MaTH 145. HOMEWORK PROBLEMS

1. HOMEWORK &

Ch 6: 6.35, 6.36, 6.41, 6.42

(1) Suppose X,Y are varieties such that K(X) = K(Y). Show that there are nonempty
open subsets U C X and V C Y such that U = V. Note you may want to do this
exercise before doing 6.42.

(2) (construction of MSpec). Let k be an algebraically closed field and let A be a finitely
generated k-algebra. Assume that A is a domain. Let MSpec(A) denote the set of
maximal ideals in A. For any ideal I C A let

V(I) ={m € MSpec(A)|m D I}.

The Zariski topology on MSpec(A) has as closed sets the sets V(I). Let A, be

the localization of A at m. Define rings of functions on MSpec(A) by setting

Owmspec(4)(U) = Nimev Ay where U is any open set in MSpec(A).

(a) Elements of f € A define functions on MSpec(A) by setting f(m) to be the
image of f in A/m = k. Let K = Frac(A) be the fraction field of A. Show A,,
can be identified with the subset {§ € K|b(m) # 0}.

(b) Suppose X is a variety over k. Let A = Ox(X). Using the Nullstellensatz
show that there is a homeomorphism ¢: X — MSpec(A) and for every open set
UcC MSpeC(A) that OX(QZS*l(U)) = OMSpeC(A)(U)-

2. HOMEWORK 7

Ch 3: 3.12

Ch 5: 5.34, 5.36, 5.38, 5.39(a)

This series of problems will explore properties of smooth curves and also demonstrate
that the last problem on homework 4 is incorrect. Throughout these problems assume £ is
algebraically closed.

(1) Projective space has a property similar to sequential compactness in topology. Let
D* = A'—0. You can take as given the following (although you should are encouraged
to verify it): (a) O(D*) = k[t,t~!] and (b) any morphism ¢: D* — P"(k) comes from
n + 1 polynomials in k[t,t71] so that ¢(t) = [fo(t) : -+ : fu(t)] where f; € k[t,t7].
Two sets of polynomials (fo,..., fa), (90,---,9n) determine the same morphism if
there is a unit u € k[t,t7!] such that g; = uf;. Now show given any morphism
¢: D* — P™(k) there is a unique extension to a morphism ¢: A'(k) — P"(k) such
that ¢|p- = ¢. In particular ¢ determines a unique limit point ¢(0) € P™(k). In fact
any projective variety has this property. For affine varieties it is not always possible
to extend ¢. For example if ¢: D* — Al(k) is given by ¢(t) = t~! then ¢ is not
extendable. Varieties have an additional property that seems reasonable but requires
some effor to prove: If ¢: X — Y is a morphism between varieties and ¢: D* — X is
extendable and 1) o ¢ is extendable then 1)(¢(0)) = 1) o ¢(0). Use this for the problem
below.
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(2)

(4)

(5)

(6)
(7)

Let U = P?(k) — [0 : 0 : 1]. Then there is a morphism ¢: U — P!(k) given by
[z :y: 2]+ [z :y]. Then ¢ induces a field extension K (P!(k)) — K(U) = K(P?(k))
given by ¢ — . Fix any point p € P!(k). Show there is a map ¢: D* — U such
that ¢(0) = [0:0: 1] and 1 0 ¢(0) = p. Conclude that there cannot be an extension
¢: P%(k) — PY(k). This shows that the last problem on homework 4 is incorrect as
stated. A correct statement is: if X is a variety then a nonconstant rational function
f € K(X) is equivalent to a dominant rational map from X — P!(k); here rational
means the morphism is only defined on an open set and we identify to rational maps
if they agree on a nonempty open set. This is something we will discuss more in
class.

