
Math 145. Homework Problems

1. Homework 8

Ch 6: 6.35, 6.36, 6.41, 6.42

(1) Suppose X, Y are varieties such that K(X) ∼= K(Y ). Show that there are nonempty
open subsets U ⊂ X and V ⊂ Y such that U ∼= V . Note you may want to do this
exercise before doing 6.42.

(2) (construction of MSpec). Let k be an algebraically closed field and let A be a finitely
generated k-algebra. Assume that A is a domain. Let MSpec(A) denote the set of
maximal ideals in A. For any ideal I ⊂ A let

V(I) = {m ∈ MSpec(A)|m ⊃ I}.
The Zariski topology on MSpec(A) has as closed sets the sets V(I). Let Am be
the localization of A at m. Define rings of functions on MSpec(A) by setting
OMSpec(A)(U) = ∩m∈UAm where U is any open set in MSpec(A).
(a) Elements of f ∈ A define functions on MSpec(A) by setting f(m) to be the

image of f in A/m ∼= k. Let K = Frac(A) be the fraction field of A. Show Am
can be identified with the subset {a

b
∈ K|b(m) 6= 0}.

(b) Suppose X is a variety over k. Let A = OX(X). Using the Nullstellensatz
show that there is a homeomorphism φ : X → MSpec(A) and for every open set
U ⊂ MSpec(A) that OX(φ−1(U)) ∼= OMSpec(A)(U).

2. Homework 7

Ch 3: 3.12
Ch 5: 5.34, 5.36, 5.38, 5.39(a)
This series of problems will explore properties of smooth curves and also demonstrate

that the last problem on homework 4 is incorrect. Throughout these problems assume k is
algebraically closed.

(1) Projective space has a property similar to sequential compactness in topology. Let
D∗ = A1−0. You can take as given the following (although you should are encouraged
to verify it): (a) O(D∗) = k[t, t−1] and (b) any morphism φ : D∗ → Pn(k) comes from
n + 1 polynomials in k[t, t−1] so that φ(t) = [f0(t) : · · · : fn(t)] where fi ∈ k[t, t−1].
Two sets of polynomials (f0, . . . , fn), (g0, . . . , gn) determine the same morphism if
there is a unit u ∈ k[t, t−1] such that gi = ufi. Now show given any morphism
φ : D∗ → Pn(k) there is a unique extension to a morphism φ : A1(k) → Pn(k) such
that φ|D∗ = φ. In particular φ determines a unique limit point φ(0) ∈ Pn(k). In fact
any projective variety has this property. For affine varieties it is not always possible
to extend φ. For example if φ : D∗ → A1(k) is given by φ(t) = t−1 then φ is not
extendable. Varieties have an additional property that seems reasonable but requires
some effor to prove: If ψ : X → Y is a morphism between varieties and φ : D∗ → X is
extendable and ψ ◦φ is extendable then ψ(φ(0)) = ψ ◦ φ(0). Use this for the problem
below.
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(2) Let U = P2(k) − [0 : 0 : 1]. Then there is a morphism ψ : U → P1(k) given by
[x : y : z] 7→ [x : y]. Then ψ induces a field extension K(P1(k))→ K(U) = K(P2(k))
given by t 7→ x

y
. Fix any point p ∈ P1(k). Show there is a map φ : D∗ → U such

that φ(0) = [0 : 0 : 1] and ψ ◦ φ(0) = p. Conclude that there cannot be an extension
ψ : P2(k)→ P1(k). This shows that the last problem on homework 4 is incorrect as
stated. A correct statement is: if X is a variety then a nonconstant rational function
f ∈ K(X) is equivalent to a dominant rational map from X → P1(k); here rational
means the morphism is only defined on an open set and we identify to rational maps
if they agree on a nonempty open set. This is something we will discuss more in
class.

