Two New von Kries Based Chromatic Adaptation Transforms Found by Numerical Optimization

S. Bianco, R. Schettini

DISCo, Department of Informatics, Systems and Communication, University of Milan-Bicocca, viale Sarca 336, 20126 Milan, Italy

Abstract: In this paper, two new von Kries based chromatic adaptation transforms are proposed. The numerical optimization procedure adopted for deriving them simultaneously exploits the whole sets of data available and the existing chromatic adaptation transforms. Experimental results report several statistics to prove the effectiveness of our proposals with respect to the state-of-the-art.

INTRODUCTION

Chromatic adaptation transforms (CATs) are able to predict corresponding colors. A pair of corresponding colors consists of a color observed under one illuminant, and another color that has the same appearance when observed under a different illuminant [5]. This research topic has been extensively studied given its importance for many industrial applications, such as the prediction of color inconstancy, the evaluation of the color rendering property of light sources, and the achievement of successful color reproduction under different light sources [5],[14].

A survey of several CATs are given by Fairchild in his book [14]. Luo and Hunt [2] proposed a modified Bradford transform [3], which is included in CIECAM97s. Finlayson and Süsstrunk [4] have derived a transform based on sharpened sensors. Li et al. [5] derived a transform, known as CMCCAT2000, by fitting all the available corresponding color data sets, instead of just the Lam and Rigg set. Moroney et al. [6] proposed a modified CMCCAT2000 to be used with the CIECAM02 model. In 2004, the CIE TC 1-52 “Chromatic Adaptation Transforms” [20] tested thirteen chromatic adaptation transforms indicating four possible candidates for future CIE recommendations giving quite similar performances. The members of the CIE TC 1-52 were unable to agree to a single CAT as some of them required that the adopted transform must be theoretically based. Other members still agreeing that such objective is desirable, considered that was important to indicate a single CAT that should work as well as possible, even if only applicable to a limited range of conditions.

In this paper, we propose two von Kries based chromatic adaptation transforms that outperform or are statistically equivalent to the existing ones on all the corresponding color datasets available. These transforms are found by numerical optimization based on Particle Swarm Optimization. The key idea in our procedure is the simultaneous use of all the corresponding color data sets available and the predictions of the corresponding colors done using already defined CATs. One of the reviewers let us know that many of the datasets used to fit chromatic-adaptation models are influenced by illuminant-induced changes of reflected-light tristimulus values, as well as by the desired measurand of visual adaptation. Because several works treat these data as arising solely from visual adaptation, we will do so here too. In the long run, however, adaptation models should be derived and/or tested by data sets based on experiments that keep the test-patch tristimulus values constant when the light is changed in the wider visual field. Only under such conditions can visual adaptation effects be separately inferred.

For the first CAT proposed, to boost as much as possible the performances, objective function uses both Wilcoxon signed-rank tests and the perceptual error metrics ΔE_{Lab} and ΔE_{CIE94}. As
shown in the experimental results section, the proposed CAT outperforms existing solutions. For the second CAT we add to the above mentioned terms in the objective function, a \textit{positivity constraint} on its spectral responses in order to have stable color ratios across illuminants [21]. The fitting results are, in this case, only statistically equivalent to the best available CATs.

CHROMATIC ADAPTATION TRANSFORMS

Several chromatic adaptation transforms exist in the literature, most based on the von Kries model [1]. CIE XYZ tristimulus values \([X', Y', Z']^T\) are linearly transformed by a 3x3 matrix \(M_{\text{CAT}}\) to derive the post-adaptation cone responses under the first illuminant. The resulting values are independently scaled to get the post-adaptation cone responses under the second illuminant. This transform is usually a diagonal matrix based on the post-adaptation cone responses of the illuminants’ white-point. To obtain CIE XYZ tristimulus values under the second illuminant \([X'', Y'', Z'']^T\), the post-adaptation cone responses under the second illuminant are then multiplied by the inverse of matrix \(M_{\text{CAT}}\) [7]. This model is outlined in Equation (1):

\[
\begin{bmatrix}
X'' \\
Y'' \\
Z''
\end{bmatrix} = \left[M_{\text{CAT}} \right]^{-1} \ast \begin{bmatrix}
R'_w / R'_w \\
G'_w / G'_w \\
B'_w / B'_w
\end{bmatrix} \ast \begin{bmatrix}
X' \\
Y' \\
Z'
\end{bmatrix}
\]

where \([R'_w, G'_w, B'_w]\) and \([R'_w, G'_w, B'_w]\) are computed from the XYZ tristimulus values of the first and second illuminants by multiplying their XYZ tristimulus values \([X'_w, Y'_w, Z'_w]^T\) and \([X''_w, Y''_w, Z''_w]^T\) by \(M_{\text{CAT}}\).

All the comparisons made in this work are based on the von Kries chromatic adaptation model as outlined in Equation (1), where full adaptation by the human observer is assumed. The chromatic adaptation transforms used in this work are reported in Table 1, while the corresponding normalized spectral responses are plotted in Figure 1.

<table>
<thead>
<tr>
<th>CAT name</th>
<th>CAT entries</th>
</tr>
</thead>
</table>
| 1 von Kries | \[
M_{\text{vonKries}} = \begin{bmatrix}
0.3897 & 0.6890 & -0.0787 \\
-0.2298 & 1.1834 & 0.0464 \\
0 & 0 & 1
\end{bmatrix}
\]
| 2 Bradford | \[
M_{\text{BFD}} = \begin{bmatrix}
0.8951 & 0.2664 & -0.1614 \\
0.7502 & 1.7135 & 0.0367 \\
0.0389 & -0.0685 & 1.0296
\end{bmatrix}
\]
| 3 Sharp | \[
M_{\text{Sharp}} = \begin{bmatrix}
1.2694 & -0.0988 & -0.1706 \\
-0.8364 & 1.8006 & 0.0357 \\
0.0297 & -0.0315 & 1.0018
\end{bmatrix}
\]
Table 1. Short names and entries of the chromatic adaptation transforms used in this work.

