Practice Final Solutions

1. A morphism \(\varphi : \mathbb{A}^1(k) \to \mathbb{A}^1(k) \) is equivalent to ring homomorphism \(\varphi^* : k[x] \to k[x] \) and \(\varphi^* \) is determined by the image of \(x \), \(\varphi^*(x) \in k[x] \) and \(\varphi \) is nonconstant if and only if \(\varphi^*(x) \) is nonconstant. Let \(f(x) = \varphi^*(x) \). If \(\varphi \) is an automorphism then there is an inverse \(\psi \). Let \(\psi^*(x) = g(x) \). The composition of morphisms corresponds to composition of polynomials. Then \(f(g(x)) = x \) but on the other hand \(\deg f(g(x)) = \deg(f)\deg(g) \) hence \(\deg(f) = 1 \).

2. If \(b = 0 \) we there is nothing to prove. Otherwise the linear change of coordinates gives by \(m = \left(\begin{array}{c} 0 & 1 \\ -b & a \end{array} \right) \) maps \([a:b] \) to \([1:0] \).

3. Set \(U = \mathbb{P}^1 - [1:0] \). Then \(U \) is isomorphic to \(\mathbb{A}^1 \) and \(\varphi : \mathbb{A}^1 \to \mathbb{A}^1 \) is an automorphism. Also \(\varphi^{-1}(U) = \mathbb{P}^1 - \varphi^{-1}([1:0]) = \mathbb{P}^1 - [1:0] = U \) hence \(\varphi \) defines an automorphism of \(\mathbb{A}^1 \). By problem 1 we have \(\varphi([x:1]) = [ux + v:1] \). It must be that \(\varphi \) is the linear change of coordinates given by \(\left(\begin{array}{c} u \\ v \end{array} \right) \) since both of these morphisms agree on a dense open set.

4. Let \(\varphi \) be any automorphism of \(\mathbb{P}^1(k) \) and let \([a:b] = \varphi([1:0]) \). Let \(m = \left(\begin{array}{c} 0 & 1 \\ -b & a \end{array} \right) \) then \(m \circ \varphi \) is an automorphism that sends \([1:0] \) to \([1:0] \) so by part 3 we have \(m \circ \varphi = \left(\begin{array}{c} u \\ v \end{array} \right) \) and hence \(\varphi = \left(\begin{array}{c} u \\ v \end{array} \right)^{-1} \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \).

5. a) \(\mathbb{V}(y^2 - x^2(x - 1)^2(x - 2)^2(x - 3)^2(x - 4)^2) \). Note that \(a \) is a root of \((x - a)^2 \) and its derivative so partial derivatives both vanish at the points \((0,0), (0,1), (0,2), (0,3), (0,4) \)
 b) Set \(A = k[x,y]/(y^2 = x^3 - x) \) and \(R = A_{(x,y)} \) then \(\text{Frac}(R) \) is a degree 2 extension of \(k(x) \).
 c) \(\mathbb{V}(x(y(x + 2)y + x^4 + y^4)) \), this is irreducible since the homogeneous pieces have no common factors.
 d) Let \(C \) be the curve in \(\mathbb{A}^3(t) \) parametrized by \((t, t^2, t^3) \). The image doesn’t lie in any plane since \(t, t^2, t^3 \) are linearly independent. It is irreducible because it is the image of \(\mathbb{A}^3 \) which is irreducible.

6. The first case is omitted. For \(F = (x^2 + y^2)z + x^3 + y^3 \) and \(G = x^3 + y^3 - 2xyz \) we first consider \(\mathbb{V}(F, G, z) \) which is \(\{ [-1:1:0], [\zeta:1:0], [\zeta^2:1:0] \} \) where \(\zeta \) is a primitive cube root of \(-1 \). The remaining points must have \(z \neq 0 \) so we can dehomogenize \(f = x^2 + y^2 + x^3 + y^3 \) and \(x^3 + y^3 - 2xy \) and find the only solution is \((x, y) = (0,0) \), or \([0:0:1] \). We note that there are no common tangent lines at \([0:0:1] \) and the multiplicity on each curve is 2 so this intersection number is 4. There are also no common tangent lines at \([\zeta:1:0], [\zeta^2:1:0] \) so these each have an intersection number of 1. There is a common tangent line at \([-1:1:0] \) and we can add calculate using this that this is a smooth point of the curve or use Bezout’s theorem to see that this number must be 3.

7. omitted

8. \(U_j \approx \mathbb{A}^N \) and \(\mathcal{O}_{\mathbb{P}^N}(U_j) \approx k[Y_1, \ldots, Y_N] \) where \(Y_i = \frac{m}{y_j} \). Similarly, \(\psi^{-1}(U_j) = \{ x_j \neq 0 \} = \{ x_j \neq 0 \} \)
 thus \(\psi^{-1}(U_j) \approx \mathbb{A}^n \) and \(\mathcal{O}_{\mathbb{P}^n}(\psi^{-1}(U_j)) \approx k[X_1, \ldots, X_n] \) where \(X_i = \frac{x_i}{x_j} \). Then \(\psi^*(Y_i) = \frac{M_i}{x_j} \) which is a polynomial in the variables \(X_i \).

9. We have \(\text{im } \psi = \mathbb{V}(I) \) where \(I = \ker(\psi^*) \) where \(\psi^* \) is the map of graded rings
 \[
 \begin{array}{c}
 \psi^* : k[y_0, \ldots, y_4] & \to & k[x_0, x_1] \\
 (y_0, y_1, y_2, y_3) & \mapsto & (x_0^2, x_0x_1, x_0x_1^2, x_1^3)
 \end{array}
 \]
 and \(I = \langle y_0y_1 - y_1y_2, y_1^2 - y_0y_2, y_2^2 - y_1y_3 \rangle \).

10. omitted
11. Notice that $k[x, y] / (y - x^2) \approx k[x]$ and any nonconstant element is not a unit. On the other hand $k[x, y] / xy - 1 \approx k[x, x^{-1}]$ and x is a nonconstant unit. For the second case we note

$$k[x, y, z] / (x - y^2 - z^4) \approx k[y, z] = k[x, y, z] / x$$

12. Decompose \overline{X} into a union of irreducible algebraic sets. One irreducible component contains X. On the other hand \overline{X} is the smallest projective algebraic set containing X so there can only be one irreducible component.