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ABSTRACT
Switches today provide a small set of scheduling algorithms.
While we can tweak scheduling parameters, we cannot mod-
ify algorithmic logic, or add a completely new algorithm,
after the switch has been designed. This paper presents a
design for a programmable packet scheduler, which allows
scheduling algorithms—potentially algorithms that are un-
known today—to be programmed into a switch without re-
quiring hardware redesign.

Our design builds on the observation that scheduling algo-
rithms make two decisions: in what order to schedule pack-
ets and when to schedule them. Further, in many schedul-
ing algorithms these decisions can be made when packets
are enqueued. We leverage this observation to build a pro-
grammable scheduler using a single abstraction: the push-in
first-out queue (PIFO), a priority queue that maintains the
scheduling order and time for such algorithms.

We show that a programmable scheduler using PIFOs lets
us program a wide variety of scheduling algorithms. We
present a detailed hardware design for this scheduler for a
64-port 10 Gbit/s shared-memory switch with <4% chip area
overhead on a 16-nm standard-cell library. Our design lets
us program many sophisticated algorithms, such as a 5-level
hierarchical scheduler with programmable scheduling algo-
rithms at each level.

1. INTRODUCTION
Today’s line-rate switches provide a menu of schedul-

ing algorithms: typically, a combination of Deficit Round
Robin [34], strict priority scheduling, and traffic shaping.
A network operator can configure parameters in these algo-
rithms. However, an operator cannot change the core algo-
rithmic logic in an existing scheduling algorithm, or program
a new one, without building new switch hardware.

By contrast, with a programmable packet scheduler, net-
work operators would be able to deploy custom schedul-
ing algorithms to better meet application requirements, e.g.,
minimizing flow completion times [9] using Shortest Re-
maining Processing Time [33], flexible bandwidth allocation
across flows or tenants [31, 26] using Weighted Fair Queue-
ing [17], or minimizing tail packet delays [16] using Least
Slack Time First [28]. With a programmable packet sched-

uler, switch designers would implement scheduling algo-
rithms as programs atop a programmable substrate. Moving
scheduling algorithms into software makes it much easier to
build and verify algorithms in comparison to implementing
the same algorithms as rigid hardware IP.

This paper presents a design for programmable packet
scheduling in line-rate switches. Our design is motivated by
the observation that all scheduling algorithms make two key
decisions: first, in what order should packets be scheduled,
and second, at what time should each packet be scheduled.
Furthermore, in many scheduling algorithms, these two deci-
sions can be made when a packet is enqueued. This observa-
tion was first made in a recent position paper [36]. The same
paper also proposed the push-in first-out queue (PIFO) [15]
abstraction for maintaining the scheduling order or schedul-
ing time for packets, when these can be determined on en-
queue. A PIFO is a priority queue data structure that allows
elements to be pushed into an arbitrary location based on
an element’s rank, but always dequeues elements from the
head.

Building on the PIFO abstraction, this paper presents the
detailed design, implementation, and analysis of feasibil-
ity of a programmable packet scheduler. To program a
PIFO, we develop the notion of a scheduling transaction—
a small program to compute an element’s rank in a PIFO.
We present a rich programming model built using PIFOs
and scheduling transactions (§2) and show how to pro-
gram a diverse set of scheduling algorithms in the model
(§3): Weighted Fair Queueing [17], Token Bucket Filter-
ing [7], Hierarchical Packet Fair Queueing [10], Class-
Based Queueing [19, 20], Least-Slack Time-First [28], Stop-
and-Go Queueing [22], the Rate-Controlled Service Disci-
plines [40], and fine-grained priority scheduling (e.g., Short-
est Job First, Shortest Remaining Processing Time, Least At-
tained Service, and Earliest Deadline First).

Until now, all line-rate implementations of these schedul-
ing algorithms—if they exist at all—have been hard-wired
into switch hardware. We also describe the limits of the
PIFO abstraction (§3.5) by presenting examples of schedul-
ing algorithms that can’t be programmed using a PIFO.

We present a detailed hardware design for a pro-
grammable scheduler using PIFOs (§4). We have imple-
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mented this design and synthesized it to an industry-standard
16 nm standard-cell library (§5). We find, contrary to con-
ventional wisdom [34, 29], that transistor technology has
scaled to a point where the sorting operation at the core of a
PIFO is surprisingly cheap. As a consequence, we show that
it is feasible to build a programmable scheduler, which

1. supports 5-level hierarchical scheduling, where the
scheduling algorithms at each level are programmable.

2. runs at a clock frequency of 1 GHz—sufficient for a
64-port shared-memory switch with a 10 Gbit/s line
rate per port.

3. incurs <4% chip area overhead relative to a shared-
memory switch supporting a small set of scheduling
algorithms.

4. handles the same buffering requirements as a typical
shared-memory switch today [1] (about 60K packets
and 1K flows).

2. A PROGRAMMING MODEL FOR
PACKET SCHEDULING

This section introduces the basic abstractions and pro-
gramming model we use to express packet scheduling algo-
rithms. The key idea underlying this programming model is
that any scheduling algorithm makes two decisions: the or-
der in which packets are scheduled, and the time at which
they are scheduled. These two decisions capture work-
conserving and non-work-conserving scheduling algorithms
respectively. Further, in many practical scheduling algo-
rithms, the order and time can be determined when a packet
is enqueued into the packet buffer.

Our programming model is built around this intuition and
has two components:

1. The push-in first-out queue (PIFO) [15] data structure
that maintains the scheduling order or scheduling time
for algorithms where these can be determined at en-
queue. A PIFO is a priority queue that allows ele-
ments to be pushed into an arbitrary location on en-
queue based on an element’s rank, but dequeues ele-
ments from the head.1 A PIFO breaks ties between
elements with the same rank in the order in which they
were enqueued.

2. A set of operations on the PIFO data structure called
transactions that compute an element’s rank before en-
queuing it into a PIFO.

We now describe the three main abstractions of our pro-
gramming model. First, we show how to use a schedul-
ing transaction to program simple work-conserving schedul-
ing algorithms using a single PIFO (§2.1). Second, we
generalize to a tree of scheduling transactions to program
hierarchical work-conserving scheduling algorithms (§2.2).
Third, we augment nodes of this tree with a shaping trans-
action to program non-work-conserving scheduling algo-
1We use the term rank instead of priority to avoid confusion with
strict priority scheduling. Throughout this paper, lower ranks are
dequeued first from the PIFO.

f = flow(p) // compute flow from packet p
if f in last_finish

p.start = max(virtual_time , last_finish[f])
else

p.start = virtual_time
last_finish[f] = p.start + p.length / f.weight
p.rank = p.start

Figure 1: Scheduling transaction for STFQ

rithms (§2.3).