EXPERIMENTAL DATA SETS

Luo and Hunt accumulated several data sets based on reflective stimuli and data sets based on monitor and projected stimuli, that were widely used to derive and to test the performance of various chromatic adaptation transforms [2] and color appearance models [15]. These data have been collected from the Colour Science Association of Japan (CSAJ) [8], Kuo & Luo [9], Lam and Rigg [3], Helson et al. [10], LUTCHI [11], Breneman [12] and Braun & Fairchild [13], for a total of 26, subsets which total 671 pairs of corresponding colors. The main features of these data sets are summarized in [5] and reported in Table 2. These data sets are the same used by Süssstrunk et al. [7].

<table>
<thead>
<tr>
<th>Data Set</th>
<th>No. Of Samples</th>
<th>Illuminant</th>
<th>Sample Size</th>
<th>Medium</th>
<th>Experimental Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Lam</td>
<td>58</td>
<td>D65 A</td>
<td>Large</td>
<td>Refl.</td>
<td>Memory</td>
</tr>
<tr>
<td>2 Helson</td>
<td>59</td>
<td>D65 A</td>
<td>Small</td>
<td>Refl.</td>
<td>Memory</td>
</tr>
<tr>
<td>3 CSAJ</td>
<td>87</td>
<td>D65 A</td>
<td>Small</td>
<td>Haploscopic</td>
<td></td>
</tr>
<tr>
<td>4 Lutchi</td>
<td>43</td>
<td>D65 A</td>
<td>Small</td>
<td>Refl.</td>
<td>Magnitude</td>
</tr>
<tr>
<td>5 Lutchi D50</td>
<td>44</td>
<td>D65 D50</td>
<td>Small</td>
<td>Refl.</td>
<td>Magnitude</td>
</tr>
<tr>
<td>6 Lutchi WF</td>
<td>41</td>
<td>D65 WF</td>
<td>Small</td>
<td>Refl.</td>
<td>Magnitude</td>
</tr>
<tr>
<td>7 Kuo&Luo</td>
<td>40</td>
<td>D65 A</td>
<td>Large</td>
<td>Refl.</td>
<td>Magnitude</td>
</tr>
<tr>
<td>8 Kuo&Luo TL84</td>
<td>41</td>
<td>D65 TL84</td>
<td>Small</td>
<td>Refl.</td>
<td>Magnitude</td>
</tr>
<tr>
<td>9 Braun&Fairchild 1</td>
<td>17</td>
<td>D65 D93</td>
<td>Small</td>
<td>Monitor&Refl.</td>
<td>Matching</td>
</tr>
<tr>
<td>10 Braun&Fairchild 2</td>
<td>16</td>
<td>D65 D93</td>
<td>Small</td>
<td>Monitor&Refl.</td>
<td>Matching</td>
</tr>
<tr>
<td>11 Braun&Fairchild 3</td>
<td>17</td>
<td>D65 D30</td>
<td>Small</td>
<td>Monitor&Refl.</td>
<td>Matching</td>
</tr>
<tr>
<td>12 Braun&Fairchild 4</td>
<td>16</td>
<td>D65 D30</td>
<td>Small</td>
<td>Monitor&Refl.</td>
<td>Matching</td>
</tr>
<tr>
<td>13 Breneman 1</td>
<td>12</td>
<td>D65 A</td>
<td>Small</td>
<td>Trans.</td>
<td>Magnitude</td>
</tr>
<tr>
<td>14 Breneman 8</td>
<td>12</td>
<td>D65 A</td>
<td>Small</td>
<td>Trans.</td>
<td>Magnitude</td>
</tr>
<tr>
<td>15 Breneman 4</td>
<td>12</td>
<td>D65 A</td>
<td>Small</td>
<td>Trans.</td>
<td>Magnitude</td>
</tr>
<tr>
<td>16 Breneman 6</td>
<td>11</td>
<td>D55 A</td>
<td>Small</td>
<td>Trans.</td>
<td>Magnitude</td>
</tr>
</tbody>
</table>

Table 2. Characteristics of the corresponding color data sets used.
Figure 1. Normalized spectral responses of the chromatic adaptation transforms implemented in this work. A: von Kries; B: Bradford; C: Sharp; D: CMCCAT2000; E: CAT02.

DERIVATION OF THE NEW CHROMATIC ADAPTATION TRANSFORMS

In this section, we describe the method adopted to derive the new chromatic adaptation transform.

Let $M_i, i = 1...5$ be the five CATs listed in Table 1.

Let $CCDS_j, j = 1...16$ be the 16 corresponding color data sets listed in Table 2.
Let $WSRT_{\Delta E}()$ and $WSRT_{\Delta E94}()$ be the Wilcoxon signed-rank test [18] scores, representing the number of times a transform performed best or was statistically the same (at the 95 percent confidence, according to the Wilcoxon signed-rank test) as the best transform using respectively the perceptual error metrics ΔE_{Lab} and ΔE_{CIE94}. The Wilcoxon signed-rank test can be used to test the null hypothesis that two CATs have the same performance expressed as the median values μ_X and μ_Y of their error distributions X and Y, i.e. $H_0 : \mu_X = \mu_Y$. To test H_0, we consider the difference of independent error pairs $(X_i - Y_i), \ldots, (X_N - Y_N)$ for N different corresponding color pairs. We rank these error pairs according to their absolute differences. If H_0 is correct, the sum of the ranks W will approximate zero. If W is much larger or smaller than zero, the alternative hypothesis $H_1 : \mu_X > \mu_Y$ or $\mu_X < \mu_Y$ is true. We can test H_0 against H_1 at a given significance level α. We reject and accept if the probability of observing the error differences we obtained is less than or equal to α. As already said before, in this work a significance level $\alpha = 0.05$ has been chose. Comparing every CAT with all the others, we generated a score representative of the number of times that the null hypothesis H_0 has been rejected for the given CAT, i.e. the number of times that the performance of the given CAT has been considered to be better than the others.