A version of the last problem on homework 4 is true for projective curves. We can
prove a special case. Suppose C' = V(F) C P?(k) is a smooth projective curve. Let
f € K(P%*(k)) be a nonconstant rational function. Write f = 4 for unique (up to
scalar) homogeneous polynomials A, B such that A, B have no common factor and
F' does not divide either of them. Show that any such f restricts to C' to give a
morphism ¢: C' — P!(k) such that ¢([z : y : 2]) = [A(x,y,2) : B(z,y,z)]. Hint:
show ¢ is well defined away from V(F, A, B). Show if I(p, FNA) > I(p, FN B) then
¢(p) =10: 1] and if I(p, FNB) > I(p, FNA) then ¢(p) = [1 : 0]. In fact it is possible
to extend this result for any f: if I’ divides A show there is an open set U C C such
that f|y = 0. In this case we can associate to f the constant map ¢(z) = [0 : 1]. If
F' divides B show that the pole set of f intersects C' in an open set. In this case we
associate f the constant map ¢(z) = [1 : 0].

Another important fact we will discuss later is that the image of a projective variety
under a morphism is closed. Use this fact to prove if ¢: C' — P!(k) is the morphism
associated to f € K(C) and f is nonconstant then ¢ is surjective.

Let R = k[xo, ..., x,] and consider it a graded ring by writing it as R = @®4>¢R4 where
Ry is the vector space of homogeneous polynomials of degree d. A standard combi-
natorial argument shows that dim; Ry = (”;d). The d-uple Veronese embedding is
an important morphism for projective varieties. It is a morphism ¢: P*(k) — P¥ (k)
where N = ("Zd) — 1 and is given by ¢([xg : ... x,]) = [fo: -+ : fn] where f; are a
basis for Ry. For example the 2-uple embedding of P?(k) is given by

2

vy ey eyt iy 2.
Y Y y -y

You can take as given that the d-uple Veronese map has an image which is a projective
vareity and ¢ is a homeomorphism onto its image. Let F' € R; and let ¢ be the d-
uple Veronese map. Show that ¢(V(F)) = ¢(P"(k)) N V(L) where L is linear and
homogeneous. Conclude that P"(k) — V(F) is affine. Hint: show that PV (k) —
V(L) = AV (k) and a closed subvariety of AN (k) is affine.

Let C = V(F) C P?(k) be an irreducible plane curve. Show that if F' and G have
no common factor then C'— V(F, &) is isomorphic to an affine variety.

Let F,G € k[z,y, z] be homogeneous with no common factor. Suppose H is another
homogeneous polynomial such that the difference of intersection cycles is effective

H-F-G-F>0.



3

Then a sufficient condition for there to exist a B € k[z,y, z] such that H- F—G-F =
B - F is that

H = AF + BG

for some A € k[x,y, z]. In this problem you will show this condition is also necessary.

We will assume F' is irreducible.

(a) Suppose H - F — G- F = B - F. Show that f = 45 € K(C) does not vanish
anywhere on C'. Conclude using (3),(4) that f is constant on C; say f = c.

(b) Show then H — ¢GB is a homogeneous polynomial that must vanish on all of C.
Therefore H — ¢cGB = AF for some A.

3. HOMEWORK 6
Ch 5: 5.1, 5.5, 5.8, 5.15

(1) Suppose we have an exact seqence of vector spaces
O—=Vo—=+Vi—=---—=V,—=0

Show that >_,(—1)*dim V; = 0.
(2) (a) Let f = y® — 42® + 3zy and g = y* — 2. List all the intersection points
p € V(f,g) and compute, using properties (1)-(8) of intersection numbers all
the values I(p, f N g).
(b) Let F = y3 — 423 4+ 3zzy and G = zy* — 2. Check that your answer to (a) is
consistent with Bezout’s theorem.

(3) Suppose k is algebraically closed. Let F,G € k[z,y, z] be homogeneous polynomials
of degrees m, m with no common component. Assume V(F,G,z) = (). Let X =
V(F,G) and f = F(z,y,1), g = G(x,y,1). Show that if d > m + n then there is an
isomorphism

p: (X, d) — klz,y]/(f, 9)

such that p(H) = H(z,y,1). Note a proof of this is given in the text (step 3 on page
58). The point is to understand the argument and write it in your own words; you
may try to prove it before looking at the text. You will not get full credit if you
simply copy verbatim what is in the text.

