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Abstract— Modeling human motion requires an accurate
specification of musculoskeletal physiology, yet there exists no
method to quantify the modeling accuracy required, or to
predict the effect of modeling errors on subsequent analyses.
Quantifying how inaccuracies in physiology, kinematics, or
dynamics affect the study of human meotion is a challenge
that must be solved before we can construct robust generative
models of human motor control at appropriate levels of detail.
In this paper, we overcome two fundamental problems in char-
acterizing the effect of model accuracy: the lack of ground truth
about the arm’s musculoskeletal kinematics, and the inability to
systematically vary modeling accuracy. To do so, we developed
a family of upper-body musculoskeletal models for a live human
individual where modeled musculature was parameterized by
decomposing volumetric muscles into fiber-groups of varying
diameter and geometric complexity. The family of models thus
obtained offer an unprecedented level of detail, and enable
empirical comparisons of human motion analysis results across
varying levels of anatomical accuracy and geometry. This sets
the stage for large-scale studies of human motion that connect
high level behavior to low level musculoskeletal dynamics,
with applications in robotics, biomechanics, and human motor
control.

I. INTRODUCTION

Efforts to model and characterize human motion are
presently limited by a lack of automated methods to create
subject-specific models, and a lack of systematic methods
that can quantify a given musculoskeletal model’s robustness
with respect to a given analysis. Moreover, human-centered
analyses are diverse and include a variety of robotics research
areas, including human-robot interaction [1], ergonomics [2],
robot design [3], motion reconstruction [4], [5], computer
vision [6], [7] and human-robot safety [8], [9], [10]. This
large set of use cases has led to fragmentation in efforts
across groups, which have very different goals. A set of
openly available models parameterized by variables of shared
interest promises to synchronize disparate efforts. Methods
and tools to automate model creation and compare model
performance thus promise to impact a large and rapidly
growing section of research.

One strategy adopted by human modelers, in the face of
uncertainty about the required level of modeling detail, is
to pursue an ever-increasing level of detail. The underlying
assumption is that the most detailed model that can be
feasibly constructed will be sufficiently robust to errors in
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Fig. 1. Subject-specific human musculoskeletal modeling. An anatom-
ically precise subject-specific musculoskeletal arm model extracted from
magnetic resonance imaging data.

model parameter estimates and motion measurements. While
intuitive, this is an unverifiable assumption in the absence
of ground truth about the modeled system—an assumption
that warrants scrutiny. Error checks, when included, primar-
ily focus on high-level physical performance metrics [11],
or robustness to parameter tuning and numerical errors in
analysis methods [12], [13] while keeping the model fixed.
We propose, in addition, that analyses should identify the
gradient of errors with respect to modeling detail.

Here, we construct an anatomically accurate upper-body
musculoskeletal model using magnetic resonance imaging
(MRI) “ground truth” data (Fig. 1), vary it parametrically
to create a family of models, and propose an analysis frame-
work to empirically analyze how model accuracy influences
human musculoskeletal simulation and control (Fig. 2). The
primary challenges we overcame while doing so were to:
(i) obtain high resolution MRI data for limbs in the upper-
body; (ii) co-register the MRI scans of different limbs into a
composite arm model; (iii) segment MRI scans into volumet-
ric muscles and skeletons; and (iv) automatically generate
families of musculoskeletal systems from the segmented
MRI scans. Comparing our models with existing human
musculoskeletal models, we found a large gain in anatomical
accuracy at the shoulder and elbow joints. We also found that
commonly used affine scaling methods have the potential
to introduce large errors in human motion analyses when
the musculoskeletal system of the canonical model does
not match an individual subject. This makes a strong case
for developing detailed subject-specific models, or at least
developing a family of models large enough that it is feasible
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Fig. 2. Comparing Model Accuracy and Analysis Error. A. Volumetric rendering of bones and muscles extracted from a subject’s anatomical MRI
data. B. A family of models generated from the volumetric data. Skeletons are identical. The muscle model on the left very accurately captures muscle
volumes (2.5 mm radius and 2 cm length fiber-group segments). The other two models are parametrically decimated by reducing the number of fiber
groups per unit area, without dropping muscles. The musculature in the lower arm is better preserved since the muscles are more numerous and thinner,
and thus lose less detail. C. Analyzing a family of MRI-based models with varying accuracy provides insights into the level of detail required for a given
biomechanical analysis. Note that these graphs show hypothetical scenarios and should be computed by users of the model with an error metric suitable
for their application. Ideal models have predictable error trends, such as the one in the top graph. Unpredictable errors make it difficult to determine the