2.1 Scheduling transactions
A scheduling transaction is a block of code that is exe-

cuted for each packet before enqueueing it into a PIFO. The
scheduling transaction computes a rank for the packet. This
rank then determines the position in the PIFO where the
packet is enqueued. Scheduling transactions are an instance
of packet transactions [35] — blocks of code that are atomic
and isolated from other such transactions. Packet transac-
tions guarantee that any visible state is equivalent to a serial
execution of these transactions across consecutive packets.

Scheduling transactions can be used to program work-
conserving scheduling algorithms. In particular, a single
scheduling transaction (and PIFO) is sufficient to program
any scheduling algorithm where the relative scheduling or-
der of packets already in the buffer does not change with the
arrival of future packets.

Take Weighted Fair Queueing (WFQ) [17] as an example.
WFQ provides weighted max-min allocation of link capac-
ity across flows2 sharing a link. Practical approximations to
WFQ include Deficit Round Robin (DRR) [34], Stochastic
Fairness Queueing (SFQ) [29], and Start-Time Fair Queue-
ing (STFQ) [23]. We consider STFQ here.

Before a packet is enqueued, STFQ computes a virtual
start time for that packet as the maximum of the virtual
finish time of the previous packet in that packet’s flow and
the current value of the virtual time (a single state variable
that tracks the virtual start time of the last dequeued packet).
Packets are then scheduled in order of increasing virtual start
times. To program STFQ using a PIFO, we use the schedul-
ing transaction shown in Figure 1.

Across all transactions in the paper, we use the notation
p.x to refer to a packet field and set p.rank to the desired
value at the end of the transaction based on the computations
in the transaction.

2.2 Tree of scheduling transactions
Scheduling algorithms that require changing the relative

scheduling order of already buffered packets with the ar-
rival of new packets cannot be implemented with a single
scheduling transaction and PIFO. An important class of such
algorithms are hierarchical schedulers that compose multi-

2We use the term ‘flow’ to generically describe a set packets with
a common attribute. For example, a flow could be packets destined
to the same subnet, or video packets, or a TCP connection.
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f = flow(p)
// compute flow from packet p:
// (Left / Right for WFQ_Root)
// (A / B for WFQ_Left)
// (C / D for WFQ_Right)
if f in last_finish

p.start = max(virtual_time , last_finish[f])
else

p.start = virtual_time
last_finish[f] = p.start + p.length / f.weight
p.rank = p.start

(c) Scheduling transaction for WFQ_Root, WFQ_Left, and WFQ_Right.
Figure 3: Programming HPFQ using PIFOs

LRRL

P1P2P3P4

PIFO-L PIFO-R

PIFO-Root

The PIFO tree encodes
the scheduling order
L         P3
R        P1
R        P2
L         P4
i.e. P3, P1, P2, P4

Figure 2: PIFO trees encode instantaneous scheduling order.

ple scheduling policies at different levels of hierarchy. We
introduce the idea of a tree of scheduling transactions to pro-
gram such algorithms.

To illustrate this idea, consider Hierarchical Packet Fair
Queueing (HPFQ) [10]. HPFQ first apportions link capacity
between classes, then recursively between sub classes be-
longing to each class, all the way down to the leaf nodes.
Figure 3a provides an example scheduling hierarchy, the
numbers on the edges indicating the relative weights of child
nodes with respect to their parent’s fair scheduler. HPFQ
cannot be realized using a single scheduling transaction and
PIFO because the relative scheduling order of packets that
are already buffered can change with future packet arrivals
(see Section 2.2 of the HPFQ paper [10] for an example).

HPFQ can, however, be realized using a tree of PIFOs,
with a scheduling transaction attached to each PIFO in the
tree. To see how, observe that HPFQ simply executes some
variant of WFQ at each level of the hierarchy, with each node
using WFQ to pick among its children. As we showed in
§2.1, a single PIFO encodes the instantaneous scheduling or-
der for WFQ, i.e. the scheduling order if there are no further
arrivals. Similarly, a tree of PIFOs (Figure 2), where each
PIFO’s elements are either packets or references to other PI-
FOs can be used to encode the instantaneous scheduling or-
der of HPFQ (and other hierarchical scheduling algorithms)
as follows. First, inspect the root PIFO to determine the next
child PIFO to schedule. Then, recursively inspect the child
PIFO to determine the next grand child PIFO to schedule,
until we reach a leaf PIFO that determines the next packet to
schedule. Figure 2 shows this encoding.

The instantaneous scheduling order of this PIFO tree

can be modified as packets are enqueued, by providing a
scheduling transaction for each node in the PIFO tree. This
is our next programming abstraction: a tree of such schedul-
ing transactions. Each node in this tree is a tuple with two at-
tributes (Figure 3b). First, a packet predicate specifies which
packets execute that node’s scheduling transaction before the
packet or a reference to another PIFO is enqueued into that
node’s PIFO. Second, a scheduling transaction specifies how
the rank is computed for elements (packet or PIFO refer-
ence) that are enqueued into the node’s PIFO.

When a packet is enqueued into a PIFO tree, it executes
one transaction at each node whose packet predicate matches
the arriving packet. These nodes form a path from a leaf to
the root of the tree and the transaction at each node on this
path updates the scheduling order at that node. Notice that
for each packet, one element is enqueued into the PIFO at
each node on the path from the leaf to the root. At the leaf
node, that element is the packet itself; at the other nodes, it is
a reference to another PIFO in the tree that eventually points
to the packet. Packets are dequeued in the order encoded
by the PIFO tree (Figure 2). Figure 3 shows how a network
operator would program HPFQ using this tree abstraction.

2.3 Shaping transactions
So far, we have only considered work-conserving schedul-

ing algorithms. Our final abstraction, shaping transactions,
allows us to program non-work-conserving scheduling algo-
rithms.

Non-work-conserving algorithms differ from work-
conserving algorithms in that they decide the time at which
packets are scheduled as opposed to just the scheduling or-
der. As an example, consider the scheduling algorithm
shown in Figure 4a, which extends the algorithm in Fig-
ure 3a with the additional requirement that the traffic in the
Right class be limited to 10 Mbit/s, regardless of the offered
load. We refer to this example throughout the paper as Hier-
archies with Shaping.

