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Abstract

In this paper, we derive a proof of Dirichlet’s theorem on primes in arithmetic progressions.
We try to motivate each step in the proof in a natural way, so that readers can have a sense of
how mathematics works.

1 Introduction
Number theory is the queen of mathematics, and Dirichlet’s theorem on arithmetic progressions
has been considered a gem of that queen. The significance of this theorem lies not only in its
simple statement, but also in the beautiful proof given by Dirichlet, which in fact set a background
for the study of group theory and representation theory later on. Our main purpose in this paper is
to discuss this theorem and its proof.

Theorem 1. (Dirichlet) Given a,m ∈ N∗ with gcd(a,m) = 1, there are infinitely many prime
numbers in the arithmetic progression {a+ km}k∈N.

One can easily show this theorem for m = 4 and a ∈ {1, 3} (See Shi & Xie [9]). However,
the proof for the general case is much more complicated and requires many deep algebraic and
analytical ideas. Even though Selberg was able to give an elementary proof in 1949 (See [7]), his
proof is rather tedious and unmotivated. In this paper, we will follow Dirichlet’s method with some
possible modifications to simplify the original proof.

We organize the rest of the paper as follows. Section 2 discusses the motivation for the proof
of the theorem. Section 3 reviews background needed for the proof: group characters, Dirichlet
series, and Euler products. Section 4 is dedicated to the proof of Dirichlet’s theorem.

2 Motivation
In this section, we talk about the motivation for Dirichlet’s proof of the theorem. Rigorous treat-
ments are presented in the later sections.

∗I am grateful to Sigurdur Helgason and Susan Ruff for their invaluable help in commenting on the earlier version
of the paper in terms of both content and exposition.
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We first observe that Dirichlet’s theorem is in fact an extension of Euclid’s theorem, which
states that there are infinitely many prime numbers. Specifically, for (a = 1,m = 2) the two
theorems are equivalent since all the primes greater than two are odd. Our purpose is to use a
similar technique to that in the proof of Euclid’s theorem to prove Dirichlet’s theorem.

Actually, what interests us the most is the stronger version of Euclid’s theorem, also known as
Euler’s theorem on the sum of the reciprocals of the prime numbers (See Dunham’s paper [3]):∑

p

1

p
=∞. (1)

(Throughout the paper, we write p to denote a prime number, unless otherwise specified).
Motivated by this theorem, we desire to prove a stronger result than Dirichlet’s original theorem:∑

p≡a(modm)

1

p
=∞. (2)

We recall the proof of Euler’s theorem to grasp the ideas behind it. In his proof, Euler took
advantage of the product formula:

∞∑
n=1

1

ns
=
∏
p

1

1− p−s
for all s ∈ C with Re(s) > 1. (3)

The left hand side of (3) is known as the Riemann zeta function ζ(s). Euler proceeded in his
proof by writing

log ζ(s) =
∑
p

1

ps
+ g(s), (4)

where g(s) is bounded as s→ 1. The fact that ζ(s)→∞ as s→ 1 would then imply the result.

To prove Dirichlet’s theorem, we want the sum
∑

p≡a(modm)

1

ps
to appear in a similar sense. To

do this, we need a good trick to ‘filter out’ the primes congruent to a modulo m from all other
primes. The zeta function needs to be modified, and the Dirichlet series appears naturally; it has

the form
∞∑
n=1

a(n)n−s, where s, a(n) ∈ C for all n ∈ N∗. A random choice of a(n) would yield

nothing. However, when a(n) is chosen to be a completely multiplicative function (i.e. a(1) = 1
and a(mn) = a(m)a(n) for all m,n ∈ N∗), we obtain an equation similar to (3), known as the
Euler product:

∞∑
n=1

a(n)

ns
=
∏
p

1

1− a(p)p−s
for all s ∈ C with Re(s) > 1. (5)

Taking the natural logarithm of both sides of (5), we can write the right hand side in the form∑
p

a(p)

ps
+ h(s, a). The choice of a(n) is not good enough nevertheless, as we have not reached

the sum we desire. We need to fine-tune a(n) to help in the filtering process. The breakthrough
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point here is Dirichlet’s use of group characters. With this tool in hand, Dirichlet’s theorem is no
longer far away. Now, we come to the rigorous treatment for the theorem.