Let $\Delta WSRT_{\Delta E}(M)$ and $\Delta WSRT_{\Delta E94}(M)$ be the difference between the Wilcoxon signed-rank score of a generic transform M and the maximum score obtained by the five CATs $M_i, i = 1...5$ considered, i.e.:

$$\Delta WSRT_{\Delta E}(M) = WSRT_{\Delta E}(M) - \max_{i=1...5} WSRT_{\Delta E}(M_i),$$

$$\Delta WSRT_{\Delta E94}(M) = WSRT_{\Delta E94}(M) - \max_{i=1...5} WSRT_{\Delta E94}(M_i).$$

Let us define $MoM_{\Delta E}(M)$ and $MoM_{\Delta E94}(M)$ as the mean values of the median errors obtained by the generic transform M on the 16 corresponding color data sets $CCDS_j, j = 1...16$ considered, i.e.:

$$MoM_{\Delta E}(M) = \frac{\sum_{j=1}^{16} \text{median}(\Delta E(\text{CCDS}_j))}{16},$$

$$MoM_{\Delta E94}(M) = \frac{\sum_{j=1}^{16} \text{median}(\Delta E94(\text{CCDS}_j))}{16}.$$

The objective function f_{BS} we optimize is given in Equation (6):

$$f_{BS}(M) = (\Delta WSRT_{\Delta E}(M) + \Delta WSRT_{\Delta E94}(M)) - (MoM_{\Delta E}(M) + MoM_{\Delta E94}(M)).$$

The objective function f_{BS} is composed of two terms. The larger is the former, the better is the estimation of the corresponding colors given by the transformation M, according to the
Wilcoxon signed-rank test. The smaller is the latter, the lower are the median errors of the transformation M on the corresponding color data sets. The new chromatic adaptation transform is found using Particle Swarm Optimization (PSO) [16] over the set $M \in \mathbb{R}^{3 \times 3}$ of feasible solutions. PSO is a population based stochastic optimization technique which shares many similarities with evolutionary computation techniques.

A population of individuals is initialized as random guesses to the problem solutions; and a communication structure is also defined, assigning neighbours for each individual to interact with. These individuals are candidate solutions. An iterative process to improve these candidate solutions is set in motion. The particles iteratively evaluate the fitness of the candidate solutions and remember the location where they had their best success. The individual's best solution is called the particle best or the local best. Each particle makes this information available to its neighbours. They are also able to see where their neighbours have had success. Movements through the search space are guided by these successes.

The swarm is typically modelled by particles in multidimensional space that have a position and a velocity. These particles fly through hyperspace and have two essential reasoning capabilities: their memory of their own best position and their knowledge of the global or their neighbourhood’s best position. Members of a swarm communicate good positions to each other and adjust their own position and velocity based on these good positions.

The new CAT M_{BS} is then defined as

$$M_{BS} = \max_{M \in \mathbb{R}^{3 \times 3}} \left(f_{BS} (M) \right),$$

(7)

with the constraint of being equal-energy balanced.

The M_{BS} CAT that satisfies Equation (7) is given in Equation (8), and its normalized spectral responses are plotted in Figure 2.

$$M_{BS} = \begin{bmatrix}
0.8752 & 0.2787 & -0.1539 \\
-0.8904 & 1.8709 & 0.0195 \\
-0.0061 & 0.0162 & 0.9899
\end{bmatrix}$$

Figure 2. The normalized spectral responses for the BS CAT.
Following the same procedure, also a new CAT without negative lobes is found. To this end, a positivity constraint on the spectral responses corresponding to the found transform is defined as follows:

\[f_{PC}(M) = \alpha \sum_{\lambda} \sum_{\text{channels}} u_-(SR(M)) , \]

where \(SR(M) \) are the spectral responses of the transformation \(M \), \(\alpha \) is a multiplicative term that reflects the importance to be given to the positivity constraint and \(u_-(\cdot) \) is defined as

\[u_-(x) = \begin{cases} x & \text{if } x < 0 \\ 0 & \text{otherwise} \end{cases} \]

The new CAT \(M_{BS-PC} \) is then defined as

\[M_{BS-PC} = \max_{M \in \mathbb{R}^n} \left(f_{BS}(M) + f_{PC}(M) \right) , \quad (9) \]

with the constraint of being equal-energy balanced. The \(M_{BS-PC} \) CAT that satisfies Equation (9), fulfilling the positivity constraint, is given in Equation (10), and its normalized spectral responses are plotted in Figure 2.

\[M_{BS-PC} = \begin{bmatrix} 0.6489 & 0.3915 & -0.0404 \\ -0.3775 & 1.3055 & 0.0720 \\ -0.0271 & 0.0888 & 0.9383 \end{bmatrix} \quad (10) \]

Figure 3. The normalized spectral responses for the BS-PC CAT
PERFORMANCE EVALUATION

Predicted tristimulus values were calculated for the reference illuminants of all corresponding color data sets listed in Table 2, using Equation (1) and substituting M_{CAT} according to the specific chromatic adaptation transform tested. The actual and predicted CIE XYZ tristimulus values were then converted into the CIE L*a*b* color space. Two different perceptual error metrics, ΔE_{Lab} and ΔE_{CIE94}, were applied. Wilcoxon signed-rank tests [18] were used to compare if the variations in errors are statistically significant, as suggested by Süsstrunk and Finlayson [17]. This test is well suited to evaluate CAT performance because it does not make any assumption about the underlying error distributions, and it is easy to find out, using for example the Lilliefors test [19], that the assumption about the normality of the error distributions does not always hold.