To motivate our abstraction for this and other non-work-
conserving algorithms, recall that a PIFO tree encodes the
instantaneous scheduling order, by walking down the tree
from the root PIFO to a leaf PIFO to schedule the next
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tokens = min(tokens + r * (now - last_time), B)
if p.length <= tokens

p.send_time = now
else

p.send_time = now + (p.length - tokens) / r
tokens = tokens - p.length
last_time = now
p.rank = p.send_time

(c) Shaping transaction for TBF_Right.
Figure 4: Programming Hierarchies with Shaping using PIFOs. The scheduling transactions for WFQ_Right, WFQ_Left, and
WFQ_Root are identical to Figure 1.

packet. With this encoding, an element (packet or PIFO ref-
erence) can be scheduled only if it resides in a PIFO and
there is a chain of PIFO references from the root PIFO to
that element. To program non-work-conserving scheduling
algorithms, we provide the ability to defer when a packet or
PIFO reference is enqueued into a PIFO and hence is visible
for scheduling.

To defer enqueues into PIFOs, we augment nodes of the
tree with a shaping transaction that is executed on all pack-
ets matched by the node’s packet predicate. The shaping
transaction determines when a packet (or a reference to a
node’s PIFO) is available for scheduling in the node’s par-
ent’s PIFO. It is only after the time set by the shaping trans-
action that the shaped packet or PIFO reference is actually
released to the parent node, where it is scheduled by execut-
ing the parent’s scheduling transaction and enqueuing it in
its PIFO.

Figure 4c shows an example of a shaping transaction that
implements a Token Bucket Filter (TBF) with a rate-limit
of r and a burst allowance B. Figure 4 shows how an op-
erator would use this shaping transaction to program Hi-
erarchies with Shaping. Here the TBF shaping transaction
(TBF_Right) determines when the PIFO references for class
Right are released to its parent node (Root). Until PIFO ref-
erences for class Right are released to its parent, they are
held in a separate shaping PIFO, distinct from the node’s
scheduling PIFO. The shaping PIFO uses the wall-clock de-
parture time of an entry as its rank and pushes an entry to the
parent’s scheduling PIFO when the entry’s wall clock time
arrives.

The semantics of shaping transactions.
We explain the semantics of shaping transactions within

a tree of scheduling and shaping transactions using the two
nodes Child and Parent shown in Figure 5. When a packet
is enqueued, it executes a scheduling transaction at the leaf
node whose predicate matches this packet. It then contin-
ues upward towards the root, as before, executing schedul-
ing transactions along the path, until it reaches the first node

Child that also has a shaping transaction attached to it.
At this point, we execute two transactions at Child: the

original scheduling transaction to push an entry into Child’s
scheduling PIFO and a shaping transaction to push an ele-
ment R, which is a reference to Child’s scheduling PIFO,
into Child’s shaping PIFO. After R is pushed into Child’s
shaping PIFO, transactions are now suspended: no further
transactions are executed when the packet is enqueued.

Say R had a wall-clock time T as its rank when it was
pushed into Child’s shaping PIFO. At time T , R will
be dequeued from Child’s shaping PIFO and enqueued
into Parent’s scheduling PIFO, making Child’s scheduling
PIFO now visible to Parent. The rest of the path to the root
is now resumed starting at Parent. Note that this suspend-
resume process can occur multiple times if there are multiple
nodes with shaping transactions along a packet’s path from
its leaf to the root. The dequeue logic remains identical to
before, i.e., starting from the root dequeue recursively until
we schedule a packet.

Parent

Child

Parent

Child

Child shaping
transaction

Parent scheduling
transaction 

Tree with
scheduling transactions alone

Tree with scheduling
and shaping transactions

Child schedling
transaction

Child schedling
transaction

Parent scheduling
transaction 

Shaping PIFO Scheduling PIFOScheduling PIFO

Scheduling PIFO Scheduling PIFO

Figure 5: Relationship between scheduling and shaping
transactions. The child shaping transaction suspends the ex-
ecution of the parent scheduling transaction until the wall-
clock time computed by the shaping transaction.

3. THE EXPRESSIVENESS OF PIFOS
In addition to the three detailed examples from §2, we
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p.slack = p.slack - p.prev_wait_time;
p.rank = p.slack;

Figure 6: Scheduling transaction for LSTF

if (now >= frame_end_time):
frame_begin_time = frame_end_time
frame_end_time = frame_begin_time + T

p.rank = frame_end_time

Figure 7: Shaping transaction for Stop-and-Go Queueing

now provide three more examples (§3.1, §3.2, §3.3) to
demonstrate that our programming model built using the
PIFO abstraction is expressive. We also list several other
examples that can be programmed using PIFOs (§3.4).

3.1 Least Slack-Time First
Least Slack-Time First (LSTF) [28, 30] schedules packets

at each switch in increasing order of packet slacks, i.e., the
time remaining until each packet’s deadline. Packet slacks
are initialized at an end host and decremented by the wait
time at each switch’s queue. We can program LSTF at
a PIFO-enabled switch using the scheduling transaction in
Figure 6. To compute wait times at upstream switches, we
tag packets with their timestamps before and after they enter
the queue, and compute the difference between the two.3

3.2 Stop-and-Go Queueing
Stop-and-Go Queueing [22] is a non-work-conserving al-

gorithm that provides bounded delays to packets using a
framing strategy. Time is divided into non-overlapping
frames of equal length T , where every packet arriving within
a frame is transmitted at the end of the frame, smooth-
ing out any burstiness in traffic patterns induced by previ-
ous hops. To program Stop-and-Go Queueing, we use the
shaping transaction in Figure 7. frame_begin_time and
frame_end_time are two state variables that track the be-
ginning and end of the current frame (in wall-clock time).
When a packet is enqueued, its departure time is set to the
end of the current frame. Multiple packets with the same
departure time are sent out in first-in first-out order, as guar-
anteed by a PIFO’s semantics (§2).

3.3 Minimum rate guarantees
A common scheduling policy on many switches today is

providing a minimum rate guarantee to a flow, provided the
sum of all such guarantees doesn’t exceed the link capac-
ity. A minimum rate guarantee can be programmed using
PIFOs by using a two-level PIFO tree, where the root of the
tree implements strict priority scheduling across flows: those
flows below their minimum rate are scheduled preferentially
to flows above their minimum rate. Then, at the next level
of the tree, flows implement the first-in first-out discipline
3This can be achieved through proposals such as Tiny Packet Pro-
grams [25] and In-Band Network Telemetry [3].