4. HOMEWORK 5

Ch 2: 2.44. Also use corollary 2 of section 2.9 to prove the following. Let k be algebraically
closed. If I = (z,y) C klz,y] and f € k[x,y| and irreducible element such that p = (0,0) €
V(f). Let m C O,(C) be the maximal ideal. Show that O,(C)/m™ = k[z,y]/(I", ).

Ch 3: 3.2, 3.11, 3.13, 3.14
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4.1. PY(k) x P'(k). Let k be any field and R = k[xg, 21, yo, y1]. Define a Z? grading on R by
setting deg(x;) = (1,0) and deg(y;) = (0,1). Let R(n, m) be the vector space of homogeneous
polynomials of degree (n,m). For example

R(1,2) = span{zoys, Toyoy1, Toys, T1Ya, T1YoY1, T1Y5 }

We say r € R is bi-homogeneous if r € R(n,m) for some n,m. An ideal I C R is bi-
homogeneous if it is generated by bi-homogenous elements.

(1) If I is bi-homogeneous show that V(I) = {(z,y) € P (k) x P} (k)| f(x,y) = OVf € I}
is well defined and show that there is a topology on P!(k) x P!(k) determined by
taking the closed sets to be V(I) for I a bi-homogeneous ideal.

(2) Let [zo : 1], [yo : 1] be coordinates on P'(k) x P'(k) and set K = k(22, 22). Show
that if f € K then there are bi-homogeneous polynomials a,b of the same degree
which are unique up to scalar such that f = %. If p € P'(k) x P'(k) and f € K we
say f is defined at p if b(p) # 0.

(3) Assume from now on that & is algebraically closed. Let Z;; = V(x;y;) and let U;; be
the complement of Z;;. Show there is an isomorphism ¢;;: A*(k) — Uj; in the sense
that ¢ is a homeomorphism and ¢ induces an isomorphism ¢*: O(U;;) — O(A?(k)).

(4) Consider the map of sets ¢: Pl(k) x P'(k) — P3(k) given by [zo : z1] X [yo : 11] —
[Toyo © Toy1 : T1yo : T1y1]. Let [a : b : ¢ : d] be coordinates on P3(k). Show that
X :=im(¢) = V(ad — bc). Show that ad — bc € k[a, b, c,d] is an irreducible element
so X is a variety. Show that ¢ defines a homeomorphism : P*(k) x P'(k) — X.

(5) Let U, be the complement of V(a) C P3(k) and set X, = X NU,. Define X;, X., X4
similarly. Show that ¢ induces an isomorphism O(X,) — O(¢1(X,)) as well as for
the open sets X, X, Xy

This shows that the abstractly defined variety P'(k) x P!(k) is a projective variety in the
sense we defined before: it’s topology and rings of function can be considered to be inherited
from the projective variety X.

5. HOMEWORK 4

Ch 4: 4.10, 4.17, 4.25
For all of these problem assume the field k is algebraically closed.

(1) Let [z : y : 2] be homogeneous coordinates on P?(k). Show that
OP?*(k)—[0:0:1]) =k.

Hint: if f € K(P?(k)) is any nonconstant rational function then show that the pole
set of f is a hypersurface.

(2) (a) Let ¢: X — Y be a morphism of varieties. Show that if ¢ is dense, that is
¢(X) = Y then ¢ induces a field extension from rational function on Y to
rational functions on X: ¢*: K(Y) — K(X).

(b) Show that the hypothesis ¢(X) = Y is necessary by giving an example of a
morphism ¢: X — Y such that there exists no field extentions from K(Y) —
K(X).
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(3) Show that if X is a variety then a nonconstant rational funciton f € K(X) is equiv-
alent to a morphism X — P!(k). Use (2) and the fact that K(P(k)) = k(t).

