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Abstract

A priori testing (Clark et al. 1979) is very important in analyzing the performance of the
subgrid-scale (SGS) models in the LES calculation of turbulent flows. Detailed analysis of
this sort is still lacking in the literature for some canonical two-phase turbulent flow problems.
So, the aim of this project is to perform a priori testing to study the order of magnitude of
different unclosed terms and to evaluate the performance of sub-grid models for the LES of
flow of droplets in a homogeneous-isotropic turbulence (HIT) in a triply-periodic box.

1 Introduction
In a typical a priori test, governing equations of the flow are filtered and the unclosed terms are
derived. Order of magnitude of these unclosed terms are estimated and compared, to choose the
dominating unclosed term that introduces the most-significant error. The prediction from the
chosen sub-grid models for these unclosed terms are compared against the computed values from
the DNS data to evaluate the performance of the sub-grid models in LES setting.

Additionally, a priori testing can also be done with different filters and filter sizes, and the
effect of these parameters on the unclosed terms can be studied to get an insight on choosing the
best filter and filter size for the problem being studied.

In the current study, we use the available DNS data for a gas-liquid system at Re = 6.42× 104,
We = 1.53 × 104. There are 3130 Taylor length scale size droplets (D ≈ λ) in a decaying HIT in
a triply-periodic box. Other relevant non-dimensional parameters are density ratio = 10, viscosity
ratio = 10 and Werms = 1. The turbulent flow is well resolved on a 1024× 1024× 1024 grid with
≈ 32 grid points per diameter of the drops. A snapshot of the simulation can be seen in the Figure
1. For more information on these simulations, see, (Dodd & Ferrante 2016).

Figure 1: Snapshot of the DNS of droplets in HIT from Figure 3 of Dodd & Ferrante (2016)
showing the drops and vorticity isosurfaces.
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2 Formulation
This section describes the unfiltered governing equations for two-phase flows based on both "one-
fluid" and "two-fluid" formulation. We choose "one-fluid" formulation for our study and hence the
filtered equations and the unclosed terms based on "one-fluid" formulation are also described in
this section. A more detailed derivation of these can be found in the Appendix A.

2.1 Unfiltered equations
Consider a sharp-massless interface represented by an implicit function f , where fk(~x, t) = 0
represents the location of the interface, ~x belongs to kth phase if fk(~x, t) > 0. Additionally,
a sharp phase-indicator function χk can be defined as χk = H(fk), where H is the Heaviside
function. Then, the governing equations for the conservation of the mass can be written as,

∂χkρk

∂t
+ ~∇ · (χkρk~uk) = ρk( ~W − ~uk) · ~nkδi, (1)

where ~W represents the interface velocity, δi represents the surface diract delta function, and
hence the term on the RHS is the source/sink due to mass transfer across the interface. Governing
equations for the conservation of momentum can be written as,

∂χkρk~uk

∂t
+ ~∇ · [χk(ρk~uk ⊗ ~uk + pk1− τk)]− χkρkg = [ρk~uk ⊗ ( ~W k − ~uk) + pk1− τk] · ~nkδi, (2)

where the term on the RHS is the source/sink of the momentum flux across the interface due to
mass transfer and pressure and shear stresses acting at the interface.

A one-fluid variable φ can be defined as φ =
∑

k χ
kφk. Summing the equation 1 for all the

phases and replacing the RHS term by an interface jump condition, we get conservation of mass
based on one-fluid formulation as,

∂ρ

∂t
+ ~∇ · (ρ~u) = 0. (3)

Similarly, the conservation of momentum for one-fluid formulation can be derived by summing
the equation 2 for all the phases and replacing the RHS term by an interface jump condition as,

∂ρ~u

∂t
+ ~∇ · (ρ~u⊗ ~u+ p1− τ)− ρg = [σ~nk(∇s · ~nk)−∇sσ]δi, (4)

where ∇s represents the surface derivative operator and σ is the surface tension.

2.2 Filtered equations
Filtering for the variable u is defined as the convolution of u with a suitable kernel G as,

u(~x, t) =

∫ t

−∞

∫
Ω

G(∆, ~x− ~x′, t− t′)u(~x′)dx′dt′, (5)

where ∆ is the cut-off length scale. Since the density is varying in space, Favre average defined as,
ũ = ρu/u is used. Applying this filtering to Equations 3 and 4 gives the Favre averaged filtered
set of equations for one-fluid formulation with exact jump conditions as,

∂ρ

∂t
+ ~∇ · (ρ~̃u) = 0. (6)

∂ρ~̃u

∂t
+ ~∇ · (ρ~̃u⊗ ~̃u+ p1− µSD + τ

flρuu
+ τ

flµS
= [σs~n

s
(∇s · ~n)

s
−∇s

s
σs]δi + τ

rσn
+ τ

rσt
, (7)

where surface filtering φ
s
is defined as,

φ
s

=

∫
Ω
δiφd~x∫

Ω
δd~x

=
δiφ

δi
(8)
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2.3 Assumptions
We further make few assumptions that simplifies our analysis:

• Only two phases.