// Replenish tokens
tb = tb + min_rate * (now - last_time);
if (tb > BURST_SIZE) tb = BURST_SIZE;

// Check if we have enough tokens
if (tb > p.size):

p.over_min = 0; // under min. rate
tb = tb - p.size;

else:
p.over_min = 1; // over min. rate

last_time = now;
p.rank = p.over_min;

Figure 8: Scheduling transaction for min. rate guarantees.

across their packets.
To program minimum rate guarantees, when a packet is

enqueued, it executes a FIFO scheduling transaction at its
leaf node, setting its rank to the wall-clock time on arrival.
At the root level, a PIFO reference (the packet’s flow iden-
tifier) is pushed into the root PIFO using a rank that reflects
whether the flow is above or below its rate limit after the
arrival of the current packet. To determine this, we run the
scheduling transaction in Figure 8 that uses a token bucket
(tb) that can be filled up until BURST_SIZE to decide if the
arriving packet puts the flow below or above a particular flow
rate.

Note that “collapsing” this tree into a single node that
implements the scheduling transaction in Figure 8 does not
work because it causes packet reordering within a flow: an
arriving packet can cause a flow to move from a lower to a
higher priority and, in the process, leave before low priority
packets from the flow that arrived earlier. The 2-level tree
solves this problem by attaching priorities to transmission
opportunities for a specific flow and not specific packets.
Now if an arriving packet causes a flow to move from low
to high priority, the next packet that is scheduled from this
flow is the earliest packet from that flow—not the arriving
packet.

3.4 Other examples
We now briefly describe several more examples of

scheduling algorithms that can be programmed using PIFOs.
1. Fine-grained priority scheduling: Many algorithms

implement fine-grained priority scheduling and sched-
ule the packet with the lowest value of a field initialized
by the end host. These algorithms can be programmed
by using a scheduling transaction to set the packet’s
rank to the appropriate field. Examples of such algo-
rithms and the fields they use are strict priority schedul-
ing (IP TOS field), Shortest Job First (flow size), Short-
est Remaining Processing Time (remaining flow size),
Least Attained Service (service received in bits for a
flow), and Earliest Deadline First (time until a dead-
line).

2. Service-Curve Earliest Deadline First (SC-
EDF) [32] is a scheduling algorithm that schedules

5



packets in increasing order of a deadline computed
from a flow’s service curve (a specification of the
service a flow should receive over any given time
interval). We can program SC-EDF using a scheduling
transaction that sets a packet’s rank to the deadline
computed by the SC-EDF algorithm.

3. First-In First-Out can be programmed by using a
scheduling transaction that sets a packet’s rank to the
wall-clock time on arrival.

4. Rate-Controlled Service Disciplines (RCSD) [40]
are a class of non-work-conserving scheduling algo-
rithms that can be implemented using a combination
of a rate regulator to shape traffic and a packet sched-
uler to schedule traffic. An algorithm from the RCSD
framework can be programmed using PIFOs by ex-
pressing the rate regulator using a shaping transaction
and the packet scheduler using a scheduling transac-
tion. Examples in this class include Jitter-EDD [39]
and Hierarchical Round Robin [27].

5. Class-Based Queueing (CBQ) [19, 20] is a hierar-
chical scheduling algorithm that first schedules among
classes based on a priority field assigned to each class,
and then uses fair queueing to schedule packets within
a class. CBQ can be programmed by a using a two-
level PIFO tree to realize inter-class and intra-class
scheduling.

3.5 Limitations
We conclude by describing some algorithms that cannot

be programmed using the PIFO abstraction.

Changing the scheduling order of all packets in a
flow.

A PIFO allows an arriving element (packet or PIFO ref-
erence) to determining its own scheduling order relative to
all other elements currently in the PIFO. A PIFO does not
allow the arriving element to change the scheduling order of
all elements belonging to that element’s flow that are already
present in the PIFO.

An example of an algorithm that needs this capability is
pFabric [9], which schedules the earliest packet from the
flow with the shortest remaining processing time, to prevent
packet reordering. To illustrate why this is beyond a PIFO’s
capabilities, consider the sequence of arrivals below, where
pi(j) represents a packet from flow i with remaining process-
ing time j.

1. Enqueue p0(7).
2. Enqueue p1(9), p1(8).
3. The departure order now is: p0(7), p1(9), p1(8).
4. Enqueue p1(6).
5. The departure order now is: p1(9), p1(8), p1(6), p0(7).
The order of all packets from flow 1 needs to change in

response to the arrival of a single packet p1(6) from flow 1,
which is beyond a PIFO’s capabilities.

Traffic shaping across multiple nodes in a tree.
Our programming model for scheduling attaches a single

shaping and scheduling transaction to a node. This lets us
enforce rate limits on a single node, but not across mul-
tiple nodes in the tree. As an illustration, PIFOs cannot
express the following policy: WFQ on a set of flows A,
B, and C, with the additional constraint that the aggregate
throughput of A and B together doesn’t exceed 10 Mbit/s.
One work around is to implement this as HPFQ across two
classes C1 and C2, with C1 containing A and B, and C2
containing C alone. Then, we enforce the rate limit of 10
Mbit/s on C1. However, this isn’t equivalent to our desired
policy. More generally, our programming model for pro-
grammable scheduling establishes a 1-to-1 relationship be-
tween the scheduling and shaping transactions, which is con-
straining for some algorithms.

Output rate limiting.
The PIFO abstraction enforces rate limits using a shap-

ing transaction, which determines a packet or PIFO refer-
ence’s scheduling time before it is enqueued into a PIFO.
The shaping transaction permits rate limiting on the input
side, i.e., before elements are enqueued. An alternate form
of rate limiting is on the output, i.e., by limiting the rate at
which elements are scheduled.

As an example, consider a scheduling algorithm with two
priority queues, low and high, where low is to be rate limited
to 10 Mbit/s. To program this using input side rate limiting,
we would use a shaping transaction to impose a 10 Mbit/s
rate limit on low and a scheduling transaction to implement
strict priority scheduling between low and high. Now, as-
sume packets from high starve low for an extended period
of time. During this time, packets from low get rate limited
through the shaping transaction and accumulate in the PIFO
shared with high. Now, if there are suddenly no more high
packets, all packets from low would get scheduled out at line
rate, and no longer be rate limited to 10 Mbit/s over a tran-
sient period of time (until all instances of low are drained
out of the PIFO shared with high). Input rate limiting still
provides long-term guarantees on the rate, while output rate
limiting provides these guarantees on shorter time scales as
well.