(3) A version of the last problem on homework 4 is true for projective curves. We can
prove a special case. Suppose C = V(F ) ⊂ P2(k) is a smooth projective curve. Let
f ∈ K(P2(k)) be a nonconstant rational function. Write f = A

B
for unique (up to

scalar) homogeneous polynomials A,B such that A,B have no common factor and
F does not divide either of them. Show that any such f restricts to C to give a
morphism φ : C → P1(k) such that φ([x : y : z]) = [A(x, y, z) : B(x, y, z)]. Hint:
show φ is well defined away from V(F,A,B). Show if I(p, F ∩A) > I(p, F ∩B) then
φ(p) = [0 : 1] and if I(p, F ∩B) > I(p, F ∩A) then φ(p) = [1 : 0]. In fact it is possible
to extend this result for any f : if F divides A show there is an open set U ⊂ C such
that f |U = 0. In this case we can associate to f the constant map φ(x) = [0 : 1]. If
F divides B show that the pole set of f intersects C in an open set. In this case we
associate f the constant map φ(x) = [1 : 0].

(4) Another important fact we will discuss later is that the image of a projective variety
under a morphism is closed. Use this fact to prove if φ : C → P1(k) is the morphism
associated to f ∈ K(C) and f is nonconstant then φ is surjective.

(5) Let R = k[x0, . . . , xn] and consider it a graded ring by writing it as R = ⊕d≥0Rd where
Rd is the vector space of homogeneous polynomials of degree d. A standard combi-
natorial argument shows that dimk Rd =

(
n+d
d

)
. The d-uple Veronese embedding is

an important morphism for projective varieties. It is a morphism φ : Pn(k)→ PN(k)
where N =

(
n+d
n

)
− 1 and is given by φ([x0 : . . . : xn]) = [f0 : · · · : fN ] where fi are a

basis for Rd. For example the 2-uple embedding of P2(k) is given by

[x : y : z] 7→ [x2 : xy : xz : y2 : yz : z2].

You can take as given that the d-uple Veronese map has an image which is a projective
vareity and φ is a homeomorphism onto its image. Let F ∈ Rd and let φ be the d-
uple Veronese map. Show that φ(V(F )) = φ(Pn(k)) ∩V(L) where L is linear and
homogeneous. Conclude that Pn(k) − V(F ) is affine. Hint: show that PN(k) −
V(L) ∼= AN(k) and a closed subvariety of AN(k) is affine.

(6) Let C = V(F ) ⊂ P2(k) be an irreducible plane curve. Show that if F and G have
no common factor then C −V(F,G) is isomorphic to an affine variety.

(7) Let F,G ∈ k[x, y, z] be homogeneous with no common factor. Suppose H is another
homogeneous polynomial such that the difference of intersection cycles is effective

H · F −G · F ≥ 0.



3

Then a sufficient condition for there to exist a B ∈ k[x, y, z] such that H ·F −G ·F =
B · F is that

H = AF +BG

for some A ∈ k[x, y, z]. In this problem you will show this condition is also necessary.
We will assume F is irreducible.
(a) Suppose H · F − G · F = B · F . Show that f = H

BG
∈ K(C) does not vanish

anywhere on C. Conclude using (3),(4) that f is constant on C; say f = c.
(b) Show then H − cGB is a homogeneous polynomial that must vanish on all of C.

Therefore H − cGB = AF for some A.

3. Homework 6

Ch 5: 5.1, 5.5, 5.8, 5.15

(1) Suppose we have an exact seqence of vector spaces

0→ V0 → V1 → · · · → Vn → 0

Show that
∑

i(−1)i dimVi = 0.
(2) (a) Let f = y3 − 4x3 + 3xy and g = y2 − x3. List all the intersection points

p ∈ V(f, g) and compute, using properties (1)-(8) of intersection numbers all
the values I(p, f ∩ g).

(b) Let F = y3 − 4x3 + 3zxy and G = zy2 − x3. Check that your answer to (a) is
consistent with Bezout’s theorem.

(3) Suppose k is algebraically closed. Let F,G ∈ k[x, y, z] be homogeneous polynomials
of degrees n,m with no common component. Assume V(F,G, z) = ∅. Let X =
V(F,G) and f = F (x, y, 1), g = G(x, y, 1). Show that if d ≥ m+ n then there is an
isomorphism

ρ : Γ(X, d)→ k[x, y]/(f, g)

such that ρ(H) = H(x, y, 1). Note a proof of this is given in the text (step 3 on page
58). The point is to understand the argument and write it in your own words; you
may try to prove it before looking at the text. You will not get full credit if you
simply copy verbatim what is in the text.