model detail required for a given application. Increasing detail may not necessarily decrease error, as shown in the bottom graph.

to map one of them to a given individual human.

II. RELATED WORK
A. Musculoskeletal Simulation

Human musculoskeletal models and dynamic simulation
have been widely used to reconstruct and study quasi-static
[13], [14], [15], [16], cyclical [17], and high performance
motions [18], [19]. One approach to dynamic simulations
uses motion capture data to solve an inverse dynamics
problem for the simulated musculoskeletal model [20]. An
alternative approach uses control algorithms to move sim-
ulated models in a manner that synthesizes the captured
human motion [21], [22], [23], [5]. Both methods require
large computational resources for complex models, and are
sensitive to errors introduced by kinematic and physiological
accuracies.

B. Musculoskeletal Modeling

Realizing the importance of subject-specific modeling
and parametric variations, researchers have made progress
in using anatomical imaging measurements to improve
human models (see [24], [25] for an extensive re-
view). A notable effort is the parametric human project
(www.parametrichuman.org), which has led to dramatic
progress in modeling humans. Related efforts include ribcage
skeleton generation [26], MRI-based knee moment arm test-
ing [13], [27], [28], hip muscle modeling [29], bicep tendon
modeling [30], pennation angle modeling with ultrasound
[31], and a cadaver-based forearm model [32]. While a
comprehensive review of the associated literature is beyond
the scope of this paper, we have attempted to sample recent
as well as long-standing advances. Notably, such efforts are

synergistic with our own. An upper-body model that was
developed recently [33], for instance, forms a benchmark
with which to compare our work.

III. PROPOSED EMPIRICAL ANALYSIS TO ENSURE
RESULTS ARE ROBUST TO MODEL ERRORS

The primary motivation for our work was to be able to
determine how analysis error (for arbitrary analyses) varies
with modeling detail. As such, our remaining results work
towards the goal of simplifying the following steps for any
upper-body human musculoskeletal analysis:

1) Metric specification: A given musculoskeletal analy-
sis method must clearly state metrics that map aspects of
performance to real numbers.

2) Model variation: The identical analysis should be car-
ried out while varying the model used across the parametric
range that is expected to span all possible subjects with a
generous margin of error. The dataset of recorded physical
measurements used to instantiate modeled motions must be
split into testing and training sets. Only the training set
should be used at this stage, and a set of optimal and near-
optimal models may be selected.

3) Model testing: Having selected a suitable set of mod-
els, the final analysis should be performed on them with the
remaining test data. Results should be similar across the set
of models.

This process, which we call “model cross-validation”, is
common in statistical analysis and helps avoid under- or
over-fitting to the data. For musculoskeletal modeling, it will
also build confidence that obtained results are not sensitive
to model perturbation. In the remaining paper, we will
outline our efforts to build a pipeline to obtain the family of
models required to perform this method. We present results
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Fig. 3. Model Generation. A. MRI-based musculoskeletal models were
obtained by segmenting high-resolution anatomical scans. Exemplar sagittal
cross-sections for the shoulder are shown, matching the volumetric recon-
struction below. B. The model generation pipeline consists of six stages.
Stages 1 and 2 involved extracting three dimensional volumes for bones and
muscles. Stage 3 involved slicing muscles normal to their direction of force.
Stage 4 involved packing fiber-group actuator cross-sections into the muscle
slices. Stage 5 involved associating actuator intersection circles across slices
using Hungarian assignment [34]. And, finally, stage 6 involved connecting
actuators to create piece-wise muscle approximations. The muscle may
terminate in the bone across a large area, so some fibers may be shorter than
others. Stages 3 and 4 may be parameterized to create families of models.

for parameterized models obtained from a specific human
subject. Expanding our dataset to include many subjects of
varying physical stature is essential for this proposed method
to be widely applicable and successful.

