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ABSTRACT
Now that our smartphones have multiple interfaces (WiFi,
3G, 4G, etc.), we have preferences for which interfaces an
application may use. We may prefer to stream video over
WiFi because it is fast, but VoIP over 3G because it gives
continued connectivity. We also have relative preferences,
such as giving Netflix twice as much capacity as Dropbox.
This means our mobile devices need to schedule packets in
keeping with our preferences while making use of all the
capacity available. This is the natural domain of fair queu-
ing, and this paper is about the design of a packet sched-
uler to meet these requirements. We show that traditional
fair queueing schedulers cannot take into account a user’s
preferences for some interfaces over others. We present a
novel packet scheduler called miDRR that meets our needs
by generalizing DRR for multiple interfaces. We demon-
strate a prototype running in Linux and show that it works
correctly and can easily run at the speeds we need.
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1. INTRODUCTION
Mobile devices have multiple network interfaces, allowing

them to connect to a variety of networks. For example, our
phones have 3G, 4G and WiFi interfaces, and it is increas-
ingly common for users to have two or more interfaces active
at the same time. We are also learning that users have pref-
erences on how to use different networks with very different
characteristics. For example, since 3G/4G connectivity is of-
ten capped, we might prefer to download music and stream
videos over free WiFi connections. If we are making a VoIP
call through Skype, we might prefer to use WiFi since the
latency of 3G networks is higher. If we are on the move and
streaming music from Pandora, we may prefer to use cellu-
lar to ensure we are persistently connected. And if we are
accessing a website from work, we may prefer to use cellular
so our employer does not know. In the future, we will have
preferences that are not currently supported, for example we
may want to use all the interfaces at the same time to give
all the available bandwidth to a single application. One can
imagine a huge variety of preferences, all driven by a trade-
off of bandwidth, latency, cost and persistent connectivity
that balances the preferences of the user with the needs of
the applications. This paper is about how to meet a user’s
preferences.

Preferences are not new; mobile operating systems already
offer coarse preference through a variety of ad-hoc mecha-
nisms. For example, Android allows us to specify that up-
dating applications should only happen over WiFi, or that
Netflix should only use WiFi, and so on. Similarly Windows
Phone has a feature called DataSense to apply application
and user preferences to choose between WiFi and cellular
interfaces. Users also find creative ways to implement our
preferences; we might switch off cellular data when we want
to force applications to use WiFi or when we are close to our
monthly data cap. We believe we should not need to jump
through hoops to fulfill our preferences. What we need is a
systematic way to ensure our applications follow our prefer-
ences when our device has multiple interfaces.

Our goals in this paper are: (1) To show that scheduling
packets to meet these preferences is non-obvious—the exist-
ing methods, such as fair queueing, do not work for hetero-
geneous interfaces, and (2) To present an algorithm to share
multiple interfaces while respecting user preferences about
how they should be used and by which applications. Our ap-
proach is based on two different types of preference. First,
interface preferences indicate whether or not an application
is willing to use a particular interface. This is a binary pref-
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Figure 1: Examples of packet scheduling. An edge
between a flow and an interface indicates the flow’s
willingness to use the interface.

erence; for example, “YouTube can only use WiFi.” Second,
rate preferences let a user to choose how much of an interface
an application gets, subject to the interface preferences (e.g.
allocate at least half the bandwidth of the WiFi interface to
Netflix). Our goal is to meet both types of preference while
maximizing the utilization of all the available networks.

To our surprise, we found no prior work addresses this
problem. One might guess that the large amount of work on
fair queueing for multiple interfaces might apply. However,
prior work [1, 3, 5] does not include the notion of interface
preferences, all applications are allowed to use all interfaces
all the time in these frameworks. The prior work focuses
only on rate preferences, using techniques such as weighted
fair queueing (WFQ) [3] to provide weighted fairness. Such
work can be found in several contexts, ranging from multi-
homing to wireless to wireless mesh networks [1, 21].

Interface preferences significantly complicate the problem
and render prior work inapplicable. To see why, consider the
canonical example in Figure 1. Two applications share the
available interfaces, and there are no rate preferences (i.e.
each flow has equal weight). As prior work suggests, assume
we apply WFQ independently on each interface. If there is
only a single interface (Figure 1(a)), WFQ will give an equal
fair allocation of 1 Mb/s to each flow. Suppose now we have
two 1 Mb/s interfaces and the same total capacity of 2 Mb/s.
If the flows have no interface preferences and are willing to
use both interfaces (Figure 1(b)), the fair allocation remains
1 Mb/s for each flow which can be achieved by implementing
WFQ on each interface. But if we introduce the interface
preference that flow a can use both interfaces and flow b can
only use interface 2 (Figure 1(c)), implementing WFQ on
each interface fails to provide a fair allocation: flow a will
get 1.5 Mb/s while flow b only 0.5 Mb/s. This arises because

interface 1 gives flow a all its capacity since it is the only
flow willing to use the interface, and interface 2 divides its
capacity equally between the two flows.

In other words, WFQ cannot provide rate preferences in
the presence of interface preferences. In what follows we
will introduce an algorithm that meets the rate preference
(in this case, an unweighted fair share) while respecting in-
terface preferences. In our toy example this means giving
each flow 1 Mb/s; flow a gets all the capacity of interface 1,
and flow b gets all the capacity of interface 2.

Note that this notion of fairness is a deliberate choice.
An alternative choice would be to penalize flow b because
it is unwilling, or is not allowed, to use one of the inter-
faces. Instead, we strive wherever possible to give each flow
its weighted fair share of capacity (defined by the rate pref-
erence), while guaranteeing that it will never violate the
interface preference. We also make sure it will never unnec-
essarily waste network capacity (i.e. remain work-conserving
on all interfaces).

There are cases where the interface preference (which we
consider sacrosanct) stands in the way of meeting the rate
preference. Going back to our example, if the user declared a
rate preference that flow b should have twice the rate of flow
a, we have a problem. If there was no interface preference,
flow a would receive 0.67 Mb/s and flow b would receive 1.33
Mb/s. But because flow b can only use interface 2, we can
give it at most 1 Mb/s. Should we give flow a only 0.5 Mb/s
to honor the rate preference? Our design decision is no. We
never want to waste capacity, and so we give flow a all the
remaining capacity. We believe this is the right prioritization
of goals: while a user’s relative flow preferences are typically
suggestive, we consider it essential to only use the specified
interfaces, and to use capacity efficiently.