Table 3 lists the number of times a transform performed best or was statistically the same as the best transform at the 95 percent confidence level, according to the Wilcoxon signed-rank test. The maximum score for each error metric is 16, since 16 corresponding color data sets were tested. As can be seen, the proposed transform, indicated as BS, outperformed existing ones.

Table 3. A comparison among state-of-the-art transforms and the first CAT found. The number of times a transform performed best or was statistically the same (at the 95 percent confidence, according to the Wilcoxon signed-rank test) as the best transform.

<table>
<thead>
<tr>
<th>Error Metric</th>
<th>von Kries</th>
<th>BFD</th>
<th>Sharp</th>
<th>CMCCAT</th>
<th>CAT02</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE_{Lab}</td>
<td>6</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>ΔE_{CIE94}</td>
<td>6</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 4. A comparison among state-of-the-art transforms and the second CAT found. The number of times a transform performed best or was statistically the same (at the 95 percent confidence, according to the Wilcoxon signed-rank test) as the best transform.

<table>
<thead>
<tr>
<th>Error Metric</th>
<th>von Kries</th>
<th>BFD</th>
<th>Sharp</th>
<th>CMCCAT</th>
<th>CAT02</th>
<th>BS-PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE_{Lab}</td>
<td>6</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>ΔE_{CIE94}</td>
<td>6</td>
<td>11</td>
<td>12</td>
<td>9</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 5 and Table 6 of Appendix A, a more detailed analysis of the error distribution of the investigated CATs on the corresponding color data sets considered, compared with the BS transform. In Table 7 and Table 8 of Appendix A, the same detailed error analysis for the BS-PC transform analysis are reported.

CONCLUSIONS

A pair of corresponding colors consists of a color observed under one set of viewing conditions that has the same appearance when observed under another sets of conditions. In this paper, we have proposed:

- a new von Kries based chromatic adaptation transforms that outperforms existent CATs;
- a new von Kries based CAT without negative lobes that is statistically equivalent to the best available CATs;
- a new optimization procedure that simultaneously uses all the corresponding color data sets available and the predictions of the corresponding colors done using already defined CATs.

These transforms and the optimization procedure proposed should be further evaluated both theoretically and experimentally. Our contribution should be therefore considered just in response to the needs of practical solutions that should fit the experimental data as well as possible [20]. In the proposed strategy, we used and equally treat all the different corresponding color data sets publicly available and used in other experimental comparisons of CATs [7],[20]. In different application domains, it could be possible to give more importance to some data sets and less to others in the framework of the optimization procedure or apply the procedure to own datasets. Further research will include the study of non-linear chromatic adaptation transforms.

ACKNOWLEDGMENTS

Many thanks to Prof. Mark D. Fairchild, Prof. Sabine Süsstrunk and Prof. Osvaldo Da Pos for their comments and suggestions. We should also thank Prof. Steve Rhodes and Prof. Ronnie Luo for providing us the corresponding color data sets that have permitted us to investigate chromatic adaptation transforms. Finally we acknowledge the editor and the reviewers for their work.