IV. SUBJECT-SPECIFIC MUSCULOSKELETAL MODELING

Human models used in the study of motion are either
scaled from canonical models, where a single model (say,
cadaver-based) is mapped to different subjects, or are subject-
specific, where a unique model is generated for each human.
The complexity associated with creating accurate muscu-
loskeletal models for individual subjects has led human
modelers to develop scaling methods that map canonical
models to different humans [35]. The accuracy of such
methods is limited by the fact that human physiology is
diverse, scaling measurements are taken at the skin’s surface,
and the underlying skeletal structure of a candidate human
may differ dramatically from the canonical model. A library
of musculoskeletal models, however, might provide sufficient
bases for scaling methods to work. Since no such library
exists for upper-body musculoskeletal models, we decided to
develop a subject-specific model using magnetic resonance
imaging (MRI) data for our decimation analysis.

The methods described in this paper are only concerned
with subject-specific musculoskeletal geometry and rigid
body dynamics, not muscular dynamics. This model may be
paired with different muscle actuator models for full dynamic
simulations. It is important to note that dynamic parameters
such as peak force, slack length, and activation dynamics
cannot be obtained from MRI data, and thus alternative
methods are needed to obtain this data for individual subjects.

We will now outline our results obtained for an MRI-based
subject-specific upper-body (arms and chest) model. We also
discuss how to parameterize the model creation process to
allow creating a family of models of varying complexity.

A. MRI Measurements for Upper-Body Musculoskeletal
Models

MRI is a versatile technique that requires carefully se-
lecting scan parameters that trade-off spatial resolution and
time taken. The parameter trade-off is primarily driven by
the fact that scan signal decreases as a cubic of the spatial
resolution, and by the physical properties of human tissue
when subjected to magnetization. Engineering advances have
helped improve MRI scanners and modern scanners can sup-
port sub-mm resolution using multi-channel (8-32) receiver
coils. However, receiver coils are often small and cannot scan
the whole arm. Moreover, the quality of scan measurements
varies dramatically with the part of the body being scanned,
and regions near cavities (like the lungs) tend to produce
noisy data.

For our MRI measurements—keeping in mind scanner
resolution constraints—we used multiple scans (2-5 scans
at 0.47 x 0.47 x 0.8 mm? resolution), made sure each scan
differed from the others by a small offset (1-5mm), and
finally merged the multiple scans into a higher resolution
scan (see Appendix for more details). Increasing voxel
size beyond the bare minimum provided a cubic increase
in signal, and averaging across multiple scans provided a
reduction in noise. It is noteworthy that the up-sampling
process effectively smooths the data. As such, our approach
might not be ideal where sharpness is critical, such as when
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Fig. 4. Muscle Volumes and Fiber Directions. High resolution MRI
scans allow accurate estimates of muscle volume (top). Cross-sectional slices
reveal muscle fiber directions and attachment points for muscles, allowing
accurate muscular kinematic modeling (bottom). Two muscle exemplars are
shown. The MRI images (below) have a translucent red overlay marking
the segmented muscle cross section.

mapping the attachment points of tendon-like structures in
the hand or muscles near the wrist. For such cases, we at
times reverted to the unaveraged (unsmoothed) scans.