A natural place to start looking for a packet scheduler is
with WFQ-like algorithms that calculate a packet’s finishing
time when it arrives, and then schedule departures according
to earliest finishing time. We could calculate the finishing
time taking into consideration the interface and rate prefer-
ences. Surprisingly we find this class of algorithms does not
meet our needs; in fact, we prove in Section 2.1 such algo-
rithms could only do so with knowledge of future arrivals.

In this paper, we introduce a novel, practical and effi-
cient scheduling algorithm: multiple interface deficit round
robin (miDRR) that schedules packets to meet the rate pref-
erence wherever possible, while respecting interface prefer-
ences and never wasting capacity. We prove that this is
achieved by a classical max-min fair allocation, weighted to
give relative rate preference between flows. We further prove
that miDRR finds the correct max-min allocation, and hence
meets our needs.

Our algorithm is practical to implement, yet we can for-
mally prove its correctness. At first blush, designing an al-
gorithm appears too daunting because each interface needs
to know how fast every flow is being scheduled by every
other interface. This would lead to a communication ex-
plosion in the packet scheduler. The key intuition behind
our algorithm—that makes it practical without sacrificing
correctness—is that we do not need to know the absolute
rate at which each flow is being served, just the relative
rates. It turns out that it is sufficient for each interface
to maintain a single state bit per flow, telling the inter-
face whether or not a flow was served by another interface
since it last served the flow. The one bit flag lets us turn
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Figure 2: Conceptual model for packet scheduling
for multiple interfaces with interface preferences.
Matrix Π encodes the flows willing to use each inter-
face, and weight φi indicates flow i’s rate preference.

the single interface DRR packet scheduler into a practical
multi-interface scheduler.

The rest of the paper is organized as follows. In Section 2,
we define the scheduling problem, the properties we want,
and the key challenge we face. We then describe our pro-
posed solution miDRR in Section 3. In Section 4, we show
how miDRR satisfies the properties we want and prove its
correctness. In Section 5, we describe two implementations
of miDRR and present evaluations of the algorithm in Sec-
tion 6. After a review of related work in Section 7, we con-
clude the paper in Section 8.

2. DESIRED PROPERTIES OF A PACKET
SCHEDULER

Our scheduling problem is captured by the abstract model
in Figure 2, with three flows served by two output interfaces.
In this model, each flow i has weight φi to indicate its rela-
tive priority (its rate preference). For example, if φ1 = 2φ2,
application 1 should receive double the bandwidth of ap-
plication 2 when both are backlogged. Each flow also has
interface preferences to indicate the subset of interfaces it is
willing to use. If flow a is willing to use interface 1, we de-
note πa1 = 1. The flows’ interface preferences are captured
by connectivity matrix Π = [πij ]. The matrix represents a
bipartite graph (as shown in Figure 2) where an edge exists
between flow a and interface 1 if and only if flow a is willing
to use interface 1, i.e., πa1 = 1. It is critical to note that
the bipartite graph is often incomplete—meaning Π is not
all-ones, i.e., not all flows are willing to use all the inter-
faces. As such, we cannot aggregate interfaces to reduce to
the classical single interface case. The combination of rate
preferences (weights φ) and interface preferences (matrix Π)
lets us describe a wide variety of interface usage policies.

Our goal is to design an efficient packet scheduler that ac-
counts for the interface preferences captured in this model
and meets the rate preferences. A packet scheduler answers
the question of when an interface is available, which packet
should be sent? An ideal packet scheduler answers this ques-
tion in a way that fulfills several desirable properties (listed
below in roughly descending order of importance):

1. Meet interface preferences. We want a packet
scheduler that will only send a packet to an interface it
is willing to use. In other words, the packet scheduler
must faithfully follow Π.

2. Work-conserving/Pareto efficient. In this con-
text, Pareto efficiency means giving rates to flows such
that it is not possible to increase the rate of one flow
without decreasing the rate of another flow. In other
words, we want to maximize the total number of pack-
ets scheduled, without wasting capacity.

3. Meet rate preferences, where possible. We want
a packet scheduler that implements the relative prior-
ities of flows encoded by weights φ. As pointed out
by the example in Section 1, interface preferences can
make rate preferences infeasible unless we violate work-
conservation. In the case where the rate preferences
are feasible, we want the scheduler to always faithfully
follow them. In the case where they are not feasible,
we first meet the rate preferences subject to the inter-
face preferences, and then use up any leftover capacity
serving flows that can use it. This means some flows
will receive a higher rate than they would if we capped
them at their rate preference. But the key is that no
flow will be made worse off; it will only benefit from
extra capacity made available to it because other flows
were unwilling to use all the interfaces.

4. Use new capacity. If we add an interface, we should
use it to increase capacity for all flows willing to use
it. When a flow ends, other flows sharing its set of
interfaces should benefit from the freed up capacity.

One might assume that giving each flow its weighted fair
share on a per-interface basis is the correct overall weighted
fair share. Such a definition would in fact provide some of
the properties we want (e.g. Pareto efficiency). But it would
fail to provide rate preferences even when they are feasible.
We would also need to figure out the correct weights for each
flow on each interface.

Our goal is to provide service to the flows, that can each
be served by multiple interfaces. What the user and appli-
cation really care for is the rate achieved by each flow over
whichever number of interfaces serving it. Therefore, it is
natural to consider the weighted fair share on an aggregate
basis, where the rate allocation for each flow i (r = [ri]) is
weighted max-min fair.

2.1 Why earliest finishing time does not work?
For a single interface, weighted fair queueing, through

algorithms like Packetized Generalized Processor Sharing
(PGPS) [10] fulfills all of the above properties by provid-
ing each flow with its weighted fair share rate, ri/φi. PGPS
is known to be max-min fair for a single interface.

Definition 1. Max-min fair rate allocation is a rate allo-
cation where no flow can get a higher rate without decreasing
the rate of another flow that has a lower or equal allocation.

Because max-min fair is a special case of Pareto efficiency,
PGPS is Pareto efficient.