• Incompressible fluids, hence ρ is constant in each phase.

• No mass transfer.

• Isothermal and no chemical reactions, hence µ is constant in each phase and σ is constant.

• No sliding between the phases, hence filtering and gradient operators commute.

• Immiscible fluids.

2.4 Unclosed terms
Making the simplifications based on the assumptions listed in the previous section, we are left
with three unclosed terms in the Equation 7 that requires modeling. The three unclosed terms are
convective, viscous and interfacial tension terms given by,

τ
flρuu

= ρ~u⊗ ~u− ρ~̃u⊗ ~̃u (9)

τ
flµS

= µSD − µS̃D (10)

τ
rσn

= δi~n(∇s · ~n)− δi ~n
s
(∇s · ~n)

s
(11)

For full expansion of these terms in three dimensions, see Appendix B.

3 Order of magnitude analysis
Relative importance of each of the unclosed terms depend on the problem being studied. Hence, we
estimated the magnitude of each of the unclosed terms for our test case of HIT in the presence of
droplets. For the case of phase inversion in a closed box, see, Vincent et al. (2008) and Labourasse
et al. (2007) and for a single bubble in HIT, see, Toutant et al. (2006)).

3.1 Filters and filter sizes
Since the drops are of ≈ 32∆x in diameter, we used five filter sizes ∆ = 2∆x, 4∆x, 16∆x, 32∆x
and 64∆x to study the effect of filter size on the interfacial structures that are of ≈ 32∆x in size.
When, ∆ < 32∆x, it represents a regime where the drops are still resolved by the LES grid, when
∆ = 32∆x, it represents the regime where the drops are of approximately the same size as of the
LES grid and when ∆ > 32∆x, it represents a regime where the drops are fully sub-grid.

We filter the fields in frequency space, due to the increasingly expensive filtering process with
increasing filter sizes in physical space. We estimated that the filtering in the physical space for
the data we have takes ≈ 1day on a single node of Stampede2 supercomputer for a filter size of
∆ = 4∆x and hence was not feasible for larger filter sizes. However, filtering in the frequency
space, takes ≈ 10min, given the available memory is large enough >≈ 150GB.

To filter our data, we choose two kernels spectrally sharp and Gaussian given by,

Gsharp =

{
1 nk∆x < π/2

0 else.
(12)

Ggauss = exp
[
− (nk∆x)2

4

]
, (13)

where n is the filter factor. The corresponding filter factors for filter sizes of ∆ = 2∆x, 4∆x, 16∆x, 32∆x
and 64∆x are n = 1, 2, 8, 16 and 32.
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Figure 2: Table 4 from Labourasse et al. (2007) showing the order of magnitude of convective,
shear and surface tension unclosed terms for filter sizes FiSm = 2∆x, FiAv = 10∆x, FiLa = 20∆x
and FiSm = 100∆x, using the DNS data of phase inversion in a closed box on 512× 512 grid.

Figure 3: Order of magnitudes of convective < |~∇ · τ
flρuu

| >, viscous < |~∇ · τ
flµS
| > and surface

tension unclosed terms < |τ
rσn
| > using a Gaussian kernel, where <> denotes a spatial mean.

3.2 Previous studies
Previous studies by Vincent et al. (2008), Toutant et al. (2006), Labourasse et al. (2007) and
McCaslin & Desjardins (2014) can be summarized as,

• Convective tensor τ
flρuu

increases with the filter size.

• Shear stress tensor τ
flµS

is small for all filter sizes.

• Surface tension tensor τ
rσn

is very small and decreases with the filter size, since the sub-grid
error cancels out due to symmetry as the filter size increases and includes more sub-grid
contributions.

Figure 2 shows the order of magnitudes of convective, shear and surface tension unclosed terms
for filter sizes FiSm = 2∆x, FiAv = 10∆x, FiLa = 20∆x and FiSm = 100∆x, performed by
Labourasse et al. (2007) using the DNS data of phase inversion in a closed box on a 512×512 grid.

3.3 Present study
We performed a separate order of magnitude analyses for each of the filters we choose. Figure 3
shows the order of magnitudes for the convective < |~∇ · τ

flρuu
| >, viscous < |~∇ · τ

flµS
| > and

surface tension unclosed terms < |τ
rσn
| >, filtered using a Gaussian kernel, where <> denotes a

spatial mean.
Clearly, in the present study the surface tension unclosed term dominates over the other two,

which was not seen in the previous studies. It is to be noted that the previous studies Vincent
et al. (2008), Toutant et al. (2006), Labourasse et al. (2007) and McCaslin & Desjardins (2014) use
volume filtering for the surface tension unclosed terms. However, McCaslin & Desjardins (2014)
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Figure 4: Wide range of interfacial scales seen in the case of phase inversion in a closed box from
Figure 8 of Labourasse et al. (2007).