3 Background
In this section, we present the important notions which were mentioned earlier and which are
necessary for the proof of Dirichlet’s theorem. The notions include group characters, Dirichlet
series, and Euler products.

3.1 Group Characters
To understand this part well, readers should have a sufficient knowledge of abstract algebra, specif-
ically group theory. As a reference, the author recommends Artin’s book (See [2]) and Serre’s book
(See [8]). About particular group characters, readers should consult Apostol’s book (See [1]).

Definition 2. Let G be an abelian group. A function χ : G → C\{0} mapping G to the set
of non-zero complex numbers is called a character of G if it is a group homomorphism, that is
χ(g1g2) = χ(g1)χ(g2) ∀g1, g2 ∈ G.

We restrict our attention to the finite group G. In this case, the set of characters χi of G forms
an abelian group under multiplication (χjχk)(g) = χj(g)χk(g) ∀g ∈ G with principal character
χ0 such that χ0(g) = 1 ∀g ∈ G. This group is called the dual of G and is usually denoted by Ĝ.

We now turn to one important property of the dual group.

Proposition 3. Any abelian group G is isomorphic to its dual Ĝ.

Proof. For a cyclic group G, the result is straightforward. Since G can be written as a product of
cyclic groups, it holds in general.

We now consider an important property of group characters, which will help us filter out the
primes we want in the above discussion: the orthogonality property of characters.

Proposition 4. If χ ∈ Ĝ, then

∑
g∈G

χ(g) =

{
|G| if χ = χ0,

0 otherwise.
(6)

Also, if g ∈ G then

∑
χ∈Ĝ

χ(g) =

{
|Ĝ| if g = 1 (the identity element of G),

0 otherwise.
(7)

Proof. We can easily see (7) is a corollary of (6) thanks to Proposition 3. So, it is sufficient to
prove only (6).
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To this end, we observe that if χ = χ0 then χ(g) = 1 ∀g ∈ G. Then,
∑
g∈G

χ(g) = |G|. If

χ 6= χ0, there exists some h ∈ G such that χ(h) 6= 1. We have

χ(h)
∑
g∈G

χ(g) =
∑
g∈G

χ(gh) =
∑
g∈G

χ(g). (8)

Thus
∑
g∈G

χ(g) = 0, and this ends the proof.

We observe that, if χ, ϕ ∈ Ĝ then χϕ−1 ∈ Ĝ. Moreover,
∑
g∈G

(χϕ−1)(g) =
∑
g∈G

χ(g)ϕ(g). Sim-

ilarly, if g, h ∈ G, then gh−1 ∈ G. We have
∑
χ∈Ĝ

χ(gh−1) =
∑
χ∈Ĝ

χ(g)χ(h). Then by Proposition 4,

we get the following corollary.

Corollary 5. If χ, ϕ ∈ Ĝ, then

∑
g∈G

χ(g)ϕ(g) =

{
|G| if χ = ϕ,

0 otherwise.
(9)

Also, if g, h ∈ G then ∑
χ∈Ĝ

χ(g)χ(h) =

{
|Ĝ| if g = h,

0 otherwise.
(10)

The above result is quite impressive, but it is not the end of the story. We need something more
specific, more directly applicable to our theorem. Again, Dirichlet made a big jump in introducing
the Dirichlet character. This notion will reappear later on when we talk about Dirichlet series and
Euler products.

Definition 6. A Dirichlet character is any function χ : Z → C which satisfies the following
properties:

(a) There exists m ∈ Z+ such that χ(n) = χ(n+m) for all n ∈ Z.