Small receiver coils are best for producing high resolution
images, but they are limited to scanning small regions of
the body. Thus, we scanned different body parts separately
and merge them to obtain a full upper body scan. To
facilitate the registration process, we placed fish oil capsules,
which are highly visible in MRI scans, on the subjects in
the overlapping regions of the scans. We then used affine
transformations defined by three oil capsules shared between
any two scans to combine the scans.

B. Volumetric Segmentation of Skeleton and Muscles

Once we obtained MRI scans of acceptable quality, we
proceeded to segment bones and extract volumetric skele-
tons. Since our focus was whole-arm motion, we treated the
hand as a rigid body. It is noteworthy that the MRI scans
do provide sufficient information for finger bones, which we
hope to model in future work. For the whole arm, we thus
categorized bones into the following groups: torso, upper
arm, lower arm (radius), lower arm (ulna), and hand. The
skeletal model for one arm had seven degrees of freedom,
three at the torso-upper arm joint, one each at the lower arm
joints, and two at the hand (Table I). Future work includes
integrating more sophisticated kinematic models to deal with
complex shoulder motion [36].

After segmenting the bones, we segmented the MRI scans
to obtain precise volumetric estimates of the muscles. We

identified thirty-three muscles (Table II).

C. Automatic MRI-Based Musculoskeletal Model Generation

Since our goal was to develop a family of MRI-based
musculoskeletal models, we decided to deconstruct muscle
volumes into actuator segments (fiber-groups) parameterized
by varying length and diameter. Allowing parametric model
variations required automating the muscle model generation
process (Fig. 3). As such, we developed a pipeline that
began with segmented bones and muscles in MRI scans,
reconstructed bone and muscle volumes, sliced the muscles at
planes normal to their fiber direction, packed circles in each
slice, connected circles in consecutive slices with cylindrical
actuator segments, and, finally, terminated actuator segments
by attaching their ends to bones (see Appendix for details
about methods).

Our first parameter of interest for creating a family of
muscle models was the mean actuator segment length, which
is determined by the inter-slice distance (see Fig. 3. S3). Our
second parameter, the muscle fiber radius, determined the
number of segments (circles) packed into a slice (see Fig. 3.
S4). Note that the muscle fiber directions are visible in our
MRI scans (Fig. 4).

To summarize, our pipeline allowed us to create families
of models parameterized by: (i) the length of segments with
which a piece-wise linear simulated muscle approximates
a real muscle’s curvature, and (ii) the radius of individual
actuators used to approximate each muscle’s volume. Varying
the two parameters, we constructed musculoskeletal models
from MRI data that spanned a large range in actuator
segments (50200 segments/m) and diameters (5 mm-2 cm;
produces 1-47 actuators/muscle). The parameter range was
selected in a manner that the most detailed settings very
closely approximated the actual curvature of the volumetric
muscles. Moreover, focusing on actuator diameter instead of
actuators per muscle helped keep the volumetric sampling
uniform across large and small muscles.

V. COMPARING SUBJECT-SPECIFIC AND
CANONICAL MODELS

While anatomically accurate subject-specific models are
attractive, it is presently challenging to create a new model
for every conceivable individual. It is inevitable—at least in
the near future—to rely on scaled canonical models. More-
over, as the number of subject-specific models increases, it
may become feasible to accurately scale one out of the many
existing models to a new individual. As such, we decided to
compare subject-specific models to scaled canonical models.

While comparisons between models are best interpreted
with respect to a specific desired analysis metric, it remains
feasible to simply compare anatomical accuracy after scaling.
Since our detailed MRI-based upper-body model serves as
ground truth, we used it to visualize the degree to which
commonly used affine scaling methods can approximate
skeletal structure.
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Fig. 5. Model Scaling Errors. A. A canonical model’s radius bone side-
by-side with an MRI-based subject-specific model’s radius bone; front and
side view shown. The subject-specific model is accurate to < 1 mm, and
was considered to be the ground truth. B. The canonical model was scaled to
the subject’s radius with an affine transformation that optimized the distance
between five hundred corresponding points between the two bones. C. The
scaled canonical model was unable to match the geometry of the subject-
specific model. Moreover, affine fits can be expected to be substantially
worse when ground truth is unavailable.