The PGPS algorithm meets all our goals for a single in-
terface by assigning a finishing time to each packet when it
arrives, and then uses the simple strategy of sending the
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packet with the earliest finishing time. With one inter-
face, PGPS is work-conserving and can faithfully provide
the user’s weighted preference between flows. If the user as-
serts a preference that “flow a should receive twice the rate
of flow b” then we simply set the weight of a to be twice the
weight of b and PGPS will provide the right allocation. We
might wonder if we can define a finishing time across mul-
tiple interfaces, taking into consideration usage preferences,
and then for each interface schedule the packet with the ear-
liest finishing time. We now prove that although intuitively
simple, this strategy is not possible with a causal algorithm.
Unlike the single interface case, the algorithm must know
about future packet arrivals.

Our proof is by counter-example. Consider the example
illustrated in Figure 1(c), where flows a and b share inter-
face 2 while only flow a can use interface 1. Let head of line
packets of the flows at t = 0 be pa and pb respectively (with
lengths L/2 and L bits respectively) and all flows have equal
priority. Both interfaces run at 1 Mb/s. At t = 0 when in-
terface 2 becomes available, it must decide if pa or pb would
finish first under PGPS. Consider the following two scenar-
ios:

1. If no new flows arrive after t = 0, each flow would get
rate 1 so the finishing times of pa and pb would be
fa = L and fb = L/2 respectively and pb will finish
first.

2. Assume three new flows arrive shortly after t = 0 and
they are only willing to use interface 2. Rather than
compete for interface 2, flow a will continue to use
interface 1 and its rate will remain at 1 Mb/s. Mean-
while flow b’s rate reduces to 1/4 Mb/s. In this case,
pa would finish first.

Since the finishing order of the packets in these two sce-
narios is different and the packet scheduler cannot causally
determine which scenario would occur, it cannot determine
the relative finishing order of the packets. This leads us to
Theorem 1.

Theorem 1. In the presence of interface preferences, a
packet scheduler cannot always causally determine the rela-
tive order of packet finishing time.

Now consider the same example, but without interface
preferences, i.e., both flows a and b are willing to use all
interfaces available as illustrated in Figure 1(b). In this case,
packet pb will always finish first. Even if three new flows
arrive shortly after t = 0, both flows a and b would be both
slowed down to a rate of 2

5
Mb/s because the new flows are

also willing to use both interfaces. The proportional change
in rate in flows a and b, i.e., fate-sharing among the flows,
allows us to know the relative finishing order of the packets
at the time of their arrival.

The key difference in scheduling packets with and with-
out interface preferences—and the reason prior work fails to
help—is that fate-sharing is no longer true with interface
preferences. Without interface preferences, if the number
of active flows changes, or if the capacity of an interfaces
changes, all flows are equally affected and share the same
fate. With interface preferences, changes affect flows using
one interface more than others.

3. OUR PACKET SCHEDULER
We now describe a simple and novel work-conserving algo-

rithm to schedule packets over multiple interfaces with inter-
face preferences. The scheduler takes as input from the user
(or more specifically from the system managing user prefer-
ences) the interface preferences specifying the interfaces each
application can use, and the rate preferences specifying the
relative flow rates. Both the interface preference matrix Π
and rate preference vector φ are inputs to the scheduling
algorithm.

Knowing that we cannot use a scheduler that calculates
finishing time in advance, could we turn to reactive schedul-
ing mechanisms such as Deficit Round Robin (DRR) [13]?
The idea behind DRR, summarized in Algorithm 3.1, is
to serve each flow the same number of times by serving
them in a round robin fashion. To provide rate preferences,
the number of bits served during each turn—known as the
quantum—is adjusted accordingly. To ensure fairness over
time while sending packets integrally, DRR maintains a per-
flow deficit counter, which is essentially a metric for how
much service this flow has earned but has not been provided
over time. This seems to avoid the problems of causality,
since we make no assumptions about the interface rates and
we start deficit counting only after flows arrive.

However, a naive implementation of DRR on each inter-
face does not work either. In our simple example in Fig-
ure 1(c) DRR would give the same rate allocation as WFQ
(flow a and b would get 0.5 Mb/s and 1.5 Mb/s respectively)
whereas we know there is a feasible max-min allocation of 1
Mb/s per flow.

The underlying problem is that if a flow is willing to
use more than one interface, when an interface schedules
a packet it has no way of knowing what rates the flows are
getting from other interfaces. Having this information is
crucial to ensure max-min fairness. An obvious solution is
for interfaces to exchange information about the rates flows
are receiving from every interface. This seems to require the
algorithm to keep track of the rates provided to each flow,
and when it is making its own packet scheduling decision it
would decide whether or not servicing that flow leads to a
max-min fair solution. As the reader can guess, this scheme
would require an impractical amount of state information
to be maintained and exchanged, as well as interfaces to
know their own instantaneous rates. Both of these are prob-
lematic requirements, especially on mobile devices. So how
might one achieve a max-min fair rate allocation that can
be calculated independently on each interface, without ever
having to calculate and exchange the actual achieved rates
between all the interfaces?

3.1 Multiple Interface Deficit Round Robin
The key contribution of this paper is a generalization of

the deficit round robin scheduling algorithm that achieves
max-min fairness over multiple interfaces with interface pref-
erences, while requiring almost no coordination among the
interfaces. Specifically, it requires no rate computations and
at most one bit of coordination signaling from each interface
for every flow. The one bit is a boolean service flag, and
there is one flag at an interface for every flow. The flag indi-
cates whether a flow has been serviced recently by another
interface. When an interface considers servicing a flow, it
skips it if the service flag is set. We show that this simple
mechanism and minimal book-keeping achieves a max-min
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Symbol Description
BLi Backlog of flow i
Sizei Size of flow i’s head-of-line packet
Qi Quantum for flow i
DCi Deficit counter for flow i
Fj Set of flows willing to use interface j
Cj Current flow interface j is serving
B Set of backlogged flows
SFij Interface j’s service flag for flow i

(Service flags for new flows are initiated at zero.)