4. DESIGN
We now present a hardware design for a programmable

scheduler based on PIFOs. For concreteness, we target line-
rate switches with an aggregate capacity of up to a bil-
lion packets/s, i.e., a 1 GHz clock frequency for the switch
pipeline. Examples of such switch architectures include
the RMT architecture [13] and Intel’s FlexPipe [4], both of
which provide 64 10 Gbit/s ports, which at the minimum
packet size of 64 bytes translates to a billion packets/s.

For our hardware design, we first describe how scheduling
and shaping transactions can be implemented (§4.1). Then,
we show how a tree of PIFOs can be realized using a full
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mesh of PIFO blocks by appropriately interconnecting these
blocks (§4.2). We also describe how a compiler (§4.3) can
automatically configure this mesh given the description of
the scheduling algorithm as a tree of scheduling and shaping
transactions.

4.1 Scheduling and shaping transactions
Scheduling and shaping transactions compute an ele-

ment’s rank and execute atomically. By this, we mean that
the state of the system (both the PIFO and any auxiliary state
used in the transaction) after N enqueues is equivalent to se-
rially executing N transactions one after the other, with no
overlap between them. For our purpose, we need to exe-
cute these transactions atomically at line rate, i.e., the rate at
which the switch receives packets (e.g., a billion packets/s).

To implement scheduling and shaping transactions, we
use Domino [35], a recent system to program data-plane al-
gorithms at line rate using packet transactions. Domino ex-
tends work on programmable line-rate switches [13, 4, 8]
by providing hardware primitives, called atoms, and soft-
ware abstractions, called packet transactions, to program
data-plane algorithms at line rate. Atoms are small process-
ing units that represent a programmable switch’s instruction
set. The Domino compiler compiles a packet transaction
into a pipeline of atoms that executes the transaction atom-
ically, rejecting the packet transaction if it can’t run at line
rate. Scheduling and shaping transactions are, in fact, packet
transactions written in the Domino language.

The Domino paper proposes atoms that are rich enough to
support many data-plane algorithms and small enough that
they can be implemented at 1 GHz with modest chip area
overhead. The largest of these atoms, called Pairs, occu-
pies an area of 6000 µm2 in a 32 nm standard-cell library; a
switch with a chip area of 200 mm2 [21] can support 300 of
these with less than 1% area overhead. The Domino paper
further shows how the transaction in Figure 1 can be run at
1 GHz on a switch pipeline with the Pairs atom.

In a similar manner, we could use the Domino compiler
to compile scheduling and shaping transactions to a pipeline
of atoms for other scheduling and shaping transactions. For
example, the transactions for Token Bucker Filtering (Fig-
ure 4c), minimum rate guarantees (Figure 8), Stop-and-Go
queueing(Figure 7), and LSTF (Figure 6), can all be ex-
pressed as Domino programs.

4.2 The PIFO mesh
The next component of the hardware is the actual PIFO

itself. We lay out PIFOs physically as a full mesh of PIFO
blocks (Figure 9), where each block implements multiple
logical PIFOs. We expect a small number of PIFO blocks
in a typical switch (e.g., less than five). The PIFO blocks
correspond to different levels of a hierarchical scheduling
tree. Most practical scheduling algorithms do not require
more than a few levels of hierarchy, implying the required
number of PIFO blocks is small as well. As a result, a full

mesh between these blocks is feasible (see §5.4 for more
details).

Each PIFO block runs at a clock frequency of 1 GHz and
contains an atom pipeline to execute scheduling and shaping
transactions. In every clock cycle, each PIFO block supports
one enqueue and dequeue operation into any one of the log-
ical PIFOs residing within that block. We address a logical
PIFO within a block with a logical PIFO ID.

The interface to a PIFO block is:
1. Enqueue an element (packet or reference to another

PIFO) given a logical PIFO ID, the element’s rank,
and some metadata that will be carried with the ele-
ment (such as the packet length required for STFQ’s
rank computation). The enqueue returns nothing.

2. Dequeue from a specific logical PIFO ID within the
block. The dequeue returns either a packet or a refer-
ence to another PIFO.

After a dequeue, besides transmitting a packet, a PIFO
block may need to communicate with another PIFO block
for one of two reasons:

1. To dequeue a logical PIFO in another block (e.g., when
dequeuing a sequence of PIFOs from the root to a leaf
of a scheduling tree to transmit packet).

2. To enqueue into a logical PIFO in another block (e.g.,
when enqueuing a packet that has just been dequeued
from a shaping PIFO).

We configure these post-dequeue operations using a small
lookup table, which looks up the “next hop” following a de-
queue. This lookup table specifies an operation (enqueue,
dequeue, transmit), the PIFO block for the next operation,
and any arguments the operation needs.

4.3 Compiling to a PIFO mesh
A PIFO mesh is configured by specifying the logical PI-

FOs within each PIFO block and by populating each PIFO
block’s next-hop lookup table. A compiler could configure
the PIFO mesh from the scheduling algorithm specified as
a tree of scheduling and shaping transactions. We illustrate
the compilation using examples from Figures 3 and 4. The
compiler first converts the tree with scheduling and shaping
transactions to an equivalent tree representation that spec-
ifies the enqueue and dequeues operations on each PIFO.
Figures 10a and 11a show this representation for Figures 3
and 4 respectively.

It then overlays this tree over a PIFO mesh by assigning
every level of the tree to a PIFO block and configuring the
lookup tables to connect PIFO blocks as required by the tree.
Figure 10b shows the PIFO mesh corresponding to Figure 3.
If a particular level of the tree has more than one enqueue or
dequeue from another level, we allocate new PIFO blocks as
required to respect the constraint that any PIFO block pro-
vides one enqueue and dequeue operation per clock cycle.
This is shown in Figure 11b, which has an additional PIFO
block containing TBF_Right4 alone.

4More precisely, the shaping PIFO that the TBF_Right transaction
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Challenges with shaping transactions.
Each PIFO block supports one enqueue and dequeue op-

eration per clock cycle. This suffices to implement any al-
gorithm which only uses scheduling transactions (i.e. work-
conserving algorithms) at line-rate. The reason is that for
such algorithms each packet needs at most one enqueue and
one dequeue at each level of its scheduling tree, and we map
the PIFOs at each level to a different PIFO block.