REFERENCES

APPENDIX A

<table>
<thead>
<tr>
<th></th>
<th>von Kries</th>
<th>BFD</th>
<th>Sharp</th>
<th>CMCCAT</th>
<th>CAT02</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lam Data Set</td>
<td>median ΔE</td>
<td>5.92</td>
<td>4.03</td>
<td>4.19</td>
<td>4.48</td>
<td>3.91</td>
</tr>
<tr>
<td></td>
<td>mean ΔE</td>
<td>6.50</td>
<td>4.43</td>
<td>4.45</td>
<td>4.51</td>
<td>4.40</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.0000</td>
<td>0.7775</td>
<td>0.6285</td>
<td>0.2198</td>
<td>n/a</td>
</tr>
<tr>
<td>Helson</td>
<td>median ΔE</td>
<td>5.71</td>
<td>4.73</td>
<td>4.91</td>
<td>5.20</td>
<td>5.06</td>
</tr>
<tr>
<td></td>
<td>mean ΔE</td>
<td>6.89</td>
<td>5.55</td>
<td>5.33</td>
<td>5.32</td>
<td>5.22</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.0008</td>
<td>n/a</td>
<td>0.3854</td>
<td>0.2771</td>
<td>0.5560</td>
</tr>
<tr>
<td>CSAJ</td>
<td>median ΔE</td>
<td>6.38</td>
<td>5.16</td>
<td>4.73</td>
<td>5.16</td>
<td>4.79</td>
</tr>
<tr>
<td></td>
<td>mean ΔE</td>
<td>6.63</td>
<td>5.36</td>
<td>5.12</td>
<td>5.18</td>
<td>5.02</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.0000</td>
<td>0.0005</td>
<td>0.0042</td>
<td>0.0002</td>
<td>0.0044</td>
</tr>
<tr>
<td>Lutchi</td>
<td>median ΔE</td>
<td>5.35</td>
<td>5.72</td>
<td>6.51</td>
<td>5.86</td>
<td>5.98</td>
</tr>
<tr>
<td></td>
<td>mean ΔE</td>
<td>7.05</td>
<td>6.90</td>
<td>6.77</td>
<td>5.98</td>
<td>6.07</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>n/a</td>
<td>0.4255</td>
<td>0.3980</td>
<td>0.0864</td>
<td>0.1251</td>
</tr>
<tr>
<td>Lutchi D50</td>
<td>median ΔE</td>
<td>5.33</td>
<td>5.82</td>
<td>5.69</td>
<td>5.38</td>
<td>5.38</td>
</tr>
<tr>
<td></td>
<td>mean ΔE</td>
<td>5.82</td>
<td>6.32</td>
<td>6.28</td>
<td>6.01</td>
<td>6.05</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>n/a</td>
<td>0.0051</td>
<td>0.0780</td>
<td>0.4765</td>
<td>0.4008</td>
</tr>
<tr>
<td>Lutchi WF</td>
<td>median ΔE</td>
<td>9.26</td>
<td>7.22</td>
<td>7.23</td>
<td>6.83</td>
<td>6.53</td>
</tr>
<tr>
<td></td>
<td>mean ΔE</td>
<td>10.55</td>
<td>8.87</td>
<td>7.80</td>
<td>7.54</td>
<td>7.27</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0004</td>
</tr>
<tr>
<td>Kuo & Luo</td>
<td>median ΔE</td>
<td>8.53</td>
<td>6.10</td>
<td>6.78</td>
<td>6.26</td>
<td>6.21</td>
</tr>
<tr>
<td></td>
<td>mean ΔE</td>
<td>9.10</td>
<td>6.37</td>
<td>6.93</td>
<td>7.29</td>
<td>7.02</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.0001</td>
<td>0.6671</td>
<td>0.4930</td>
<td>0.0009</td>
<td>0.0193</td>
</tr>
<tr>
<td>Kuo & Luo TL84</td>
<td>median ΔE</td>
<td>5.01</td>
<td>4.33</td>
<td>3.92</td>
<td>3.74</td>
<td>3.71</td>
</tr>
<tr>
<td></td>
<td>mean ΔE</td>
<td>5.76</td>
<td>4.61</td>
<td>4.30</td>
<td>4.40</td>
<td>4.27</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.0000</td>
<td>0.0001</td>
<td>0.0481</td>
<td>0.0090</td>
<td>0.1345</td>
</tr>
<tr>
<td>Braun&Fairchild 1</td>
<td>median ΔE</td>
<td>3.81</td>
<td>3.34</td>
<td>4.00</td>
<td>3.47</td>
<td>3.61</td>
</tr>
<tr>
<td></td>
<td>mean ΔE</td>
<td>3.60</td>
<td>3.59</td>
<td>3.76</td>
<td>3.67</td>
<td>3.82</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>n/a</td>
<td>0.5228</td>
<td>0.4631</td>
<td>0.4074</td>
<td>0.2461</td>
</tr>
<tr>
<td>Braun&Fairchild 2</td>
<td>median ΔE</td>
<td>5.54</td>
<td>5.06</td>
<td>5.02</td>
<td>5.17</td>
<td>5.50</td>
</tr>
<tr>
<td></td>
<td>mean ΔE</td>
<td>6.30</td>
<td>5.96</td>
<td>5.90</td>
<td>6.06</td>
<td>6.14</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.6417</td>
<td>0.4691</td>
<td>n/a</td>
<td>0.1337</td>
<td>0.0131</td>
</tr>
</tbody>
</table>
Table 5. Median and mean ∆E color difference of actual and predicted colors, bold p-values indicate that there is 95 percent confidence (according to the Wilcoxon signed-rank test) that the transform performs as well as the best transform for a given data set.