Algorithm 3.1: DRR(j)
if Fj ∩ B = ∅

then return
i = Cj
if Sizei ≤ DCi

then

{
Send Sizei bytes
DCi = DCi − Sizei

if BLi = 0

then

{
DCi = 0
Remove i from B

if BLi = 0 or Sizei > DCi

then

{
i = Cj = Next backlogged flow for j

DCi = DCi +Qi

Algorithm 3.2: miDRR-Check-Next(i, j)
i = Cj = Next backlogged flow for j
while SFij 6= 0

do

{
SFij = 0
i = Cj = Next backlogged flow for j

SFik = 1 , ∀k 6= j
return (i)

Table 1: Pseudocode for DRR and miDRR which
is invoked when interface j is free to send another
packet. The only difference between the two algo-
rithms is that the highlighted line in Algorithm 3.1
is replaced by Algorithm 3.2 in miDRR.

fair allocation when we have interface preferences. By ob-
viating the need to exactly track service rates and—as we
shall see—implicitly enforcing the relative rates between any
pair of flows, the service flag allows miDRR to be scalable
and highly-distributed by minimizing the overhead of com-
munication between interfaces.

The bareness of the mechanism is surprising. How can
a single flag be sufficient to let us achieve a max-min fair
rate when we do not even know the rates of each interface,
nor do we know the rates achieved by the flows themselves?
The insight is that to ensure max-min fairness, it is sufficient
to know only the relative rates achieved between flows, the
absolute value is not needed. Further, each interface only
needs to know the relative rates achieved among flows it is
allowed to service according to the interface preferences. Fi-
nally, we do not even need to know a precise value of the
relative rate. The packet scheduler only needs to check if a
particular flow’s rate is higher than at least one other flow it
is servicing on the same interface. If so the scheduling deci-
sion is simple: it should not service the flow with relatively
higher rate. If it iteratively applies the above condition to
all its flows, it will eventually service the flow that will push

it towards a max-min fair rate allocation overall as we show
formally in the next section. Below, we describe how the
algorithm operates.

Interface j maintains one service flag SFij for each flow i
that it serves. The flag is for other interfaces to indicate to
interface j that flow i has been serviced recently. Maintain-
ing this boolean service flag requires two tasks:

1. When interface k serves flow i, it sets service flags
SFij∀j 6= k to tell the other interfaces that flow i has
been served.

2. When interface j considers flow i for service, it resets
service flag SFij .

Race conditions on the service flag can easily be handled
by a standard mutex. More importantly, maintaining the
service flag does not require us to keep track of the rate at
which each interface serves each flow. Nor do we need to
keep track of how much other interfaces serve a flow.

We refer to this algorithm as multiple-interface Deficit-
Round-Robin (miDRR). In essence, the algorithm entails
each interface implementing DRR independently with the
slight modification of checking the service flag before serving
the flow. The algorithm is summarized in the pseudocode
described in Table 1.

To better understand how the algorithm works, we return
to our example of two interfaces and two flows as shown in
Figure 1(c). Say interface 2 is free and is now moving on to
serve flow b. It would find its service flag with flow b to be not
set because no other interface is serving flow b, and it would
therefore proceed to serve flow b. As prescribed by DRR,
the deficit counter of flow b (DCb) would be incremented by
its quantum Qb, and potentially one or more flow b packets
would be sent. When a packet is sent, its length is deducted
from the deficit counter. Flow b would be served until its
deficit counter is insufficient for the next packet. At that
point, interface 2 will move on to flow a. Because interface
1 is serving flow a at the same rate, interface 2 will find its
service flag with flow a set by interface 1. Given the service
flag is set, interface 2 will not serve flow a. Instead it would
move back to flow b after resetting its service flag for flow
a. As this algorithm continues, interface 1 will only serve
flow a and interface 2 will only serve b, yielding the desired
result.

The takeaway is that each interface does its own DRR
packet scheduling, while checking and communicating through
the service flags.

4. PROPERTIES OF miDRR
The most important property of miDRR is that it achieves

the (weighted) max-min rate allocation, subject to the user’s
preferences of interface and rates; a result we prove below
in Theorem 3. The desired properties in Section 2 follow di-
rectly from the weighted max-min fairness (a property which
miDRR inherits from DRR). Specifically,

1. Meet interface preferences. Clearly miDRR meets
this by design. The user sets values πij in the algo-
rithm to represent interface preferences and a flow is
never scheduled on an interface for which πij = 0.

2. Pareto efficient. This follows directly because miDRR
gives a weighted max-min rate allocation (Theorem 3).
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3. Meet rate preferences, where possible. For a
single interface j, miDRR guarantees that each flow
actively served by it is served exactly once in the period
it takes the interface to successively visit the same flow.
By picking the quanta Qi flow i will receive a share
φi/

∑
k,πkj=1 φk of the outgoing line. If 2Qa = Qb for

flows a, b actively served by interface j, then rb = 2ra
which meets the designated rate preference.

4. Use new capacity. If new capacity becomes avail-
able, then we want to know miDRR will use it. There
are three reasons more capacity becomes available: a
new interface comes online, the rate of an interface in-
creases, or a flow ends freeing up capacity. In each
case, if extra capacity becomes available on an inter-
face, this capacity can be used by the flows willing to
use the interface. In turn, these flows might free up
yet more capacity on other interfaces, that in turn can
be taken up by other flows, and so on. A max-min
fair solution will maximize the minimum rate in the
allocation, and so although some flows may receive a
higher rate, no flow will receive a lower rate.

4.1 miDRR is max-min fair
We now prove the main result: miDRR leads to a (weighted)

max-min fair allocation. Our proof will proceed in two parts.

1. We introduce the rate clustering property (defined in
Definition 2) and prove that any scheduler satisfying
this property is max-min fair.

2. We show that miDRR fulfills the rate clustering prop-
erty, and therefore miDRR is a max-min fair scheduler.

Definition 2 (Rate Clustering Property). A sched-
uler satisfies the rate clustering property if

1. It splits the union set of flows and interfaces into dis-
joint clusters, where each flow and each interface can
only belong to a single cluster.

2. Within a cluster Ci, all flows are served at the same
rate (by the interfaces also in Ci). i.e,

a, b ∈ Ci =⇒ ra = rb.

3. Among the clusters containing an interface flow a is
willing to use, flow a will only belong to the cluster
with the highest rate, i.e.,

a ∈ arg max
Ci,∃j∈Ci,πaj=1

r(Ci),

where r(Ci) is the rate cluster Ci serves its flows.