However, shaping transactions pose challenges. Consider
the non-work-conserving algorithms in Figure 4. When
the shaping transaction enqueues elements into TBF_Right,
these elements will be released into WFQ_Root at a future
time T . The external enqueue into WFQ_Root may also hap-
pen exactly at T , because a packet arrives at that time. This
creates a conflict because there are two enqueue operations
in the same cycle. Conflicts may also manifest on the de-
queue side, e.g., if TBF_Right shared its PIFO block with
another logical PIFO, dequeue operations to the two logical
PIFOs could occur at the same time because TBF_Right can
be dequeued at any arbitrary wall-clock time.

In a conflict, only one of the two operations can proceed.
We resolve this conflict in favor of PIFOs where element
ranks are computed by scheduling transactions. This reflects
the intuition that PIFOs controlled by shaping transactions
are used for rate limiting to a rate lower than the line rate at
which packets are normally scheduled. As a result, they can

enqueues into. We use a transaction’s name to refer both to the
transaction and the PIFO it enqueues into.
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afford to be delayed by a few clocks until there are no more
conflicts. By contrast, delaying scheduling decisions of a
PIFO controlled by a scheduling transaction would mean
that the switch would idle without transmitting a packet and
not satisfy its line-rate guarantee.

Effectively, this means that PIFOs controlled by shap-
ing transactions only get best-effort service. There are
workarounds to this undesirable situation. One is to over-
clock the pipeline at a higher clock rate than required for
packet processing, such as 1.25 GHz instead of 1 GHz, pro-
viding a few spare clock cycles for best-effort processing.
Another is to provide multiple ports to a PIFO block to
support multiple operations every clock. These techniques
are commonly used in switches today for low priority back-
ground tasks such as reclaiming buffer space. They can be
applied to the PIFO mesh as well.

5. HARDWARE IMPLEMENTATION
We now describe the detailed implementation of a PIFO

mesh. First, we discuss the implementation of a single PIFO
block within the mesh (§5.2). Then, we synthesize this im-
plementation to a 16 nm standard-cell library and evaluate
its area overheads (§5.3). Finally, we evaluate the feasibil-
ity of interconnecting these PIFO blocks using a full mesh
(§5.4).

5.1 Performance requirements
Our goal in implementing a PIFO block is to build

a scheduler that is performance-competitive with current
shared-memory switches, such as the Broadcom Trident [1],
which are commonly used in datacenters today. As concrete
performance targets, we target a 1 GHz clock frequency,
which supports 64 10 Gbit/s ports. Based on the Broadcom
Trident, we target a packet buffer size of 12 MBytes, and a
cell size5 of 200 bytes. In the worst case, every packet is a
single cell, implying the need to support up to 60K packet-
s/elements per PIFO block spread over multiple logical PI-
FOs. Similarly, based on the Broadcom Trident, we set a tar-
get of 1000 flows over which scheduling decisions are made
at any port.

5.2 A single PIFO block
Functionally, a single PIFO block needs to support two

operations: an enqueue operation that inserts an element into
a logical PIFO and a dequeue operation to dequeue from the
head of a logical PIFO. We first describe an implementation
for a single logical PIFO and then extend it to multiple logi-
cal PIFOs in the same physical PIFO block.

A naive implementation is a flat sorted array of elements.
An incoming element is compared against all elements in
parallel to determine a location for the new element. It is
then inserted into this location by shifting the array. How-

5Packets in a shared-memory switch are allocated in small units
called cells.

ever, each comparison needs an independent comparator cir-
cuit and supporting 60K of these is infeasible.

However, nearly all practical scheduling algorithms natu-
rally group packets into flows or classes (e.g., based on traf-
fic type, ports, or addresses) and schedule packets of a flow
in FIFO order. In these algorithms, packet ranks strictly in-
crease across consecutive packets in a flow. This motivates
a PIFO design (Figure 12) with two parts: (1) a flow sched-
uler that picks the element to dequeue based on the rank of
the head element of each flow, i.e., the element that arrived
earliest, and (2) a rank store, a bank of FIFOs that stores el-
ement ranks beyond the head elements. This decomposition
reduces the number of elements that need sorting from the
number of packets (60 K) to the number of flows (1K). Dur-
ing an enqueue, an element (both rank and metadata) is ap-
pended to the end of the appropriate FIFO in the rank store.6

To permit enqueues into this PIFO block, we also supply a
flow ID argument to the enqueue operation.

Besides better scalability, an added benefit of this design
is the ability to reuse a significant amount of engineering ef-
fort that has gone into building hardware IP for a bank of
FIFOs. In a FIFO bank, each FIFO can grow and shrink dy-
namically as required, subject to an overall limit on the num-
ber of entries across the bank. Such banks are commonly
used today to buffer packet data in a switch scheduler. As
a result, we focus our implementation effort on building the
flow scheduler alone.

The Flow Scheduler.
The core operation within the flow scheduler is to sort an

array of flows based on the ranks of flow heads. The flow
scheduler needs to support one enqueue and one dequeue to
the PIFO block every clock cycle, which translates into two
operations on the flow scheduler every clock cycle:

1. Inserting a flow when the flow goes from empty to non-
empty (for the enqueue operation).

2. Removing a flow that goes empty once it is scheduled,
or reinserting a flow with the priority of the next ele-
ment if it is still backlogged once it is scheduled (for
the dequeue operation).

The operations above require the ability to push up to two
elements into the flow scheduler every cycle (one each for
the insert and reinsert) and the ability to pop one element
every cycle (for either the remove or reinsert). These oper-
ations require parallel operations on all elements in the flow
scheduler. To facilitate this, we implement the flow sched-
uler data structure in flip flops (unlike the rank store, which
is stored in SRAM).

Internally, the flow scheduler is organized as a sorted ar-
ray, where a push is implemented by:

1. Comparing against all elements in the array in parallel,
using a comparator circuit, to produce a bit mask with
the comparison results.

6If this is the first element in the flow, it bypasses the rank store and
is directly pushed into the flow scheduler data structure.
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2. Finding the first 0-1 transition in the bit mask, using a
priority encoder circuit, to determine the index to push
into.

3. Pushing the element into the appropriate index, by
shifting the array.

A pop is implemented by shifting the head element out of
the sorted array.