Figure 5: Order of magnitudes of convective < |~∇ · τ
flρuu

| >, viscous < |~∇ · τ
flµS
| > and surface

tension unclosed terms < |τ
rσn
| > using a spectrally sharp kernel, where <> denotes a spatial

mean.

pointed out that the use of volumetric filtering underpredicts the surface tension unclosed term. So
we used a suitable surface kernel to filter the surface tension unclosed terms in our study. Since the
surface filtering uses a Dirac delta function to consider only the locations of the interface, error due
to the unclosed term is significantly higher because the location of the interface typically changes
when the phase indicator function is filtered. This explains the relatively higher magnitude of the
surface tension unclosed terms, that we observe.

Second significant term in our study is the convective term. In our case, as we increase the filter
size, we see that the convective term increases for the filter sizes ∆ < 32∆x and then decrease
for ∆ > 32∆x. This clearly shows the dependence of the magnitude of the unclosed term on
the physical interfacial scales present in the simulation i.e., the drop size of ≈ 32∆x. However,
this was not observed in the previous studies because the test cases considered by the previous
studies contained a wide range of physical interfacial scales (see, Figure 4). The third and the least
significant term is the viscous term that is small for all the filter sizes and this is consistent with
the previous observations.

Figure 5 shows a similar trend using a spectrally sharp kernel for the filtering, however the
magnitudes are higher when compared to the Gaussian kernel. Further study is required to reason
out this observation.

4 Sub-grid model performance evaluation
To the best of our knowledge, we do not know of any previous studies that model the unclosed
surface tension terms. Among the convective and viscous terms, since the convective term is
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dominant, Vincent et al. (2008), Toutant et al. (2006) and Labourasse et al. (2007) chose to
perform a priori testing only on the convective term. All these studies, computed an equivalent
eddy viscosity given by,

µef =
τ
flρuu

: ~∇~u

S : ~∇~u
(14)

and found that the µef is negative in some regions and positive in other regions around the
interface and concluded that the eddy-viscosity type models are inadequate. Hence they choose a
mixed Bardina-Smagorinsky model for their a priori tests. Decomposing two variables φ and ψ,

φψ − φ ψ = L+ C +R, (15)

where,
L = φ ψ − φ ψ (16)

C = φ ψ′ − φ ψ′ + φ′ ψ − ψ′ ψ (17)

R = φ′ ψ′ − φ′ ψ′ (18)

L is modeled based on scale-similarity hypothesis and C+R is modeled based on eddy-viscosity
hypothesis. Further, following Toutant et al. (2006) we choose to consider only the L term in our
study, however in an actual LES simulation, diffusion is required to stabilize the solver. Hence the
model can be defined as,

τ
flρuu

= ρ~̃u⊗ ~̃u− ρ˜̃~u⊗ ˜̃
~u, (19)

where, ˜̃
~u =

ρ~̃u

~u
. (20)

Using this model, we compute the correlation coefficients as defined in Clark et al. (1979)
separately for each of the filter we used. Figure 6 shows the correlation coefficient as a function
of filter size for a Gaussian kernel and spectrally sharp kernel. Correlation coefficient for Gaussian
kernel on an average is ≈ 0.87, which is very close to what was reported in previous studies
about 0.8 for a top-hat kernel. However, one has to be careful in interpreting the high correlation
coefficient obtained using sharp kernel. Interestingly, the correlation coefficient decreases for filter
size ∆ > 32∆x. We can explain this by looking back at the "scale-similarity hypothesis". This
hypothesis says that the structure of the sub-grid scales are similar to the smallest resolved scales
because of the cascade process. Therefore, in our case, when the filter size is ∆ > 32∆x, all the
interfacial scales are sub-grid and we do not have any interfacial scales that are resolved. Hence
the model prediction is not as good as when the filter size ∆ < 32∆x.

Additionally, we also plotted the convective term < |~∇ · τ
flρuu

| > along a central horizontal
spatial plane and compared it with the plot obtained using the model for all the filter sizes. Overall,
the model faithfully reproduces the convective unclosed tensor. See Appendix C for the plots.

5 Summary and Conclusion
We here, perform a priori testing to analyze the performance of the subgrid-scale (SGS) model in
the LES calculation of two-phase turbulent flows. We chose to study the droplets in a homogeneous-
isotropic turbulence in a triply-periodic box. We derived the filtered governing equations for two-
phase turbulent flows based on "one-fluid formulation" and recognized the convective, viscous
and surface tension unclosed terms that require modeling. We performed the order of magnitude
analysis of these terms for different filters and filter sizes and found that the magnitude of the
convective term is dependent on the physical interfacial scales in the flow. Further following the
analysis of Labourasse et al. (2007) and Toutant et al. (2006), we chose to use scale-similarity
model and computed the correlation coefficients and concluded that this model faithfully predicts
the unclosed convective terms.

Overall, a priori tests gave us insights on choosing a filter and filter size, and the choice of the
model for the study of LES of two-phase turbulent flows.
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Figure 6: Correlation coefficients for scale-similarity model based on Gaussian kernel and spec-
trally sharp kernel.
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