Any scheduler satisfying the rate clustering prop-
erty is max-min fair. Intuitively, from the perspective
of an arbitrary flow a, the rate clustering property divides
flows and interfaces into three distinct sets of clusters. The
first set comprises clusters that do not have any interface
flow a is willing to use. The second is the cluster where flow
a belongs. The third set comprises clusters that flow a can
possibly belong to, but does not.

Recall from Definition 1 that in a max-min fair allocation
no flow can get a higher rate without decreasing the rate
of another flow that has a lower or equal allocation. Let
us consider how flow a could get a higher rate. Clearly

it cannot get a higher rate by using any interface in the
first cluster. If it increases its rate by getting more from its
own cluster, the rate clustering property tells us that flows
from the same cluster all have the same rate as flow a and
therefore increasing its rate will decrease the rate of a flow
of equal allocation. Similarly, since flow a belongs to the
cluster with the highest rate, flows belonging to the third
set of clusters have a lower (or equal) rate than flow a. If
flow a gets any rate from the third set it will decrease one
of a lower or equal allocation. Hence, the rate clustering
property ensures that the allocation is max-min fair.

It turns out that the rate clustering property is not only
sufficient but also necessary for a max-min fair scheduler.
We now formally prove this in Theorem 2.

Theorem 2. A work-conserving system is max-min fair
if and only if the following conditions are satisfied.

1. If flows i and j are actively serviced by a common in-
terface (i.e., in the same cluster), their allocated rate
is the same, i.e.,

∃k, i, j ∈ Uk =⇒ ri = rj ,

where Uk = {i, rik > 0}.

2. If both flows i and j are willing to use interface k, but
only flow i is actively using it (meaning the flows are
in different clusters), the rate allocated to flow j must
be greater than or equal to that of flow i, i.e.,

∃k, i ∈ Uk, j ∈ Fk =⇒ rj ≥ ri,

where Fk = {i, πik = 1}.

To prove the theorem we begin with a (self-evident) lemma
on the Pareto efficiency of a work-conserving system.

Lemma 1. In a work-conserving system, no flow can in-
crease its allocation without decreasing another’s allocation,
i.e.,

δi > 0 =⇒ ∃δj < 0,

where δi is the change in flow i’s allocation.

In other words, if an allocation is not max-min fair, there
must exist flows i and j where decreasing the flow with larger
allocation will increase the other flow’s allocation. This leads
to our next lemma on the sufficient conditions for max-min
fairness.

Lemma 2 (sufficient condition).
In a work-conserving system, the following conditions (as

listed in Theorem 2) imply that the allocation is max-min
fair.

1. ∃k, i, j ∈ Uk =⇒ ri = rj .

2. ∃k, i ∈ Uk, j ∈ Fk =⇒ rj ≥ ri.

Proof. Assume the opposite; i.e. both conditions are al-
ways true, but the system is not max-min fair. Because the
system is work-conserving, there is no idle capacity if any
flow is backlogged. From Lemma 1, for the system to not be
max-min fair, there must exist flows i and j such that j can
increase its allocation by decreasing i’s while ri > rj.

This exchange of allocation can happen in two ways:
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1. The exchange occurs on interface k, i.e., rjk is in-
creased while rik is decreased. This means rik > 0 and
a ∈ Uk. If j ∈ Uk, then ri = rj by the first condition.
Else j must at least be in Fk for rjk to be increased to
a non-zero amount. This means rj ≥ ri by the second
condition. In either case, it contradicts the require-
ment that ri > rj.

2. The allocation could be exchanged through a series of
intermediary flows. Denote the n intermediary flows
involved as flow 1, 2, · · · , n where n > 0. This means
flow i would exchange allocation with flow 1, which in
turn passes the allocation to flow 2, and so on. Flow
i must share a common interface with flow 1, and the
above arguments must hold. This means r1 ≥ ri, r2 ≥
r1 and so on. Putting this together we see ri ≤ r1 ≤
r2 ≤ · · · ≤ rn ≤ rj, which contradicts ri > rj.

Hence, the allocation must be max-min fair if the conditions
are true.

We can show that these conditions are also necessary, as
detailed in [18].

Proof of Theorem 2. Putting the lemmas together,
we have Theorem 2. The result tells us why miDRR can
be so simple; all it needs to do is maintain the rate cluster-
ing property and it will lead to a max-min fair allocation,
without having to keep track of the absolute service rate for
each flow. We are now ready to prove the main theorem.

miDRR fulfills the rate clustering property and there-
fore is max-min fair. To understand this, we take the per-
spective of an interface j running miDRR. Among the flows
willing to use interface j, interface j will serve a subset of
these flows at the same rate (which is what DRR does for a
single interface). The flows served by interface j are in the
same cluster.

Say flow a—among the flows willing to use interface j—is
not served by interface j. Flow a must have its service flag
with interface j set at least once every τj , where τj is the
time difference between successive visits by the interface j
scheduler to schedule flow a. This means flow a is being
served as often or more often than a flow served by interface
j, which is served once every τj . Flow a is therefore in a
different cluster that is at a higher rate.

Hence, with miDRR interfaces serve the flows in their clus-
ter at the same rate, and flows being passed over by inter-
faces in a cluster are served by another cluster at a higher
or equal rate. Therefore miDRR fulfills the rate clustering
property.

We will now formally prove this in Theorem 3.

Theorem 3. miDRR provides a (weighted) max-min fair
allocation.

We begin by extending the definition of fairness metric
proposed in [13].

Definition 3. Let directional fairness metric from flow
i to flow j be

FMi→j(t1, t2) = Si(t1, t2)/φi − Sj(t1, t2)/φj ,

where Si(t1, t2) is the number of bytes sent by flow i in the
time interval (t1, t2], and φi is the priority of flow i. Alter-
natively, we say flow i has received service of Si(t1, t2) in
time interval (t1, t2].

Consider the system in steady state, i.e., (1) all flows are
continuously backlogged in (t1, t2], (2) no new flows arrive
in this interval, and (3) the rate of the interfaces does not
change. The conditions for weighted max-min fairness in
Theorem 2 can be rewritten in terms of the directional fair-
ness metric FM as:

1. If flows i, j are actively serviced by a common interface
k, the directional fairness metric from i to j and vice
versa are zero, i.e.,

∃k, i, j ∈ Uk =⇒ FMi→j = FMj→i = 0.