<table>
<thead>
<tr>
<th></th>
<th>Median ∆E</th>
<th>Mean ∆E</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braun&Fairchild 3</td>
<td>7.99</td>
<td>6.97</td>
<td>6.93</td>
</tr>
<tr>
<td></td>
<td>7.16</td>
<td>7.07</td>
<td>7.06</td>
</tr>
<tr>
<td></td>
<td>6.99</td>
<td>7.16</td>
<td>7.07</td>
</tr>
<tr>
<td></td>
<td>6.66</td>
<td>6.66</td>
<td>6.66</td>
</tr>
<tr>
<td>Braun&Fairchild 4</td>
<td>6.69</td>
<td>6.72</td>
<td>0.0229</td>
</tr>
<tr>
<td></td>
<td>6.09</td>
<td>5.92</td>
<td>0.3794</td>
</tr>
<tr>
<td></td>
<td>6.01</td>
<td>5.92</td>
<td>0.3794</td>
</tr>
<tr>
<td></td>
<td>5.67</td>
<td>5.67</td>
<td>0.3794</td>
</tr>
<tr>
<td>Breneman 1</td>
<td>9.70</td>
<td>10.72</td>
<td>0.0923</td>
</tr>
<tr>
<td></td>
<td>10.23</td>
<td>10.53</td>
<td>0.1514</td>
</tr>
<tr>
<td></td>
<td>10.04</td>
<td>10.14</td>
<td>0.7334</td>
</tr>
<tr>
<td></td>
<td>10.06</td>
<td>9.68</td>
<td>0.8501</td>
</tr>
<tr>
<td></td>
<td>8.8</td>
<td>9.27</td>
<td>0.9697</td>
</tr>
<tr>
<td>Breneman 8</td>
<td>12.83</td>
<td>16.32</td>
<td>0.0161</td>
</tr>
<tr>
<td></td>
<td>14.10</td>
<td>14.04</td>
<td>0.1763</td>
</tr>
<tr>
<td></td>
<td>12.06</td>
<td>12.05</td>
<td>0.2661</td>
</tr>
<tr>
<td></td>
<td>11.01</td>
<td>11.79</td>
<td>0.2661</td>
</tr>
<tr>
<td></td>
<td>10.88</td>
<td>11.25</td>
<td>0.2661</td>
</tr>
<tr>
<td>Breneman 4</td>
<td>14.62</td>
<td>17.35</td>
<td>0.0093</td>
</tr>
<tr>
<td></td>
<td>14.93</td>
<td>14.67</td>
<td>0.2661</td>
</tr>
<tr>
<td></td>
<td>11.15</td>
<td>12.01</td>
<td>0.6772</td>
</tr>
<tr>
<td></td>
<td>10.27</td>
<td>11.61</td>
<td>0.6772</td>
</tr>
<tr>
<td></td>
<td>10.68</td>
<td>12.11</td>
<td>0.6772</td>
</tr>
<tr>
<td>Breneman 8</td>
<td>6.94</td>
<td>7.38</td>
<td>0.8311</td>
</tr>
<tr>
<td></td>
<td>7.13</td>
<td>7.73</td>
<td>0.1230</td>
</tr>
<tr>
<td></td>
<td>6.90</td>
<td>7.92</td>
<td>0.0068</td>
</tr>
<tr>
<td></td>
<td>6.75</td>
<td>6.81</td>
<td>0.0687</td>
</tr>
<tr>
<td></td>
<td>6.76</td>
<td>6.83</td>
<td>0.0687</td>
</tr>
<tr>
<td></td>
<td>6.88</td>
<td>7.45</td>
<td>0.0687</td>
</tr>
<tr>
<td>Lam Data Set</td>
<td>3.98</td>
<td>4.31</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>2.76</td>
<td>3.00</td>
<td>0.9660</td>
</tr>
<tr>
<td></td>
<td>2.70</td>
<td>2.93</td>
<td>0.8617</td>
</tr>
<tr>
<td></td>
<td>2.84</td>
<td>3.03</td>
<td>0.1532</td>
</tr>
<tr>
<td></td>
<td>2.62</td>
<td>2.97</td>
<td>0.3630</td>
</tr>
<tr>
<td></td>
<td>2.56</td>
<td>2.93</td>
<td>0/n/a</td>
</tr>
<tr>
<td>Helson</td>
<td>4.03</td>
<td>4.52</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>2.77</td>
<td>3.49</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>2.89</td>
<td>3.42</td>
<td>0.8444</td>
</tr>
<tr>
<td></td>
<td>3.04</td>
<td>3.55</td>
<td>0.0463</td>
</tr>
<tr>
<td></td>
<td>3.02</td>
<td>3.45</td>
<td>0.5409</td>
</tr>
<tr>
<td></td>
<td>3.06</td>
<td>3.45</td>
<td>0.5460</td>
</tr>
<tr>
<td>CSAJ</td>
<td>4.56</td>
<td>4.71</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>3.44</td>
<td>3.84</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>3.45</td>
<td>3.72</td>
<td>0.0017</td>
</tr>
<tr>
<td></td>
<td>3.58</td>
<td>3.76</td>
<td>0.0111</td>
</tr>
<tr>
<td></td>
<td>3.28</td>
<td>3.66</td>
<td>0.0111</td>
</tr>
<tr>
<td></td>
<td>3.18</td>
<td>3.58</td>
<td>n/a</td>
</tr>
<tr>
<td>Lutchi</td>
<td>3.41</td>
<td>3.41</td>
<td>0.1613</td>
</tr>
<tr>
<td></td>
<td>3.58</td>
<td>3.71</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td>4.30</td>
<td>4.03</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>2.89</td>
<td>3.10</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>3.05</td>