So far, we have focused on the flow scheduler for a single
logical PIFO. To handle multiple logical PIFOs, we keep el-
ements sorted by rank, regardless of which logical PIFO they
belong to; hence, the push implementation doesn’t change.
To pop from a logical PIFO, we compare against all ele-
ments to determine elements with the same logical PIFO ID.
Among these, we find the first using a priority encoder. We
then remove this element by shifting the array.

The internal push and pop operations require 2 clock
cycles each and hence need to be pipelined to support a
throughput of 2 pushes and 1 pop every clock cycle. The
first stage of this 2-stage pipeline for the push operation car-
ries out the parallel comparison and priority encoder steps
to determine an index; the second stage actually pushes the
element into the array using the index. Similarly, for the pop
operation, the first stage carries out the equality check (for
logical PIFO IDs) and priority encoder steps to compute an
index; the second stage pops the head element out of the ar-
ray using the index. Figure 13 shows the 2-stage pipeline.

The pipelined implementation meets timing at 1 GHz and
supports up to one enqueue/dequeue operation to any logi-
cal PIFO within a PIFO block every clock cycle. Because
pops take 2 cycles, and a reinsert operation requires a pop
followed by an access to the rank store for the next ele-
ment, followed by a push, our implementation supports a
dequeue from the same logical PIFO only once every 3 cy-
cles (2 cycles for the pop and 1 cycle to access the rank store
in SRAM). This restriction is inconsequential in practice. A
dequeue every 3 cycles from a logical PIFO is sufficient to
service the highest link speed in current switches, 100 Gbit/s,
which requires a dequeue at most once every 5 clock cycles
for a minimum packet size of 64 bytes. Dequeues to distinct
logical PIFO IDs are still permitted every cycle.

5.3 Area overhead
We synthesized the design described above to a gate-level

netlist in a 16-nm standard cell library to determine its area
overhead. We first calculate area overheads for a baseline
PIFO block that supports 1024 flows that can be shared
across 256 logical PIFOs, and uses a 16-bit rank field and
a 32-bit metadata field for each element in the PIFO. In ad-
dition, we assume our rank store supports 64K elements.

Table 1 calculates chip-area overheads when synthesized
to a 16-nm standard-cell library. Overall, a 5-block PIFO
mesh consumes about 7.35 mm2 of chip area (including the
area of the atom pipelines for rank computations). This is
about 3.7% of the chip area of a typical switching chip today
(using the minimum chip area estimate of 200 mm2 provided
by Gibb et al. [21]). Of course, a 5-block PIFO mesh is
a significantly more capable packet scheduler compared to
current switch schedulers.

Varying parameters from the baseline design.
The flow scheduler has four parameters: rank width,

metadata width, number of logical PIFOs, and number of
flows. Among these, increasing the number of flows has the
most impact on feasibility because the flow scheduler com-
pares against all flow entries in parallel. With other parame-
ters set to their baseline values, we vary the number of flows
to determine the eventual limits of a flow scheduler with to-
day’s transistor technology (Table 2), finding that we can
scale up to 2048 flows while still meeting timing at 1 GHz.

The remaining parameters affect the area overhead of a
flow scheduler, but have little effect on whether or not the
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Component Area in mm2

Switching chip 200–400 [21]
Flow Scheduler 0.224 (from synthesis)
SRAM (1 Mbit) 0.145 [6]
Rank store 64 K * (16 + 32) bits * 0.145 mm2 /

Mbit = 0.445
Next pointers for linked
lists in dynamically allo-
cated rank store

64 K * 16 bit pointers * 0.145 = 0.148

Free list memory for dynam-
ically allocated rank store

64 K * 16 bit pointers * 0.145 = 0.148

Head, tail, and count mem-
ory for each flow in the rank
store

0.1476 (from synthesis)

One PIFO block 0.224 + 0.445 + 0.148 + 0.148 + 0.1476
= 1.11 mm2

5-block PIFO mesh 5.55
300 atoms spread out over
the 5-block PIFO mesh for
rank computations

6000 µm2* 300 = 1.8 mm2 (§4.1)

Overhead for 5-block PIFO
mesh

(5.55 + 1.8) / 200.0 = 3.7 %

Table 1: A 5-block PIFO mesh incurs a 3.7% chip area over-
head relative to a baseline switch.

# of flows Area (mm2) Meets timing at 1 GHz?
256 0.053 Yes
512 0.107 Yes
1024 0.224 Yes
2048 0.454 Yes
4096 0.914 No

Table 2: Flow scheduler area increases in proportion to the
number of flows and meets timing at 1 GHz until 2048 flows.

flow scheduler circuit meets timing. For instance starting
from the baseline design of the flow scheduler that takes up
0.224 mm2 of area, increasing the rank width to 32 bits re-
sults in an area of 0.317 mm2, increasing the number of log-
ical PIFOs to 1024 increases the area to 0.233 mm2, and
increasing the metadata width to 64 bits increases the area to
0.317 mm2. In all cases, the circuit continues to meet timing.

5.4 Interconnecting PIFO blocks
An interconnect between PIFO blocks is required for

PIFO blocks to enqueue into and dequeue from other PIFO
blocks. Because the number of PIFO blocks is small, we
provide a full mesh between the PIFO blocks. Assuming a
5-block PIFO mesh, this requires 5*4 = 20 sets of wires be-
tween PIFO blocks. Each set of wires would need to carry all
the inputs required for specifying an enqueue and dequeue
operation on a PIFO block.

We calculate the number of wires in each set for our base-
line design. For an enqueue operation, we require a logical
PIFO ID (8 bits), the element’s rank (16 bits), the element
meta data (32 bits), and the flow ID (10 bits). For a dequeue
operation, we need a logical PIFO ID (8 bits) and wires to
store the dequeued element (32 bits). This totals up to 106
bits per set of wires, or 2120 bits across the entire mesh.
This is a relatively small number of wires and can easily
be supported on a chip. For example, RMT’s match-action

pipeline uses nearly 2× the number of wires between each
pair of pipeline stages to move the packet header vector from
one stage to the next [13].

6. DISCUSSION

6.1 Buffer management
Our design focuses on programmable scheduling and

doesn’t concern itself with how the switch’s data buffers are
allocated to flows within a PIFO. Buffer management can
either use static thresholds for each flow or dynamic thresh-
olds based on active queue management algorithms such as
RED [18] and the occupancy of other ports [14]. In a shared-
memory switch, buffer management is largely orthogonal to
scheduling, and is implemented using counters that track the
occupancies of various flows and ports. Before a packet is
enqueued into the scheduler, if any of these counters exceeds
a static or dynamic threshold, the packet is dropped. A simi-
lar design could be used to check thresholds before enqueue-
ing into a PIFO block as well.