2. If flow i is actively serviced by some interface k while
flow j is willing to use interface k but is not actively
using it, then the directional fairness metric from j to
i is greater or equal to zero, i.e.,

∃k, i ∈ Uk, j ∈ Fk =⇒ FMj→i ≥ 0.

This means that if a packet scheduler maintains these condi-
tions on FM at all times, it will be max-min fair. We show
this is the case by finding upper bounds on FM , which in
turn tells us the flow service allocations will be fair, amor-
tized over time.

The following Lemma 3 tells us that the value of the deficit
counter in miDRR is bounded

Lemma 3. At the end of each service turn for a flow, its
deficit counter is greater or equal to zero and less that the
maximum packet size, i.e.,

0 ≤ DCi < MaxSize′i,

where MaxSize′i is the maximum packet size of flow i.

Proof. Straightforward given [13], hence omitted.

From the bound on the deficit counter we can now bound
the amount of service received by a flow:

Lemma 4. Consider a time interval (t1, t2] where flow i
is continuously backlogged. Let m be the number of service
turns it receives in this interval. The service received by flow
i can be bounded by

mQi −MaxSize′i < Si(t1, t2) < mQi +MaxSize′i.

Proof. Straightforward given [13], hence omitted.

Lemma 3 bounds the deficit counter (and hence, the
amount of service) that a flow can carry over from one ser-
vice turn to another (as seen in Lemma 4). This ensures
that a flow cannot accumulate unfair service from one turn
to another which lays the foundation for the following two
lemmas.

Lemma 5. Consider pair of flows i, j where flow i is ser-
viced at higher rate than flow j and flow j is serviced by
interface k. It can be shown that

FMi→j > −2MaxSize′,

where MaxSize′ is length of the maximum sized packet.

Proof. Consider a service turn on interface k where flow
j is serviced by the interface but not flow i. It means flow
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i has been served once or more between the time it is con-
sidered by interface k, i.e., SFik = 1. Hence, the number of
service turns flows i, j receives in (t1, t2] is related by

mi(t1, t2) ≥ mj(t1, t2).

Using Lemma 4, we know that

FMi→j = Si(t1, t2)/φi − Sj(t1, t2)/φj

>
(
mi(t1, t2)Qi +MaxSize′i

)
/φi

−
(
mj(t1, t2)Qj +MaxSize′j

)
/φj

> (mi(t1, t2)−mj(t1, t2))Q′

−MaxSize′i −MaxSize′j

> −2MaxSize′

where Q′ = Qi/φi and we can choose mini φi ≥ 1 without of
generality.

Lemma 6. Consider pair of flows i, j where both flows are
always serviced by interface k. It can be shown that

|FMi→j | < Q′ + 2MaxSize′,

where MaxSize′ is length of the maximum sized packet, and
Q′ = Qi/φi.

Proof. Consider a service turn of flow j. From the al-
gorithm, SFik = 0 for flow i to be also serviced. Hence

|mi(t1, t2)−mj(t1, t2)| = 1.

From Lemma 4,

Si(t1, t2)/φi < mi(t1, t2)Q′ +MaxSize′i/φi

and

Sj(t1, t2)/φi < mj(t1, t2)Q′ +MaxSize′j/φj .

This means

|FMi→j | = |FMj→i|
= |Si(t1, t2)/φi − Sj(t1, t2)/φi|
< |mi(t1, t2)−mj(t1, t2)|Q′

+MaxSize′i/φi +MaxSize′j/φj

< Q′ + 2MaxSize′

because we can choose mini φi ≥ 1 without of generality.

Proof of Theorem 3. We are now ready to prove The-
orem 3 that miDRR gives a max-min fair allocation. Lemma 5
shows that the service lag of a faster flow compared to a
slow flow is strictly bounded by two maximum size packets.
Lemma 6 shows that the service difference between two flows
that are supposed to be served at the same rate is strictly
bounded by Q′ plus two maximum size packets. Both lem-
mas prevent accumulation of unfairness over time, showing
us that miDRR indeed provides fair scheduling for multiple
interfaces in the presence of interface preferences.

In summary, our observation that the earliest finishing
packet cannot be causally determined in a multi-interface
setting due to a lack of fate-sharing led to the notion that we
must track the conditions under which flows experience dif-
ferent relative service rates. The formation of clusters leads
to sufficient conditions for max-min fair packet scheduling
that describe exactly when flows experience the same or un-
equal rates. miDRR achieves a max-min fair allocation by
serving flows at rates that adhere to the conditions in The-
orem 2 by means of the service flag.

4.2 Why is a 1-bit service flag sufficient?
While Theorem 2 formalizes the notion that the rate clus-

tering property serves as sufficient conditions for max-min
fair packet scheduling, it is worth understanding intuitively
why this is so. It all boils down to the fact that the service
flag implicitly captures the relative service rate between a
pair of flows.

At an intuitive level, consider flow a served only by in-
terface j. If Qa is the DRR quantum of flow a in bits and
τj is the time between successive visits by the interface j
scheduler to schedule flow a, then flow a is served at rate
Qa/τj . Assume for a moment that all the flows using in-
terface j have the same weight (i.e. the same φ values),
then all of them have the same service rate. Now consider
a second flow b that is willing to use interface j but is not
actively being scheduled by j because it is receiving enough
service elsewhere. This is accomplished if flow b has its ser-
vice flag SCbj set at least once every τj so that interface j
will skip serving it every time. This will happen if (and only
if) flow b is already being served as often or more often than
τj by other interfaces. Which means it needs no service at
interface j.

One last word on rate allocations. Theorem 3 tells us that
miDRR automatically figures out the max-min fair alloca-
tion. It is also worth asking if we can find the max-min
fair allocation without running the algorithm. It is quite
straightforward and can posed as a convex program [18],
with the interface and usage preferences used to indicate
constraints on the system.

5. APPLYING miDRR
Can we use miDRR to implement user preferences in a

practical mobile device? Specifically, we want to use miDRR
to schedule both incoming and outgoing packets over the
multiple interfaces modern mobile devices have.