A. Bone-to-Bone Scaling

To simplify the interpretation of scaling method per-
formance, we focused on bone-to-bone scaling error as a
metric (Fig. 5). We selected a canonical radius bone model
provided with OpenSim [35], as well as a radius bone
model from our MRI-based model. We then selected a
finite number of control points (500) in each bone using a
volume filling algorithm. Each successive control point was
picked to maximize its distance from the closest among the
previously selected control points. Next, we estimated point-
correspondence between the subject-specific and canonical
models using the Hungarian algorithm [37]. Finally, we fit
an affine transformation to collectively warp all the points
in a manner that minimized the aggregate point-to-point
Euclidean distance. Increasing the number of points did not
change the resulting transformation substantially.

Our bone-to-bone scaling method’s use of point-
correspondence between the bones allows non-linear scaling
methods. We chose not to use nonlinear scaling since it
was our goal to simply identify a close-to-optimal affine
transformation between the two bones. We also note that
bone-to-bone scaling differs from other scaling methods in
that it assumes access to a ground truth bone, which, if
available, would eliminate the need for scaling itself. As
such, it is not useful as a method for mapping a canonical
skeleton to a given subject. It merely serves as a testbed to
identify how accurate a given scaling method can possibly
be.

The scaled canonical bone differed in geometry from the
subject’s bone (see Fig. 5.C). Whether this difference is
consequential or not will require comparing the performance
of the scaled model to the subject-specific model for a given
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Fig. 6. Comparison with a state-of-the-art canonical model. A. The
MRI-based subject-specific model. The detailed musculature at the shoulder
and elbow is highlighted. B. An existing state-of-the art model. While the
lower arm has a lot of detail, the upper arm does not match the detail
provided by the MRI-based model.

analysis metric. As such, we chose not to presume any
analysis metric and instead simply visualized the differences.

B. Comparison with Existing Canonical Models

In addition to a bone-to-bone scaling comparison, we also
compared a recently developed arm model [33] with our
subject-specific model (Fig. 6). The canonical model has
thirty-three muscles and fifty actuator segments. Most acua-
tors, however, are concentrated at the lower arm and hand.
As such, the model does not accurately capture muscular
kinematics at the elbow, shoulder, or chest.

We must note that the shoulder joint is complex [36].
While our MRI-based model has highly accurate kinematics,
it requires additional data to ensure that the accuracy is
sustained with shoulder motion. As such, its advantage in
kinematic detail over the canonical model is confined to
small motions that do not cause substantial movement in
the scapulothoracic joint.

VI. DYNAMICS & CONTROL FOR MOTION
RECONSTRUCTION

We demonstrated that our models can be used for realtime
dynamics and control analyses using motion reconstruction
as an example application. To do so, we first modeled the
skeletal structure as an articulated body mechanism with
seven degrees-of-freedom (see Appendix for details) whose
dynamics may be modeled using the dynamics equation:

I'= A(q)G + b(g,4) + 9(q), (1)

where ¢, ¢, § are the generalized positions, velocities, and ac-
celerations, respectively, I is the vector of generalized forces,
A(q) is the generalized articulated body inertia, b(q, ) is
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Fig. 7. Actuating MRI-Based Musculoskeletal Models. To demonstrate
our model in a dynamic simulation, we simulated a specific model with
two hundred and forty-six muscle segments. The model performed an end-
effector position control task. A control point (yellow) attached to the
simulated model’s hand tracked an optical marker attached to a human’s
hand (red). The human hand marker’s motion was recorded using optical
motion capture (see Appendix for details). A single arm model was used
for clarity.

the vector of centrifugal and coriolis forces, and g¢(q) is
the vector of generalized gravity. We modeled muscles by
assuming that sections of muscle were attached to their
nearest bone, which merged the inertias of the muscles into
the links. The piece-wise segments of muscle thus moved
as if they were attached to the closest bone. Sections of
the muscle that crossed over bone-to-bone joints changed
shape as the arm moved. Integrating the dynamics with
the recursive articulated body algorithm [38] allowed us
to develop a dynamic simulation of the full biomechanical
model.