<td>3.35</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>3.39</td>
<td>3.83</td>
<td>0.0000</td>
</tr>
<tr>
<td>Lutchi D50</td>
<td>2.23</td>
<td>3.11</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>3.20</td>
<td>3.52</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td>3.48</td>
<td>3.59</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>3.29</td>
<td>3.40</td>
<td>0.0084</td>
</tr>
<tr>
<td></td>
<td>3.41</td>
<td>3.45</td>
<td>0.0042</td>
</tr>
<tr>
<td></td>
<td>3.63</td>
<td>3.61</td>
<td>0.0006</td>
</tr>
<tr>
<td>Lutchi WF</td>
<td>4.69</td>
<td>5.61</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>4.09</td>
<td>4.44</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>3.93</td>
<td>3.97</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>3.62</td>
<td>3.96</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>3.48</td>
<td>3.85</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>3.27</td>
<td>3.60</td>
<td>n/a</td>
</tr>
<tr>
<td>Kuo & Luo</td>
<td>4.55</td>
<td>5.26</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td>4.00</td>
<td>3.87</td>
<td>0.4597</td>
</tr>
<tr>
<td></td>
<td>4.18</td>
<td>3.98</td>
<td>0.8297</td>
</tr>
<tr>
<td></td>
<td>3.79</td>
<td>3.95</td>
<td>0.9464</td>
</tr>
<tr>
<td></td>
<td>3.81</td>
<td>3.99</td>
<td>0.7368</td>
</tr>
<tr>
<td></td>
<td>3.77</td>
<td>3.98</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>median ΔE94</td>
<td>mean ΔE94</td>
<td>p-value</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Kuo & Luo TL84</td>
<td>3.03, 2.73,</td>
<td>2.66, 2.53,</td>
<td>0.0005, 0.0004, 0.0281, 0.2207, 0.5129, n/a</td>
</tr>
<tr>
<td></td>
<td>2.36, 2.18,</td>
<td>2.59</td>
<td></td>
</tr>
<tr>
<td>Braun&Fairchild 1</td>
<td>2.24, 2.52,</td>
<td>2.76, 2.53,</td>
<td>n/a, 0.5862, 0.3088, 0.4925, 0.5228, 0.4348</td>
</tr>
<tr>
<td></td>
<td>2.64, 2.73,</td>
<td>2.73</td>
<td></td>
</tr>
<tr>
<td>Braun&Fairchild 2</td>
<td>3.89, 3.38,</td>
<td>3.38, 3.46,</td>
<td>0.8767, n/a, 0.6791, 0.0052, 0.0557, 0.5014</td>
</tr>
<tr>
<td></td>
<td>3.41, 4.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braun&Fairchild 3</td>
<td>5.95, 4.68,</td>
<td>4.38, 4.79,</td>
<td>0.0810, 0.0129, 0.2659, 0.0065, n/a, 0.4704</td>
</tr>
<tr>
<td></td>
<td>4.21, 4.31,</td>
<td>4.03</td>
<td></td>
</tr>
<tr>
<td>Braun&Fairchild 4</td>
<td>4.10, 4.27,</td>
<td>5.09, 4.12,</td>
<td>n/a, 0.9697, 0.7910, 0.9097, 0.8501, 0.8501</td>
</tr>
<tr>
<td></td>
<td>4.60, 4.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breneman 1</td>
<td>6.35, 6.78,</td>
<td>7.18, 6.00,</td>
<td>n/a, 0.1514, 0.3394, 0.7334, n/a, 0.4238</td>
</tr>
<tr>
<td></td>
<td>5.86, 6.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breneman 8</td>
<td>6.23, 6.37,</td>
<td>6.38, 5.28,</td>
<td>0.0093, 0.0522, 0.5186, 0.9697, n/a, 0.6221</td>
</tr>
<tr>
<td></td>
<td>5.17, 5.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breneman 4</td>
<td>3.31, 3.69,</td>
<td>4.30, 3.69,</td>
<td>n/a, 0.5771, 0.4131, 0.7646, 0.6377, 0.6377</td>
</tr>
<tr>
<td></td>
<td>4.12, 3.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breneman 6</td>
<td>6.38, 5.16,</td>
<td>4.73, 5.16,</td>
<td>n/a, 0.2428, n/a, 0.3949, 0.0741, 0.0790</td>
</tr>
<tr>
<td></td>
<td>5.04, 5.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Median and mean ΔE94 color difference of actual and predicted colors, bold p-values indicate that there is 95 percent confidence (according to the Wilcoxon signed-rank test) that the transform performs as well as the best transform for a given data set.
Table 7