(b) If gcd(n,m) > 1, then χ(n) = 0; if gcd(n,m) = 1, then χ(n) 6= 0.

(c) χ(nk) = χ(n)χ(k) for all n, k ∈ Z.

From this definition, we can deduce other properties. From (b) and (c), χ(1) = 1. Combining
this with (c), we conclude that χ is a completely multiplicative function. Besides, (a) implies that
χ is periodic with period m. This is why we also call χ the Dirichlet character modulo m.

We make two remarks here. First, according to Definition 2 a character cannot have zero value;
however, a Dirichlet character can take the value zero. Second, if gcd(a,m) = 1 then by Euler’s
theorem aφ(m) ≡ 1 (modm), where φ is the totient function. Hence, χ(aφ(m)) = χ(1) = 1 which
implies that χ(a)φ(m) = 1. Thus, χ(a) is a φ(m)-th root of unity for all a such that gcd(a,m) = 1.
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Thanks to these two points, Dirichlet characters can be viewed in terms of the character group of
the unit group of the ring Z/mZ.

Specifically, let G = (Z/mZ)∗ (so |G| = φ(m)) with the principal character χ0 such that
χ0(a) = 1 if gcd(a,m) = 1 and 0 otherwise. Then, the Dirichlet character modulo m is informally
considered the extension of G to Z. We obtain the following important formulas.

Corollary 7. Let χ and ϕ be Dirichlet characters modulo m. Then

m−1∑
g=0

χ(g)ϕ(g) =

{
φ(m) if χ = ϕ,

0 otherwise.
(11)

Similarly, let g and h be integers. Then

∑
χ

χ(g)χ(h) =

{
φ(m) if g ≡ h (mod m),

0 otherwise.
(12)

With this corollary in hand, we can begin to sense how we may obtain the sum
∑

p≡a(modm)

1

ps
.

However, the tools we have covered so far are not enough. We now turn to the next critical point
in the proof of the theorem: the Dirichlet series.

3.2 Dirichlet series
Our main purpose in this section is to review one important property of the Dirichlet series, and
we incorporate it into a theorem.

Theorem 8. (Cohen) Let D =
∞∑
n=1

an
ns

be a Dirichlet series. If D converges for some s = s0, then

it converges uniformly on each compact set of the half-plane Re(s) > Re(s0). Moreover, the sum
is analytic in this region.

The proof of this theorem is quite simple; but as it is not central to the purpose of this paper,
we refer interested readers to Titchmarsh’s book, Chapter IX (See [10]).

We discussed in section 2 that a(n) in the Dirichlet series being completely multiplicative is
not good enough. Moreover, in equations (11) and (12) we used the Dirichlet characters χ and ϕ
and mentioned that they will help in the filtering process. Dirichlet was very clever in using such
χ in the Dirichlet series and created the Dirichlet L-series:

L(s, χ) =
∞∑
n=1

χ(n)

ns
. (13)

The use of L(s, χ) is in fact not so important when we study the Dirichlet series here or the
Euler products in the next part; but as it is essential for completing the proof of Dirichlet’s theorem,
we bring it along in these discussions.

One not-so-direct corollary of theorem 8 is concerned with L(s, χ).

5



Corollary 9. Let χ be a Dirichlet character modulom different from the principal character. Then
L(s, χ) converges and is analytic in Re(s) > 0.