4. Homework 5

Ch 2: 2.44. Also use corollary 2 of section 2.9 to prove the following. Let k be algebraically
closed. If I = (x, y) ⊂ k[x, y] and f ∈ k[x, y] and irreducible element such that p = (0, 0) ∈
V(f). Let m ⊂ Op(C) be the maximal ideal. Show that Op(C)/mn ∼= k[x, y]/(In, f).

Ch 3: 3.2, 3.11, 3.13, 3.14
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4.1. P1(k)×P1(k). Let k be any field and R = k[x0, x1, y0, y1]. Define a Z2 grading on R by
setting deg(xi) = (1, 0) and deg(yi) = (0, 1). Let R(n,m) be the vector space of homogeneous
polynomials of degree (n,m). For example

R(1, 2) = span{x0y20, x0y0y1, x0y21, x1y20, x1y0y1, x1y21}

We say r ∈ R is bi-homogeneous if r ∈ R(n,m) for some n,m. An ideal I ⊂ R is bi-
homogeneous if it is generated by bi-homogenous elements.

(1) If I is bi-homogeneous show that V(I) = {(x, y) ∈ P1(k)×P1(k)|f(x, y) = 0∀f ∈ I}
is well defined and show that there is a topology on P1(k) × P1(k) determined by
taking the closed sets to be V(I) for I a bi-homogeneous ideal.

(2) Let [x0 : x1], [y0 : y1] be coordinates on P1(k) × P1(k) and set K = k(x0
x1
, y0
y1

). Show

that if f ∈ K then there are bi-homogeneous polynomials a, b of the same degree
which are unique up to scalar such that f = a

b
. If p ∈ P1(k)×P1(k) and f ∈ K we

say f is defined at p if b(p) 6= 0.
(3) Assume from now on that k is algebraically closed. Let Zij = V(xiyj) and let Uij be

the complement of Zij. Show there is an isomorphism φij : A2(k)→ Uij in the sense
that φ is a homeomorphism and φ induces an isomorphism φ∗ : O(Uij)→ O(A2(k)).

(4) Consider the map of sets ψ : P1(k)× P1(k) → P3(k) given by [x0 : x1]× [y0 : y1] 7→
[x0y0 : x0y1 : x1y0 : x1y1]. Let [a : b : c : d] be coordinates on P3(k). Show that
X := im(ψ) = V(ad− bc). Show that ad− bc ∈ k[a, b, c, d] is an irreducible element
so X is a variety. Show that ψ defines a homeomorphism ψ : P1(k)×P1(k)→ X.

(5) Let Ua be the complement of V(a) ⊂ P3(k) and set Xa = X ∩Ua. Define Xb, Xc, Xd

similarly. Show that ψ induces an isomorphism O(Xa)→ O(ψ−1(Xa)) as well as for
the open sets Xb, Xc, Xd

This shows that the abstractly defined variety P1(k) × P1(k) is a projective variety in the
sense we defined before: it’s topology and rings of function can be considered to be inherited
from the projective variety X.

5. Homework 4

Ch 4: 4.10, 4.17, 4.25
For all of these problem assume the field k is algebraically closed.

(1) Let [x : y : z] be homogeneous coordinates on P2(k). Show that

O(P2(k)− [0 : 0 : 1]) = k.

Hint: if f ∈ K(P2(k)) is any nonconstant rational function then show that the pole
set of f is a hypersurface.

(2) (a) Let φ : X → Y be a morphism of varieties. Show that if φ is dense, that is

φ(X) = Y then φ induces a field extension from rational function on Y to
rational functions on X: φ∗ : K(Y )→ K(X).

(b) Show that the hypothesis φ(X) = Y is necessary by giving an example of a
morphism φ : X → Y such that there exists no field extentions from K(Y ) →
K(X).
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(3) Show that if X is a variety then a nonconstant rational funciton f ∈ K(X) is equiv-
alent to a morphism X → P1(k). Use (2) and the fact that K(P1(k)) = k(t).