It is relatively simple to implement miDRR to schedule
outgoing packets from a mobile device. Our current imple-
mentation uses a custom Linux kernel bridge, that is writ-
ten using 1,010 lines of C code. Our implementation, in
Linux 3.0.0-17, follows the architecture illustrated in Fig-
ure 3. This custom bridge allows us to steer individual pack-
ets to whichever interface the scheduling algorithm chooses,
while being transparent for the applications [20]. This is
done by presenting the applications with a virtual interface
with an arbitrarily chosen address and then rewriting the
packet headers appropriately before transmission. We find
that the overhead of this bridge and packet header rewrit-
ing operations are negligible when compared to the relatively
moderate speeds found in wireless interfaces.

The twin problem of scheduling incoming packets over
multiple interfaces is harder. The ideal implementation
would be a proxy in the Internet that collects all the flows
headed towards a mobile device at a location close to the
last-mile wireless connections used by the device as in Fig-
ure 4. This can be accomplished by a service provider like
AT&T if the device is connected to the provider’s HSPA,
LTE and WiFi networks at the same time. The scheduler at
this proxy could then use miDRR to schedule all the flows
on the different paths that lead to the different interfaces
on the mobile device while respecting preferences. Clearly
this has deployability and performance challenges since it
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Figure 3: Implementation of miDRR in Linux kernel
to schedule outbound packets.
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Figure 4: Ideal implementation of miDRR to sched-
ule both inbound and outbound packets.

will require us to aggregate all traffic at one point before
scheduling.

In this paper, to ease deployment concerns, we use a
HTTP-based scheduling technique that can be implemented
on the mobile device itself and still allows us to come close
to ideal packet scheduling for incoming packets. Specifically,
we implemented miDRR to schedule inbound HTTP traffic
in a HTTP proxy as depicted in Figure 5. Our HTTP proxy
is written in 512 lines of Python code. Since the majority of
packets to and from mobile devices are HTTP transfers [4],
we feel that this is a reasonable compromise. Furthermore,
such a fully in-client HTTP scheduler is easily introduced
into today’s mobile device.

In this implementation, we make use of the byte-range op-
tion available in HTTP 1.1 to divide a single GET request
into multiple requests and deciding an interface to send each
request on. This allows us to divide an inbound transfer into
multiple parts, each of which can arrive over different inter-
faces at the same time. The responses are then collected,
spliced together and returned to the application. By choos-
ing which interface a request is put on, we also select the
interface over which the corresponding inbound data will
arrive. When combined with request pipelining, we can al-
ways have some pending requests on each interface making
sure that all the available capacity is utilized. To provide
fairness between the HTTP flows, we implemented miDRR
to regulate the inbound HTTP traffic. For example, the
proxy can choose to send flow a’s requests while withhold-
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Figure 5: Implementation of miDRR in a HTTP
proxy to schedule inbound HTTP flows.

ing flow b’s to make sure each flow gets their fair share of
the bandwidth.

6. EVALUATION
We evaluate miDRR using our prototype implementation

on a Dell laptop running Ubuntu 10.04 LTS with an In-
tel Core Duo CPU P8400 at 2.26 GHz processor and 2 GB
RAM. We aim to evaluate whether miDRR can provide a
max-min fair allocation on both the uplink and the down-
link with varying network conditions and traffic workloads.
In our experiments we use between two and sixteen inter-
faces to test miDRR. For the HTTP experiment, the inter-
face NICs are either the inbuilt Intel PRO/Wireless 5100
AGN WiFi chip or an Atheros AR5001X+ wireless network
adapter connected via PCMCIA. We use the Atheros ath5k
driver for the Atheros wireless adapter.

6.1 Number of concurrent flows in mobile
Before we evaluate miDRR using our implementations, an

important question is how many concurrent flows exist in a
typical mobile device at any instant. For example, if we
find at most 1 or 2 flows, then the scheduling problem is
fairly simple. Unfortunately such flow statistics are hard to
find from a wide set of users. Hence to get a rough idea of
the number of concurrent flows, the authors instrumented
their own Android devices for a week. Focusing only on
the active periods (i.e., when there is at least one ongoing
flow), we found that 10% of the time, we have 7 or more
ongoing flows; the maximum number of concurrent flows hit
a maximum of 35 in our log. The cumulative distribution
function is shown in Figure 7.

6.2 Fair packet scheduling with miDRR
As shown in Theorems 5 and 6, miDRR provides weighted

max-min fair scheduling, but it can deviate from an ideal
bit-by-bit max-min fair scheduler. To test how far it can de-
viate, we check the performance of miDRR in a simulation
that allows us to avoid complications such as time-varying
network conditions. We run the simulation using an exam-
ple of three flows served by two interfaces as illustrated in
Figure 6(a).
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Figure 6: Simulation results for three flows over two interfaces.

Figure 7: CDF of the number of concurrent flows
on our smartphones.
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in chronological order from left to right.

The result is shown in Figure 6(b). As we can see flow a
achieved a rate of 3 Mb/s using interface 1, while flows b and
c shared the 10 Mb/s on interface 2 in ratio of their weights
2:1. This is the weighted fair allocation we expect. When
flow a completed after 66 s, flow b immediately increases its
rate to 8.67 Mb/s using interfaces 1 and 2 simultaneously,
i.e., aggregating bandwidth across both interfaces. Simi-
larly, flow c’s rate increases to 4.33 Mb/s which further in-
creases to 10 Mb/s when flow b completed after 85 s. This
shows that miDRR indeed provides weighted fair scheduling.

Throughout the experiment, the rate clustering property
was upheld. We illustrate the clusters formed in Figure 8.
As load changes (flows a and b finish) clusters change as well.
Zooming at the first phase (0–66 s), flow a’s cluster has rate

3 Mb/s and flow c’s cluster a rate of 3.33 Mb/s. Flow b gets
twice this rate (6.66 Mb/s) since its weight is twice of flow
c in the same cluster.

However like many practical approximations, miDRR is
imperfect. Figure 6(c) zooms in on the first 5 s. We can
see that flow a initially only receives about 2 Mb/s (instead
of 3 Mb/s) while interface 1 serves flow b. However the
algorithm quickly corrects this and a weighted fair rate is
achieved. Also, the rate achieved by flows a and b fluctuates
around the ideal fair rate due to the atomic nature of packets
and the size of the quanta.