Proof. For any a ∈ Z, proposition 4 implies

m∑
n=1

χ(n+ a) =
m−1∑
n=0

χ(n) = 0. (14)

Let s ∈ R+. Let Un =
∑n

i=1 χ(i). By (14), {Un}n is bounded. So there is some constant
C ∈ R+ such that |Un| < C ∀n ∈ N. For any M ∈ Z+, applying Abel’s summation formula (See
Rudin [6] p. 79) we get∣∣∣∣∣

∞∑
n=M

χ(n)

ns

∣∣∣∣∣ =
∣∣∣∣∣
∞∑

n=M

Un

(
1

ns
− 1

(n+ 1)s

)∣∣∣∣∣ ≤ C
∞∑

n=M

∣∣∣∣ 1ns − 1

(n+ 1)s

∣∣∣∣ = C

M s
. (15)

Since lim
M→∞

C

M s
= 0, then lim

M→∞

∞∑
n=M

χ(n)

ns
= 0 which implies L(s, χ) converges for s ∈ R+.

By theorem 8, we conclude that L(s, χ) converges and is analytic in Re(s) > 0.

We make two remarks here. First, corollary 9 is apparently unnecessary now but it will defi-
nitely be useful when we prove Dirichlet’s theorem. Second, we defer some properties of L(s, χ)
until they become relevant with the context of the proof. Next, we discuss another important no-
tion: the Euler products.

3.3 Euler products
This section serves to introduce two important results related to Euler products. The first one is
similar to equation (5).

Theorem 10. L(s, χ) converges absolutely for Re(s) > 1. Moreover in this region,

L(s, χ) =
∏
p

1

1− χ(p)p−s
. (16)

Proof. First, notice that χ is bounded; therefore, L(s, χ) converges absolutely forRe(s) > 1. Now,

for each prime p we have:
(
1− χ(p)p−s

)−1
=

∞∑
n=0

χ(p)np−ns =
∞∑
n=0

χ(pn)p−ns. This implies, for

any fixed prime q, that
∏
p≤q

1

1− χ(p)p−s
=
∑
n∈Tq

χ(n)

ns
, where Tq is the set of all natural numbers

whose prime factors are less than or equal to q. Then, for any natural number N we have

N∑
n=1

χ(n)

ns
=
∏
p≤r

1

1− χ(p)p−s
−

∑
n∈Tr,n>N

χ(n)

ns
, (17)
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where r is the largest prime less than or equal to N , and Tr is defined in the same way as Tq.
Letting N approach infinity, we obtain the desirable result.

The second result is concerned only with L(s, χ0).

Proposition 11. L(s, χ0) extends to a meromorphic function in Re(s) > 0 with the only pole at
s = 1.

Proof. By theorem 10, we get

L(s, χ0) =
∏
p-m

1

1− p−s
. (18)

We proceed by presenting an important result about the Riemann zeta function ζ(s).

Lemma 12. Let ζ be the Riemann zeta function. Then,

(a) ζ(s) =
∏
p

1

1− p−s
for Re(s) > 1, and

(b) ζ(s)− 1

s− 1
extends to a holomorphic function in Re(s) > 0.

We will not prove this lemma, as it is very famous in the literature (See e.g. Rudin [6] p. 141).
Now, we come back to our proposition 11. By lemma 12(a), we can write

L(s, χ0) = ζ(s)
∏
p|m

(1− p−s) for Re(s) > 1. (19)

Note that
∏
p|m

(1 − p−s) is finite. Combining this fact with lemma 12(b), we conclude that

L(s, χ0) can extend to a meromorphic function in Re(s) > 0 and its only pole is at s = 1.

Now, we have enough tools to prove Dirichlet’s theorem.

4 Dirichlet’s Theorem
We want to prove theorem 1 in a way suggested in section 2 of the paper. We start by taking the
natural logarithm of the Euler product (equation (16)):

logL(s, χ) =
∑
p

[
− log

(
1− χ(p)p−s

)]
for Re(s) > 1. (20)

We will show that the right hand side of (20) can be written in the form
∑
p

χ(p)

ps
+ h(s, χ),

where h(s, χ) is bounded as s→ 1.
To this end, we fix p and use the Taylor’s expansion for − log(1− x) at x = χ(p)p−s:

− log
(
1− χ(p)p−s

)
=
χ(p)

ps
+
∞∑
n=2

χ(p)n

npns
for Re(s) > 1. (21)
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Moreover, |χ(p)| = 0 or 1 so |χ(p)p−s| ≤ |p−s| ≤ 2−1. Then for Re(s) > 1, we get∣∣∣∣∣
∞∑
n=2

χ(p)n

npns

∣∣∣∣∣ ≤
∣∣∣∣χ(p)ps

∣∣∣∣2 ∞∑
n=2

1

n

∣∣∣∣χ(p)ps

∣∣∣∣n−2 ≤ ∣∣∣∣χ(p)ps

∣∣∣∣2 ∞∑
n=2

1

2

1

2n−2
=

∣∣∣∣χ(p)ps

∣∣∣∣2 ≤ 1

p2
. (22)

Let h(s, χ) =
∑
p

∞∑
n=2

χ(p)n

npns
. Then

logL(s, χ) =
∑
p

χ(p)

ps
+ h(s, χ),where (23)

|h(s, χ)| ≤
∑
p

∣∣∣∣∣
∞∑
n=2

χ(p)n

npns

∣∣∣∣∣ ≤∑
p

1

p2
<
∞∑
n=1

1

n2
<∞ for Re(s) > 1. (24)

Thus, h(s, χ) is bounded as s→ 1 as desired.
The next step is the filtering process. We recall the orthogonality property that given group

G = (Z/mZ)∗, ∑
χ

χ(g)χ(h) =

{
φ(m) if g ≡ h (mod m),

0 otherwise.
(25)

(We write the sum over χ to indicate the sum over all χ ∈ Ĝ). By multiplying both sides of
(23) by χ(a) and summing over all χ, we obtain∑

χ

χ(a) logL(s, χ) =
∑
χ

χ(a)
∑
p

χ(p)

ps
+
∑
χ

χ(a)h(s, χ). (26)

Hence,∑
χ

χ(a) logL(s, χ)−
∑
χ

χ(a)h(s, χ) =
∑
p

1

ps

∑
χ

χ(p)χ(a) = φ(m)
∑

p≡a(modm)

1

ps
. (27)

The sum we want finally appears. Now notice that |Ĝ| = φ(m). Because h(s, χ) is bounded as
s→ 1,

∑
χ

χ(a)h(s, χ) is bounded as s→ 1.

Our goal is to show that the right hand side of (27) diverges to infinity as s → 1. To do this,
we need to show

∑
χ

χ(a) logL(s, χ)→∞ as s→ 1.

By proposition 11, we know that L(s, χ0) → +∞ as s → 1 and thus, so does logL(s, χ0).
Since χ(a) 6= 0 and is bounded, to obtain the desired result it is enough to show logL(1, χ) is
bounded below for all χ 6= χ0. This is equivalent to showing L(1, χ) 6= 0 ∀χ 6= χ0. Once this
statement is proved, we are done with the proof of Dirichlet’s theorem. Thus, it is sufficient to
prove the following proposition.

Proposition 13. For all χ 6= χ0, L(1, χ) 6= 0.
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It is interesting to note that, in the proof of the Prime Number Theorem (See Zagier’s paper
[11]) the analogous statement for ζ(s) is also a major step.

Back to our proposition, there are at least two ways to show it. One method is quick but not
very illuminating; interested readers can see it in Garrett’s paper (See [4]). Here, we provide a
much more interesting proof, though it is more complicated. Another note is that this proof was
modified from Dirichlet’s original proof.1

Proof. The key to the proof is the function ζm(s), which is defined as

ζm(s) =
∏
χ

L(s, χ). (28)

We observe that for all χ 6= χ0, L(s, χ) is analytic in Re(s) > 0 by corollary 9. Moreover,
L(s, χ0) extends to a holomorphic function inRe(s) > 0 with the only pole at s = 1 by proposition
11. Suppose that there is some χ 6= χ0 such that L(1, χ) = 0 then ζm(s) would be analytic in
Re(s) > 0 (since the zero value at s = 1 of L(s, χ) will cancel the pole of L(s, χ0)). We will show
that ζm(s) cannot be analytic in Re(s) > 0 to obtain a contradiction, through which we prove
proposition 13.