6. HOMEWORK 3

Note what we have denoted O(X) is reffered to as I'(X, k) in the text. In all the problems
you can assume the field £ is algebraically closed unless otherwise specified.

In 2.7 you can skip showing that ¢~!(X) is algebraic; just show the second statement.

Ch 2: 2.4,2.7,2.12(b), 2.17, 2.18, 2.21

Ch 4: 4.2, 4.4

7. HOMEWORK 2

(1) Let J = ((z — 2)(z — y)(x — 22),2% — y*2) C C[z,y,2]. Describe the irreducible
components of V(.J). Prove or disprove. There exists f € I(V(J)) such that f & J.
(2) Ch 1: 1.36, 1.39, 1.40

7.1. Weak Nullstellensatz. We will use some classical results from field theory to prove

Theorem 7.2 (Weak Nullstellensatz). Assume k is infinite and perfect. Let m C A =
klxy,...,2,] be a mazimal ideal then L = A/m is a finite extension of k.

Note that if moreover k is algebraically closed then we must have L = k.
7.3. Review of Field theory.

Theorem 7.4. Any field k is has an algebraic closure k. In particular, k — k is an algebraic
extension and k is an algebraically closed field. Any f € klz| splits into linear factors.

A polynomial f € k[z] is separable if f(x) has no multiple roots in k. If k — L is an
algebraic extension and a € L then then there is a surjection m,: k[z] — k(a) given by
Ta(z) = a. Then a generator of kerm, is called a minimal polynomial my , of «; typically
My o is chosen to be monic. An algebraic extension k — L is separable if for every o € L we
have my , is separable. Finally, a field k is perfect if every finite extension of k is separable.

There are many equivalent characterizations of separable fields (check Wikipedia). An-
other equivalent definition is k is perfect if char(k) = 0 or if char(k) = p > 0 then the
Frobenious map x — 2 is an automorphism of k.

Theorem 7.5 (primitive element theorem). If k is separable then every finite extension of
k is generated by one element: if k — L is finite then L = k(«) for some a € L.

If ¥k — L is a field extension then a subset S C L is a transcendence basis of L over k if o
is transcendental over k for every o € S and moreover L is algebraic over k({a}acs)-

Theorem 7.6. Any field extension k — L has a transcendence basis. The cardinality of any
two transcendence bases are the same.

The cardinality of any transcendence basis is called the transcendence degree of L over k.

(1) Suppose k — L is an algebraic extension. If L is finitely generated as a k-algebra
then prove that L is finite over k.



(2) Assume k is perfect and let & — L be a field extension such that L is a finitely
generated as a k-algebra.
(a) Show there are elements oy, ..., a, € L such that

L="Fk(ay,...,an)[t]/f(?)
Moreover if L # k then f(t) # 0.
(b) By choosing m possibly bigger then n show there is a surjective map 7: k[z1, ..., Ty, t] —
L such that 7(z;) = a; and 7 (t) = t.
(¢) Show there is a ring homomorphism

v L — K[z, .. 2,

t/(f (1))

with ¢(a;) = x; and «(t) = ¢. Hint: write f(t) = Zle Lt where a;,b; €
klag, ..., o) and take g = [, bi(z1, ..., 2,).
(3) Now assume £k is perfect and infinite. Show there exists (p1,...,pm) € A™(k) such
that g(p1,...,pn) # 0. Conclude there is a ring homomorphism

Kl 2o, ;,t}/(f(t)) S

(4) Use parts (2),(3) to show that if k is perfect and infinite then L is algebraic. Conclude
that with (1) you have a proof of the weak Nullstellensatz.

8. HOMEWORK 1
Ch 1: 1.4, 1.5,1.6, 1.15, 1.20, 1.22

The following problem will not be graded but you are encouraged to think about it:

1. Let fi =2y — 1 and f, = 2> + y* — 1. For any finite field F, count the cardinality of the
sets V(f;) € A*(F,)