Median and mean ΔE94 color difference of actual and predicted colors, bold p-values indicate that there is 95 percent confidence (according to the Wilcoxon signed-rank test) that the transform performs as well as the best transform for a given data set.

<table>
<thead>
<tr>
<th>Transform</th>
<th>Median ΔE</th>
<th>Mean ΔE</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutchi</td>
<td>5.35</td>
<td>5.72</td>
<td>6.51</td>
</tr>
<tr>
<td></td>
<td>7.05</td>
<td>6.90</td>
<td>6.77</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>0.4255</td>
<td>0.398</td>
</tr>
<tr>
<td>Lutchi D50</td>
<td>5.33</td>
<td>5.82</td>
<td>5.69</td>
</tr>
<tr>
<td></td>
<td>5.82</td>
<td>6.32</td>
<td>6.28</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>0.0051</td>
<td>0.0780</td>
</tr>
<tr>
<td>Lutchi WF</td>
<td>9.26</td>
<td>7.22</td>
<td>7.23</td>
</tr>
<tr>
<td></td>
<td>10.55</td>
<td>8.87</td>
<td>7.80</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Kuo & Luo</td>
<td>8.53</td>
<td>6.10</td>
<td>6.78</td>
</tr>
<tr>
<td></td>
<td>9.10</td>
<td>6.37</td>
<td>6.93</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>n/a</td>
<td>0.2532</td>
</tr>
<tr>
<td>Kuo & Luo TL84</td>
<td>5.01</td>
<td>4.33</td>
<td>3.92</td>
</tr>
<tr>
<td></td>
<td>5.76</td>
<td>4.61</td>
<td>4.30</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>0.0084</td>
<td>0.7313</td>
</tr>
<tr>
<td>Braun&Fairchild 1</td>
<td>2.81</td>
<td>3.34</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>3.60</td>
<td>3.59</td>
<td>3.76</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>0.5228</td>
<td>0.4631</td>
</tr>
<tr>
<td>Braun&Fairchild 2</td>
<td>5.54</td>
<td>5.06</td>
<td>5.02</td>
</tr>
<tr>
<td></td>
<td>6.30</td>
<td>5.96</td>
<td>5.90</td>
</tr>
<tr>
<td></td>
<td>0.6791</td>
<td>0.8767</td>
<td>0.9176</td>
</tr>
<tr>
<td>Braun&Fairchild 3</td>
<td>7.99</td>
<td>6.97</td>
<td>6.93</td>
</tr>
<tr>
<td></td>
<td>9.24</td>
<td>7.07</td>
<td>7.06</td>
</tr>
<tr>
<td></td>
<td>0.0010</td>
<td>0.6874</td>
<td>0.8313</td>
</tr>
<tr>
<td>Braun&Fairchild 4</td>
<td>6.69</td>
<td>5.99</td>
<td>6.09</td>
</tr>
<tr>
<td></td>
<td>6.72</td>
<td>5.73</td>
<td>5.92</td>
</tr>
<tr>
<td></td>
<td>0.0200</td>
<td>0.3011</td>
<td>0.7564</td>
</tr>
<tr>
<td>Breneman 1</td>
<td>9.70</td>
<td>8.70</td>
<td>10.23</td>
</tr>
<tr>
<td></td>
<td>10.72</td>
<td>9.10</td>
<td>10.53</td>
</tr>
<tr>
<td></td>
<td>0.0923</td>
<td>n/a</td>
<td>0.1514</td>
</tr>
<tr>
<td>Breneman 8</td>
<td>12.83</td>
<td>14.10</td>
<td>12.06</td>
</tr>
<tr>
<td></td>
<td>16.32</td>
<td>14.04</td>
<td>12.05</td>
</tr>
<tr>
<td></td>
<td>0.0342</td>
<td>0.4238</td>
<td>0.9697</td>
</tr>
<tr>
<td>Breneman 4</td>
<td>14.62</td>
<td>14.93</td>
<td>11.15</td>
</tr>
<tr>
<td></td>
<td>17.35</td>
<td>14.67</td>
<td>12.27</td>
</tr>
<tr>
<td></td>
<td>0.0093</td>
<td>0.2661</td>
<td>0.6772</td>
</tr>
<tr>
<td>Breneman 6</td>
<td>6.94</td>
<td>7.13</td>
<td>6.90</td>
</tr>
<tr>
<td></td>
<td>7.38</td>
<td>7.73</td>
<td>7.92</td>
</tr>
<tr>
<td></td>
<td>0.8311</td>
<td>0.123</td>
<td>0.0068</td>
</tr>
<tr>
<td></td>
<td>von Kries</td>
<td>BFD</td>
<td>Sharp</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Lam Data Set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median ΔE94</td>
<td>3.98</td>
<td>2.76</td>
<td>2.70</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>4.31</td>
<td>3.00</td>
<td>2.93</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0000</td>
<td>0.8861</td>
<td>0.8556</td>
</tr>
<tr>
<td>Helson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median ΔE94</td>
<td>4.03</td>
<td>2.77</td>
<td>2.89</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>4.52</td>
<td>3.49</td>
<td>3.42</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0001</td>
<td>n/a</td>
<td>0.8444</td>
</tr>
<tr>
<td>CSAJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median ΔE94</td>
<td>4.56</td>
<td>3.44</td>
<td>3.45</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>4.71</td>
<td>3.84</td>
<td>3.72</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0000</td>
<td>0.0115</td>
<td>0.2549</td>
</tr>
<tr>
<td>Lutchi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median ΔE94</td>
<td>3.41</td>
<td>3.58</td>
<td>3.30</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>3.47</td>
<td>3.71</td>
<td>4.03</td>
</tr>
<tr>
<td>p-value</td>
<td>0.1613</td>
<td>0.0003</td>
<td>0.0000</td>
</tr>
<tr>
<td>Lutchi D50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median ΔE94</td>
<td>2.23</td>
<td>3.20</td>
<td>3.48</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>3.11</td>
<td>3.52</td>
<td>3.59</td>
</tr>
<tr>
<td>p-value</td>
<td>n/a</td>
<td>0.0003</td>
<td>0.0012</td>
</tr>
<tr>
<td>Lutchi WF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median ΔE94</td>
<td>4.69</td>
<td>4.09</td>
<td>3.93</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>5.61</td>
<td>4.44</td>
<td>3.96</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Kuo & Luo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median ΔE94</td>
<td>4.55</td>
<td>4.00</td>
<td>4.18</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>5.26</td>
<td>3.87</td>
<td>3.98</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0046</td>
<td>0.7368</td>
<td>0.8402</td>
</tr>
<tr>
<td>Kuo & Luo TL84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median ΔE94</td>
<td>3.03</td>
<td>2.73</td>
<td>2.66</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>3.34</td>
<td>2.79</td>
<td>2.71</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0000</td>
<td>0.0003</td>
<td>0.0290</td>
</tr>
<tr>
<td>Braun&Fairchild 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median ΔE94</td>
<td>2.24</td>
<td>2.52</td>
<td>2.76</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>2.72</td>
<td>2.68</td>
<td>2.79</td>
</tr>
<tr>
<td>p-value</td>
<td>n/a</td>
<td>0.5862</td>
<td>0.3088</td>
</tr>
<tr>
<td>Braun&Fairchild 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median ΔE94</td>
<td>3.89</td>
<td>3.38</td>
<td>3.38</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>4.73</td>
<td>4.53</td>
<td>4.50</td>
</tr>
<tr>
<td>p-value</td>
<td>0.8767</td>
<td>0.6791</td>
<td>0.0052</td>
</tr>
<tr>
<td>Braun&Fairchild 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median ΔE94</td>
<td>5.95</td>
<td>4.68</td>
<td>4.38</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>5.99</td>
<td>4.53</td>
<td>4.27</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0007</td>
<td>0.0684</td>
<td>n/a</td>
</tr>
<tr>
<td>Braun&Fairchild 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median ΔE94</td>
<td>4.42</td>
<td>3.95</td>
<td>4.06</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>4.76</td>
<td>4.03</td>
<td>3.97</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0113</td>
<td>0.2146</td>
<td>0.5695</td>
</tr>
<tr>
<td>Breneman 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median ΔE94</td>
<td>4.10</td>
<td>4.27</td>
<td>5.09</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>5.46</td>
<td>5.02</td>
<td>5.57</td>
</tr>
<tr>
<td>p-value</td>
<td>n/a</td>
<td>0.9697</td>
<td>0.791</td>
</tr>
<tr>
<td>Breneman 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median ΔE94</td>
<td>6.35</td>
<td>6.78</td>
<td>7.18</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>8.48</td>
<td>7.17</td>
<td>6.83</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0210</td>
<td>0.1514</td>
<td>0.3394</td>
</tr>
<tr>
<td>Breneman 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median ΔE94</td>
<td>6.23</td>
<td>6.37</td>
<td>6.38</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>9.45</td>
<td>7.86</td>
<td>7.24</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0093</td>
<td>0.0522</td>
<td>0.5186</td>
</tr>
<tr>
<td>Breneman 6</td>
<td>median ΔE94</td>
<td>3.31</td>
<td>3.69</td>
</tr>
<tr>
<td>mean ΔE94</td>
<td>3.68</td>
<td>4.17</td>
<td>4.66</td>
</tr>
<tr>
<td>p-value</td>
<td>n/a</td>
<td>0.5771</td>
<td>0.4131</td>
</tr>
</tbody>
</table>

Table 8. Median and mean ΔE94 color difference of actual and predicted colors, bold p-values indicate that there is 95 percent confidence (according to the Wilcoxon signed-rank test) that the transform performs as well as the best transform for a given data set.