6.2 Priority Flow Control
Priority Flow Control (PFC) [5] is a standard that allows

a switch to send a pause message to an upstream switch re-
questing it to cease transmission of packets belonging to a
particular set of flows. PFC can be integrated into our hard-
ware design for PIFOs by masking out certain flows in the
flow scheduler during the dequeue operation if they have
been paused because of a PFC pause message and unmask-
ing them when a PFC resume message is received.

6.3 Multi-pipeline switches
The highest end switches today, such as the Broadcom

Tomahawk [2], support aggregate capacities exceeding 3
Tbit/sec. At a minimum packet size of 64 bytes, this corre-
sponds to an aggregate forwarding requirement of 6 billion
packets/s. Because a single switch pipeline typically runs at
1 GHz and processes a billion packets/s, such switches re-
quire multiple ingress and egress pipelines that share access
to the scheduler subsystem alone.

In such multi-pipeline switches, each PIFO block needs
to support multiple enqueue and dequeue operations per
clock cycle (as many as the number of ingress and egress
pipelines). This is because packets can be enqueued from
any of the input ports every clock cycle, and each input port
could reside in any of the ingress pipelines. Similarly, each
egress pipeline requires a new packet every clock cycle, re-
sulting in multiple dequeues every clock cycle.

A full-fledged design for multi-pipeline switches is be-
yond this paper, but our current design does facilitate a
multi-pipeline implementation. A rank store supporting
multiple pipelines is similar to what is required in the data
buffer of multi-pipeline switches today. Building a flow
scheduler to support multiple enqueues/dequeues per clock
is relatively easy because it is maintained in flip flops, where
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it is simple to add multiple ports (unlike SRAM).

7. RELATED WORK
The Push-in First-out Queue: PIFOs were first intro-

duced by Chuang et al. [15] as a proof construct to prove
that a combined input-output queued switch could emulate
an output-queued switch running different scheduling algo-
rithms. The same paper also shows how WFQ and strict
priorities are specific instantiations of a PIFO. We demon-
strate that PIFOs can be used as an abstraction for program-
ming scheduling algorithms beyond WFQ and strict priori-
ties, that they can be composed together to program hierar-
chical scheduling algorithms, and finally that they are feasi-
ble in today’s transistor technology.

Packet scheduling algorithms: Many scheduling algo-
rithms [34, 33, 23, 17, 10, 28, 22, 9] have been proposed in
the literature. Yet, only a handful (DRR, traffic shaping, and
strict priorities) are found in routers. Even programmable
switches [13, 4, 8] treat packet scheduling as a black box.
As shown in §3, PIFOs allow us to program these and other
as-yet-unknown scheduling algorithms, without the power,
area, and performance penalties of prior proposals [37] that
require fully reconfigurable FPGAs.

Universal Packet Scheduling (UPS): UPS [30] uses the
LSTF algorithm by appropriately initializing slack times at
end hosts and proves that LSTF is universal under the strong
assumption that packet departure times for a scheduling al-
gorithm are known up front. LSTF is expressible using
PIFOs, but the set of schemes practically expressible with
LSTF is itself limited. For example, LSTF cannot express:

1. Hierarchical scheduling algorithms such as HPFQ, be-
cause it uses only one priority queue.

2. Non-work-conserving algorithms, because for such al-
gorithms LSTF must know the departure time of each
packet up-front, which is not practical.

3. Short-term bandwidth fairness in fair queueing, be-
cause LSTF maintains no switch state except one pri-
ority queue. As shown in Figure 1, programming a
fair queueing algorithm requires us to maintain a vir-
tual time state variable that is updated when packets
are dequeued. Without this variable, a new flow could
have arbitrary start times, and be deprived of its fair
share indefinitely.

4. Scheduling policies that aggregate flows from distinct
endpoints into a single flow at the switch (Figure 14),
because LSTF provides no ability to maintain and up-
date switch state progammatically.

Hardware designs for priority queues: Hardware de-
signs for a priority queue have been proposed in the past [11,
24]. These designs typically employ a heap and scale to a
large number of entries. They are the basis for hierarchical
schedulers in many deep-buffered core routers. However,
they occupy significant area—enough to warrant a dedicated
chip for the scheduler alone. They are unlikely to be feasible
on merchant-silicon shared-memory switching chips where

Switch

Flow 1

Flow 2

Flow 3

Flow 4

WFQ
Link

End hosts

Figure 14: A switch’s scheduling algorithm, such as WFQ,
might aggregate flows from different end hosts into a single
flow at the switch for the purpose of scheduling.

chip area is at a premium. In contrast, our design for the
PIFO exploits two observations. First, there is considerable
structure in the arrival stream of ranks: ranks within a flow
strictly increase with time. Second, the buffering require-
ments for shared-memory switches today are much lesser
than the buffering requirements of a core router. This per-
mits a simpler design relative to heaps.

8. CONCLUSION
Until recently, it was widely assumed that the fastest

switch chips would be fixed-function; a programmable de-
vice could not have the same performance. Recent re-
search into programmable parsers [21], fast programmable
protocol-independent switch chips [13], and languages to
program them [12, 38], coupled with a recent 3.2 Tbit/s pro-
grammable commercial switch chip [8] suggests that change
might be afoot. But so far, it has been considered off-limits
to program the packet scheduler—in part because the desired
algorithms are so varied, and because the scheduler sits right
at the heart of the shared packet buffer where timing require-
ments are tightest. It has been widely assumed too hard to
find a useful abstraction that can also be implemented in fast
hardware.

PIFO appears to be a very promising abstraction: it in-
cludes a wide variety of existing algorithms, and allows us
to express new ones. We have found it possible to imple-
ment PIFOs at line-rate with modest chip area overhead. We
believe the most exciting consequence will be the creation of
many new schedulers, invented by those who build and op-
erate networks, iterated and refined, then deployed for their
own needs. No longer will research experiments be limited
to simulation and progress constrained by a vendor’s choice
of scheduling algorithms. For those who need a new algo-
rithm, they could create their own, or might even download
one from an open-source repository or a reproducible SIG-
COMM paper. To get there, we will need real switch chips
with PIFO schedulers we can program. The good news is
that we see no reason why a future generation of switch chips
can not include a programmable PIFO scheduler.
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