixture sound speed in Eq. (32), we arrive at the final
equivalent Rayleigh system for bubbly flows as (see Appendix F for the derivation),
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Clearly, this equation is non-linear in k since the mixture sound speed c¢,, is a function of
wy, = w— Uk. The equivalence of this system with the classical Rayleigh system can be easily seen
in the limit of ¢,, — 0o (see Appendix G for this equivalence).

5 Inviscid shear layer

In the current work, a velocity profile of inviscid shear layer is chosen as the base flow,

Ui +Ux U0y Yy
= 5 + 5 tanh(g)

where U; and U, are the velocities as y — +o0o and y — —oo respectively, and ¢ is the shear
layer thickness. Substituting these asymptotic limits to the equivalent Rayleigh system in Egs.
(33)-(34), the system reduces to,

Ul(y)
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and
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This can be integrated analytically and it admits a closed form solutions for @ and ¢ as
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where A is an arbitrary complex constant, and =+ signs in Eqgs. (38)-(39) are chosen such that the
solution decays as y approaches £oo.

The focus of the current work is to study the spacewise problem. Hence k is complex and w
is real. The equivalent Rayleigh system in Eqs. (33)-(34) along with the boundary conditions in
Egs. (38)-(39) is solved using a shooting method and the solution procedure can be described as
follows,

1. Guess a complex eigenvalue k.

2. Choose A such that initial conditions at y = —nd, where n > 1, (lower domain boundary)
simplifies as,
v=1
ik

YT R et )

3. Integrate the system upto y = nd (upper domain boundary).

4. Check if the solution is continuous with the asymptotic solution at y = né
N ik .
b= ———F——7=0
(7 = /)7

5. Iteratively correct eigenvalue k until convergence.

A larger value for n will result in bigger domain and hence, more accurate solution but is harder
to converge and computationally more expensive. Hence, it is a trade-off. A value of n = 5 is
used in the current project. A fourth-order Runge-Kutta integration scheme is used to integrate
the solution from lower boundary to the upper boundary in this work and a two-dimensional
Newton-Raphson method is used to iteratively correct the eigenvalue k after each integration.

To verify the numerical method, d’Agostino et al. (1997) used the work of Michalke (1965)
to compare the growth rate in the limit of infinite mixture sound speed (¢, — oc). Hence, in
the current project, we use the same reference to verify our numerical method by comparing the
growth rates in the limit of ¢,, — oo as shown in Figure 3. Clearly, the growth rates agree
very well with the values from the reference. We use w* values from 0 to 0.5 with a step size
of 0.005. Computation is performed from lower w* to higher and the converged k* values from
previous w™* is used as an initial guess to compute k* for the next w*. The code is written in
MATLAB and has been uploaded on to the github repository, and can be accessed at this link:
“https://github.com/suhasjains/Stability for bubbly flow".

6 Results

In this section, the effect of presence of bubbles on the stability properties of the medium is studied
by solving a spacewise problem. Fluid inside the bubbles is assumed to be ideal air with a polytropic
coefficient v = 1.4. Liquid is taken to be water with density p = 1485Kgm ™3, dynamic viscosity
p = 0.001Nsm~2, surface tension of the air-water interface to be o = 0.0728N/m. All quantities
are expressed in dimensionless form (using asterisk symbol) and the non-dimensionalization is
performed using shear-layer thickness § and shear-layer velocity difference AU as the reference
velocity and length scale.

The effect of presence of bubbles can be clearly seen in Figure 4, where the amplification factor
—k} (negative of imaginary part of the eigenvalue k) is plotted as a function of excitation frequency
w* for both single-phase flow and bubbly flows. Clearly, the presence of bubbles stabilizes the flow
since —k; decreases when compared to the single-phase flow. In the same figure, —k; is plotted for
different values of natural frequency of the bubbles wy,. As wj, decreases (and approaches towards
excitation frequency w*), the flow stabilizes. On the other hand, for far enough wj, >> w*, fluid
behaves barotropically and hence asymptotes to the single-phase behavior.

Now, to study the effect of void fraction of the bubbles « on the stability, maximum amplifi-

cation rate —k;  is plotted as a function of natural frequency of the bubbles wy, in Figure 5
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Figure 4: Plot of amplification factor —k; as a function of excitation frequency w*. Presence of
bubbles have a stabilizing effect on the flow. Left: current work, Right: d’Agostino et al., JFM,
(1997). In all cases a = 0.01 and Ry = 0.01.
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Figure 5: Maximum amplification rate —k;  as a function of natural frequency of the bubbles
wiy for different values of void fraction a. Left: current work, Right: d’Agostino et al., JFM,

(1997). In all cases Ry = 0.01.
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Figure 6: Plot of amplification factor —k; as a function of excitation frequency w* for values of
wyy ~ w*. Left: current work, Right: d’Agostino et al. (1997). In all cases o = 0.003. Value of
R used in this case is missing in the paper d’Agostino et al. (1997), and a value of R = 0.32 is
used in the current project. Hence the results for this test case are not matching the results from
d’Agostino et al. (1997) exactly, but qualitatively the results are same.
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for different values of void fraction a. As wy, decreases, —k]
already observed in Figure 4. maximum amplification rate —k;
hence stabilizing the flow for higher void fractions.

The parameters used in the above test cases represent values that are relevant for practical
applications. But, to study the effect of resonance of bubbles, the natural frequency of bubbles wy,
can be further reduced such that it is approximately equal to the excitation frequency, wj, ~ w*.
Results for this are shown in Figure 6. As wy, decreases, flow again stabilizes as seen before in
above two test cases. Close to resonance, the flow is much more stable, as can be seen in the Figure
6 for all three values of wj,, where a local minimum can be seen in the amplification factor —k;
for excitation frequencies w* close to natural frequency of the bubbles wy,.

Hence the effect of presence of bubbles is to stabilize the flow. The reason for this stabilization
can be explained as follows. Bubbles add compressiblity to the liquid, and Blumen et al. (1975)
explained that the effect of compressibility on the dynamics of the flow is to stabilize the flow.
He stated that “a certain amount basic flow energy must be used to do work against the force
due to the elasticity of the medium, before it becomes available to initiate instability". Further,
the increased stability for frequencies close to natural frequencies of the bubbles was explained by
d’Agostino et al. (1997). They hypothesized that the “bubble dynamic damping" provides another
source of energy absorption, which at resonance is significant due to the large amplitude of bubble
respounse.

reduces and the flow stabilizes as
also decreases as « increases



7 Summary and conclusion

In this project, we studied the stability of parallel inviscid bubbly shear flow. Starting with the
derivation of governing equations of bubble-liquid mixtures along with the closure, disturbance
relations were derived making appropriate assumptions. The system was solved using a shooting
method and was verified for the case of single-phase flow against the results from Michalke (1965).

The stabilizing effect of presence of bubbles was studied by investigating the amplification rate of
the disturbance as a function of excitation frequency for various natural frequencies of the bubbles
and void fractions. Futhermore, improved stabilization for resonant frequencies was investigated
along with some possible reasons for the stabilization effect. This project was performed following
the work of d’Agostino et al. (1997) and the results from the paper have been reproduced.
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