6. Homework 3

Note what we have denoted O(X) is reffered to as Γ(X, k) in the text. In all the problems
you can assume the field k is algebraically closed unless otherwise specified.

In 2.7 you can skip showing that φ−1(X) is algebraic; just show the second statement.
Ch 2: 2.4,2.7,2.12(b), 2.17, 2.18, 2.21

Ch 4: 4.2, 4.4

7. Homework 2

(1) Let J = ((x − z)(x − y)(x − 2z), x2 − y2z) ⊂ C[x, y, z]. Describe the irreducible
components of V(J). Prove or disprove. There exists f ∈ I(V(J)) such that f 6∈ J .

(2) Ch 1: 1.36, 1.39, 1.40

7.1. Weak Nullstellensatz. We will use some classical results from field theory to prove

Theorem 7.2 (Weak Nullstellensatz). Assume k is infinite and perfect. Let m ⊂ A =
k[x1, . . . , xn] be a maximal ideal then L = A/m is a finite extension of k.

Note that if moreover k is algebraically closed then we must have L = k.

7.3. Review of Field theory.

Theorem 7.4. Any field k is has an algebraic closure k. In particular, k → k is an algebraic
extension and k is an algebraically closed field. Any f ∈ k[x] splits into linear factors.

A polynomial f ∈ k[x] is separable if f(x) has no multiple roots in k. If k → L is an
algebraic extension and α ∈ L then then there is a surjection πα : k[x] → k(α) given by
πα(x) = α. Then a generator of ker πα is called a minimal polynomial mk,α of α; typically
mk,α is chosen to be monic. An algebraic extension k → L is separable if for every α ∈ L we
have mk,α is separable. Finally, a field k is perfect if every finite extension of k is separable.

There are many equivalent characterizations of separable fields (check Wikipedia). An-
other equivalent definition is k is perfect if char(k) = 0 or if char(k) = p > 0 then the
Frobenious map x 7→ xp is an automorphism of k.

Theorem 7.5 (primitive element theorem). If k is separable then every finite extension of
k is generated by one element: if k → L is finite then L = k(α) for some α ∈ L.

If k → L is a field extension then a subset S ⊂ L is a transcendence basis of L over k if α
is transcendental over k for every α ∈ S and moreover L is algebraic over k({α}α∈S).

Theorem 7.6. Any field extension k → L has a transcendence basis. The cardinality of any
two transcendence bases are the same.

The cardinality of any transcendence basis is called the transcendence degree of L over k.

(1) Suppose k → L is an algebraic extension. If L is finitely generated as a k-algebra
then prove that L is finite over k.
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(2) Assume k is perfect and let k → L be a field extension such that L is a finitely
generated as a k-algebra.
(a) Show there are elements α1, . . . , αn ∈ L such that

L = k(α1, . . . , αn)[t]/f(t)

Moreover if L 6= k then f(t) 6= 0.
(b) By choosingm possibly bigger then n show there is a surjective map π : k[x1, . . . , xm, t]→

L such that π(xi) = αi and π(t) = t.
(c) Show there is a ring homomorphism

ι : L→ k[x1, . . . , xm,
1

g
, t]/(f(t))

with ι(αi) = xi and ι(t) = t. Hint: write f(t) =
∑d

i=1
ai
bi
ti where ai, bi ∈

k[α1, . . . , αn] and take g =
∏d

i=1 bi(x1, . . . , xn).
(3) Now assume k is perfect and infinite. Show there exists (p1, . . . , pm) ∈ Am(k) such

that g(p1, . . . , pn) 6= 0. Conclude there is a ring homomorphism

k[x1, . . . , xm,
1

g
, t]/(f(t))→ k

(4) Use parts (2),(3) to show that if k is perfect and infinite then L is algebraic. Conclude
that with (1) you have a proof of the weak Nullstellensatz.

8. Homework 1

Ch 1: 1.4, 1.5,1.6, 1.15, 1.20, 1.22

The following problem will not be graded but you are encouraged to think about it:

1. Let f1 = xy − 1 and f2 = x2 + y2 − 1. For any finite field Fq count the cardinality of the
sets V(fi) ⊂ A2(Fq)