6.3 Overhead of miDRR
We designed miDRR to be lightweight and simple, with

each interface performing packet scheduling in a fairly inde-
pendent manner with minimum communication overhead.
But what exactly is the overhead of miDRR in our im-
plementation? To answer this question, we profiled our
Linux kernel bridge—measuring the time it takes to make
a scheduling decision. For each experiment we present the
bridge with 1,000 packets spread and queued across all the
flows and record the time it takes to make a scheduling de-
cision for each packet. We present the bridge with 4 to 16
virtual Ethernet interfaces.

The scheduling time is independent of the number of flows,
because the algorithm does not need to go through every flow
to make a scheduling decision. The decision is made as soon
as the scheduler finds the next flow it should serve. However,
the scheduling overhead increases with the number of flows
an interface has to consider before finding one that it should
serve. This number is proportional to the number of flows
that have their service flags set, which is correlated with the
number of interfaces. With more interfaces in the system,
the chances of finding a flow with its service flags set would
increase. This extra search time is shown in Figure 9. For
example, interface 1 might be free after finished serving flow
a. The scheduler finds that flows b, c and d have been served
by other interfaces which means it should serve flow e.

Even with 16 network interfaces, miDRR can make a
scheduling decision in less than 2.5 µs. Put differently, the
algorithm can support a traffic rate over 3 Gb/s for 1,000-
byte packets. Therefore, we believe that it is quite feasible to
implement miDRR in practice, even for a high speed packet
scheduler in the kernel.
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Figure 9: CDF of scheduling time as a function of
the number of interfaces.

6.4 HTTP Fair Scheduling
The HTTP proxy based implementation of miDRR on the

downlink cannot support fine-grained packet scheduling, but
it does allow us to evaluate the algorithm over an operational
network. We check if even under such scenarios our sched-
uler can provide fairness. We evaluate this by serving three
HTTP flows over two interfaces. The setup is similar to Fig-
ure 6(a) except that all flows have the same weight and the
interface speed varies as the experiment runs.

We plot the goodput achieved by each flow over time in
Figure 10. In this setup, flows a and c will achieve whatever
interface 1 and 2 can respectively provide at the current
speed of the interfaces. However flow b is willing to use both
interfaces, so it should always achieve the same rate as the
faster flow. This is the correct max-min fair allocation. We
indeed observe this behavior in Figure 10, i.e., the rate of
flow b always tracks the faster flow. We are observing the
rate clustering property because flow b will share the faster
interface equally with the faster flow, forming a cluster with
it as illustrated in Figure 11.

Despite having only very coarse grained control over the
inbound traffic, we find surprisingly that the HTTP sched-
uler is able to provide fair scheduling over multiple interfaces
while conforming to interface preferences. This performance
holds even while the scheduler is reacting to fluctuating link
capacities. Given that a large fraction of the traffic on mo-
bile devices is HTTP, this suggests that an HTTP layer
scheduler is sufficient to build a full system that allows users
to leverage all their interfaces while respecting preferences.

7. RELATED WORK
Researchers have long been looking for ways to efficiently

make use of all the networks around us to serve the appli-
cations at hand. The potential payoff can be significant,
as shown by prior work [14, 19]. Unsurprisingly, there has
been significant effort to facilitate use of multiple interfaces.
MultiNet [2] virtualizes a single wireless device into multiple
virtual interfaces, allowing more networks to be accessible
over the same hardware. MPTCP [15] provides an end-to-
end reliable protocol for multiple interfaces; Serval [9] pro-
poses a service access layer that allows services to use mul-
tiple interfaces; and [20] exposes an efficient software switch
to manage multiple interfaces. These approaches focus on
consolidating access to multiple interfaces allowing applica-

Figure 10: TCP goodput of three inbound HTTP
flows scheduled fairly using our HTTP proxy.
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Figure 11: Clustering formed when our HTTP
proxy schedules fairly across multiple interfaces. On
the left is the clustering during the 11–18 s of the ex-
periment and 29 s on. On the right is the clustering
during 0–11 s and 18–29 s.

tions to use them through a simple abstraction. We consider
our work complementary to these proposals, as we focus on
how traffic is scheduled across multiple interfaces.

Our work extends prior work on fair packet scheduling to
account for interface preferences. To do so, we extend clas-
sical results in fair scheduling for a single interface [3, 10,
11, 13]. Fair scheduling has previously been extended to the
case of link-bonding in [1] where there is no notion of inter-
face preferences, and has subsequently been analyzed using
queueing theory [12]. Simple efficient DRR-like algorithms
have also been proposed [16, 17]. Our result generalizes
these prior works, allowing us not only to compute the max-
min fair rate as discussed in [7, 8], but also insights that
allow us to build a practical packet scheduler.

Independently, recent work extended fair scheduling along
a different dimension. DRF [5, 6] tells us how to schedule
fairly over multiple resources. Our work differs mainly in
that we consider homogeneous resources (e.g., bandwidth
on different interfaces) while DRF considers heterogeneous
resources (e.g., CPU and bandwidth). A generalization of
both works would further improve our understanding of fair
scheduling, but is beyond the scope of this paper.

8. CONCLUSION
The introduction of interface preferences adds a new twist

to the classical problem of packet scheduling. Not only do in-
terface preferences render prior algorithms unusable, it chal-
lenges our understanding of packet scheduling. Prior packet
scheduling algorithms have mostly been defined using ser-
vice fairness, i.e., by assuring that a pair of flows send an
equal number of bits over time. With interface preferences,
one flow can receive a higher rate than another in a max-
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min fair allocation. Therefore it is possible for one flow to
accumulate more service than another, resulting in unequal
number of bits being sent over time. This changes the way
we think about fairness in rate and in service. This work
presents our understanding of that solution space, and our
empirical measurements of the algorithm running in prac-
tice. Our insights allowed us to design a simple and efficient
algorithm that can be used for packet scheduling on mobile
devices.

We expect this understanding in general, and our algo-
rithm in particular, to be useful in many applications beyond
the mobile application we described. Allocating tasks to
machines in data center poses a similar scheduling problem,
where certain tasks might prefer to use only more powerful
machines. We could also use the algorithm to assign com-
pute tasks to CPU cores in a system such as NVIDIA Tegra
3 4-plus-1 architecture where 4 powerful cores are packaged
with a less powerful one. A computation intensive task like
graphics rendering might prefer to use only the more power-
ful cores. As we continue to build large systems by pooling
smaller systems together, we expect an increasing number
of situations where our results will prove useful.
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