Having developed a dynamic simulation of our model, we
then used the model to track the motion of a human by
implementing a direct marker-space control formulation [5]
using the Standard Control Library (SCL) [39] (Fig. 7). To
briefly review the control strategy, we used a marker space
task controller:

:;Lark:er = kp(xdes - I) + k?)(i:des - I) 2)
r = A(q)F;:w,Tker + /’L(qa Q) + p(q)a (3)
where Iy ... is the marker control force (or task acceler-

ation), k, and k, are proportional-derivative control gains,
T, Tdes, T, and & 4.5 are current and desired marker positions
and velocities, A(g) is the marker space inertia matrix,
1(q, q) is the marker space centrifugal and coriolis force, and
p(q) the marker space gravity force. Marker positions were
measured using an OptiTrack motion capture system (see
Appendix for details), and control gains were hand-tuned to
ensure a stable simulation.

We note that since our model is fitted to musculoskeletal
kinematics at the base configuration, it works best near that
configuration. Notably, muscular kinematics are affected by
changes in muscle volume caused by contraction, and by
muscle displacement due to sliding over other muscles and

bones [29]. In addition, skeletal kinematics are affected by
bones that move with respect to each other [36]. Quantifying
the effect of these phenomena is an active research area. As
such, we focused our dynamic simulation to a small motion
range where the kinematic assumptions embedded in our
model were satisfied: to motions that do not displace the
shoulder-bone complex, and that do not deform muscles to a
point where our model’s fiber routing algorithm produces
fiber overlap. Future research in developing articulation
models will generalize our model to a wider range of motion.

VII. CONCLUSIONS

To summarize, we present a novel subject-specific upper
extremity human musculoskeletal model that was extracted
from high-resolution MRI data. The model’s bones and
musculature can be independently parameterized to create
a large family of models. The family of models can serve
as a testbed to cross-validate results obtained with arbitrary
analysis methods and can help identify whether the analysis
methods (or associated data measurements) are sensitive
to variations in modeling accuracy and detail. Finally, our
models can be used in realtime dynamics and control simu-
lations. Future work includes developing a much larger set
of subject-specific models, which, potentially, will provide a
large enough basis set to make model scaling a reasonable
approach.
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APPENDIX

MRI Protocol:

All MRI scans were conducted at Stanford University’s
Center for Cognitive and Neurobiological Imaging on a GE
Discovery MR750 3T MRI scanner. Three different coils
were used: (i) a thirty-two channel Nova Medical head coil
for scanning hands and forearms, (ii) a sixteen channel coil
for scanning elbows and upper arms, and (iii) the body coil
to scan shoulders. Multiple T1 anatomical scans (2-5 scans
at 0.47 x 0.47 x 0.8 mm?® resolution) were performed and
averaged to obtain high signal to noise. Scans of separate
body parts were taken such that they overlapped with other
scans and could be merged using fish oil capsule markers to
create a full body image.



TABLE I
SKELETAL ARTICULATION MODEL

Joint Number (q;)  Rotational Axis (Z;)

Ground N/A
Axis perpendicular to Z3 in the anterior direction
Axis perpendicular to Z3 and Z1
Axis between O71 and Oy
Axis between medial and lateral epicondyles
Axis between Oy and ulnar styloid process
Axis between radial and ulnar styloid processes
Axis perpendicular to Zg and axis connecting Og
to third metacarpal head

NN AW~

Joint Number (q;)  Frame Origin (O;) Attached Link

Ground Incisura Jugularis Torso
1 Glenohumeral rotation center
2 O (same as joint 1)
3 O1 Humerus
4 Midpoint between medial
and lateral epicondyles
5 Oy Radius and ulna
6 Midpoint between radial and
ulnar styloid processes
7 Og Hand

Human Subject:

The human subject was a healthy right handed male, 21
years old, 1601b, and 5ft 9in. Informed consent was ob-
tained in advance on a protocol approved by the Institutional
Review Board (IRB) at Stanford University.