To this end, we denote by ord(p) the order of the image p of p in G = (Z/mZ)∗ for any prime
p - m. We proceed with the following lemma.

Lemma 14. If Re(s) > 1, then

ζm(s) =
∏
p-m

(
1

1− p−ord(p)s

) φ(m)
ord(p)

. (29)

Proof. To prove this lemma, we first note that if p - m then

∏
χ

(
1− χ(p)

ps

)
=

(
1− 1

pord(p)s

) φ(m)
ord(p)

. (30)

To see why (28) is true, we start from the identity

1− xord(p) =
∏

ω∈Uord(p)

(1− ωx), (31)

where Un denotes the set of all n-th roots of unity. Notice that for each ω ∈ Uord(p), there are
exactly φ(m)/ord(p) Dirichlet characters χ such that χ(p) = ω. Hence∏

χ

(1− χ(p)x) =
(
1− xord(p)

) φ(m)
ord(p) . (32)

1We cannot find any official document saying who was the first to modify Dirichlet’s proof; among the possible
contributors is Edmund Landau.
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Let x = p−s we obtain (28). From here, we have for Re(s) > 1

ζm(s) =
∏
χ

L(s, χ) =
∏
χ

∏
p-m

1

1− χ(p)p−s
=
∏
p-m

(
1

1− p−ord(p)s

) φ(m)
ord(p)

, (33)

as desired. So, lemma 14 is proved.

The key here is to observe that
1

1− p−ord(p)s
is a Dirichlet series with non-negative real coeffi-

cients. Hence, by lemma 14, ζm(s) is also a Dirichlet series with non-negative real coefficients. To
come up with a contradiction, we need to use the following result, known as Landau’s theorem.

Theorem 15. (Landau) Let f(s) =
∞∑
n=1

an
ns

be a Dirichlet series with real coefficients an ≥ 0.

Suppose that the series defining f(s) converges for Re(s) > s0 for some real s0. Suppose further
that the function f extends to a holomorphic function in a neighborhood of s0, to say (s0 − ε, s0)
for some ε > 0. Then, the series defining f(s) converges for Re(s) > s0 − ε.

We will not prove this theorem here. Instead, we refer interested readers to Garrett’s paper (See
[4]).

Coming back to proposition 13, the proof is now at hand. Our goal is to show that ζm(s)
cannot be analytic in Re(s) > 0. Assume the contrary is true. Recall that ζm(s) is a Dirichlet
series whose coefficients are real and non-negative. Moreover, L(s, χ) converges for Re(s) > 1
for all χ so ζm(s) also converges for Re(s) > 1. By Landau’s theorem with s0 = ε = 1, ζm(s)
converges for Re(s) > 0.

However, for Re(s) > 1, we have(
1

1− p−ord(p)s

) φ(m)
ord(p)

=
(
1 + p−ord(p)s + p−2ord(p)s + · · ·

) φ(m)
ord(p) , (34)

which dominates the series 1 + p−φ(m)s + p−2φ(m)s + · · · = 1

1− p−φ(m)s
.

Then for s > 1, all the coefficients of ζm(s) =
∏
p-m

(
1

1− p−ord(p)s

) φ(m)
ord(p)

are greater than those

of
∏
p-m

1

1− p−φ(m)s
=

∑
n∈Z+, gcd(n,m)=1

1

nφ(m)s
. Hence,

ζm
(
φ(m)−1

)
≥

∑
n∈Z+, gcd(n,m)=1

1

n
, (35)

which is divergent to infinity.
So ζm(s) diverges at s = φ(m)−1 > 0, which is a contradiction! So proposition 13 is proved,

and we are done with the proof of Dirichlet’s theorem.
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