Motion Capture:

We used an OptiTrack Prime 13 system operating at
200 Hz to record human motion for motion reconstruction.
An Optitrack rigid body marker tracked the head of the third
metacarpal. In the dataset used for motion reconstruction,
subjects flexed their right wrists, shoulders, and elbows in a
workspace of about 0.7m? in front of them.

Skeleton Articulation Model:

We modeled simplified articulation kinematics that aim
to match present standards [40] (Table I). As with the
standard, the humerus-shoulder connection was modeled as
a spherical joint, and the elbow and the radio-ulnar complex
were modeled as hinge joints. In contrast with the standard
specification, which uses external landmarks, we specified
joint rotation axes by directly estimating them from our MRI
scans (see Table I for details).

Muscle Fiber Generation Method:

1) Slicing: The first step in generating piece-wise linear
muscle fibers is slicing the muscle segmentation from MRI
data normal to the direction of fibers. These slices define the
vertices of the piece-wise linear approximations.

We assume muscle fibers follow the curvature of the
muscle segmentation volume from its origin points to its
insertion points. To slice the muscle normal to this curvature,

TABLE II

trapezius latissimus dorsi
pectoralis major pectoralis minor
deltoid teres major
teres minor supraspinatus
infraspinatus subscapularis
coracobrachialis biceps brachii
brachialis triceps brachii

anconeus

flexor carpi radialis
palmaris longus

flexor digitorum profundus
flexor pollicis longus
extensor digiti minimi
extensor carpi radialis
supinator

abductor pollicis longus
extensor pollicis longus

pronator teres

flexor carpi ulnaris

flexor digitorum superficialis
pronator quadratus

extensor digitorum

extensor carpi ulnaris
brachio radialis

extensor indicis

extensor pollicis brevis

List of Arm Muscles: We segmented thirty three arm muscle volumes
from MRI data. By modeling muscles with groups of fiber paths, the fiber
generation process naturally divides muscles with multiple segments (such
as the deltoid, with anterior, lateral, and posterior heads) into their functional
components. The family of upper body models created using these muscles
had 66—492 actuator segments.

we first slice the volume linearly along the axis from the
centroid of the muscle origin to the centroid of the insertion,
with the slices spaced according to the specified muscle
segment length. We then connect the centroids of each slice
to create a piecewise-linear curve that approximates a single
muscle fiber going through the center of the muscle. Finally,
we re-slice the muscle normal to this central fiber.

2) Circle Packing: To obtain cylindrical fiber approxima-
tions, we pack the largest muscle slice with circles of the
specified fiber radius. To distribute the circles across the
slice, we first shrink the slice by performing a morphological
erosion with a circle of the specified fiber radius, allowing us
to treat circles as points on the reduced slice. We choose the
first sample point randomly and sample a succeeding point
at a distance given by the fiber radius from the first sample.
We continue sampling in this manner until no more valid
samples exist.

3) Point Matching: Circle packing gives us the centers of
cylindrical muscle fibers on the largest slice. To track the
fibers through all the slices, we sample a large number of
points on each slice (greater than the number of fibers), and
connect samples between slices using the Hungarian method
[34]. Samples connected to the original fiber centers from
circle packing form the complete fibers.

4) Post Processing: All slices within a muscle initially
contain the same number of circles, which means that every
actuator segment intersects every muscle slice. However,
some actuator segments are shorter and thus should intersect
fewer slices. To solve this, we go through each fiber and
project the intersection points onto the axis connecting the
origin and insertion points. We then remove all intersection
points that fall beyond the attachment points.



