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Abstract

Individual forecasts of economic variables show widespread overreaction to recent news, but

laboratory experiments on belief updating typically find underinference from new signals. We

provide new experimental evidence to connect these two seemingly inconsistent phenomena.

Building on a classic experimental paradigm, we study how people make inferences and re-

vise forecasts in the same information environment. Participants underreact to signals when

inferring about underlying states, but overreact to signals when revising forecasts about future

outcomes. This gap in belief updating is largely driven by the use of different simplifying

heuristics for the two tasks. Additional treatments suggest that the choice of heuristics is af-

fected by the similarity between cues in the information environment and the belief updating

question: when forming a posterior belief, participants are more likely to rely on cues that

appear similar to the variable elicited by the question.
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1 Introduction

When new information arrives, rational agents should update their beliefs according to Bayes’

rule. Empirical research, however, has uncovered many instances in which agents’ reactions to

information deviate from Bayes’ rule. One recurring theme in the existing literature is that the type

of belief-updating biases appears to vary from setting to setting. For instance, excess volatility in fi-

nancial markets and boom-bust cycles in the macroeconomy are more consistent with overreaction

to information (e.g., Barberis et al., 2015; Maxted, 2020; Bordalo et al., 2021b). In contrast, post-

earnings announcement drifts and households’ sluggish responses to macroeconomic conditions

can be better understood with underreaction to information (e.g., Barberis et al., 1998; Coibion

and Gorodnichenko, 2015). This observation is further echoed in research that directly elicits be-

liefs and belief changes in both laboratory and field settings: while some studies find clear evidence

of underreaction, others find the opposite pattern (see a more detailed review below).

Both overreaction and underreaction are useful concepts in economic analysis and have spurred

the development of theories tackling important puzzles in finance and macroeconomics. However,

so far we still know little about what makes people overreact in some cases but underreact in

others (Benjamin, 2019). Answering this question requires uncovering factors that moderate the

direction and magnitude of belief-updating biases. Progress on this front can shed light on the

cognitive foundations of information processing and add more discipline and predictive power to

models that assume non-Bayesian updating.

In this paper, we propose one condition that mediates underreaction and overreaction to new

information. It is motivated by an apparent tension between two large literatures that directly test

Bayesian updating using reported beliefs. On the one hand, in both field and laboratory settings,

individuals often overreact to recent news when asked to make forecasts (e.g., Hey, 1994; Green-

wood and Shleifer, 2014; Gennaioli et al., 2016; Frydman and Nave, 2017; Conlon et al., 2018;

Afrouzi et al., 2020; Bordalo et al., 2020). On the other hand, when asked to make inferences

about underlying states, participants in experiments typically underreact to realized signals (see

Benjamin (2019) for a detailed review). While this tension may be attributed to differences in con-
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Figure 1: Inference problem (left) and forecast-revision problem (right)

Notes: In an inference problem, people observe a signal and then update their beliefs about the underlying states. In a
forecast-revision problem, people revise their forecasts about outcomes in response to a realized signal.

texts or data-generating processes (DGPs), we propose an alternative explanation that has previ-

ously been neglected: belief updating differs between an inference problem and a forecast-revision

problem. The differences between the two problems are illustrated in Figure 1. An inference prob-

lem is one where an agent observes signals and learns about the underlying state that determines

the distribution of signals. By contrast, a forecast-revision problem is one where an agent also

observes signals but instead update beliefs about future outcomes whose distributions depend on

the underlying state.

In standard models, the forecast-revision problem is closely tied to the inference problem:

inference about the underlying state is often the first step or input to revising forecasts about fu-

ture outcomes. However, we uncover a disconnect between the two: by conducting a series of

controlled experiments in which participants perform both types of updating tasks, we show par-

ticipants underreact to signals when making inferences but overreact when revising forecasts. This

finding can reconcile the seemingly inconsistent stylized facts in the aforementioned empirical

literature.

Our baseline treatment follows the “bookbag-and-poker-chip” paradigm1 in experimental re-

search but frames the relevant variables in economic terms. In each round of the experiment, there

is a “firm” with a fixed state which is either good or bad. The firm generates signals, framed as its

1In a typical experiment under this paradigm, there is a bookbag that contains poker chips of several colors. Par-
ticipants do not know the bag’s color composition, but are given the prior distribution of the composition. A random
chip is then drawn from the bag and, upon observing its color, participants are asked to report their posterior beliefs
about the bag’s color composition.
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monthly stock price growth, and the signals are informative of the state; good firms, on average,

have a higher growth in stock price than bad firms. Participants do not know the true state but

are given the full DGP, including the prior distribution over the two states and the distributions of

signals conditional on each state. In each month, the signal distribution is i.i.d. normal, with a

mean of 100 if the state is good and 0 if it is bad.

The key to our experimental design is to compare belief updating about underlying states and

about future outcomes in the same information environment. There are two main parts in the

baseline treatment: Inference and Forecast Revision. In Inference, participants observe one re-

alized signal and then report their updated beliefs about the states—the likelihoods of the firm

being good and being bad. In Forecast Revision, participants also observe one realized signal, but

instead report their updated expectations about the next signal—the expected stock price growth

next month. In our environment, these two types of beliefs are tightly linked: if one believes that

the firm is good with a p% chance, then by the Law of Iterated Expectations (LoIE), the expectation

about the next signal should be p%× 100 + (1− p%)× 0 = p. The simplicity of this relationship

ensures that, for participants who understand this link, the two problems involve a similar level of

computational complexity.

Despite the straightforward connection between Inference and Forecast Revision, participants’

behaviors exhibit distinct patterns in the two tasks. In Inference, 61% of the answers underreact

relative to the Bayesian benchmark while 24% overreact, a result that replicates the stylized fact

of systematic underreaction in the bookbag-and-poker-chip literature. By contrast, in Forecast

Revision, 40% of the answers underreact while 53% overreact. Similarly, when belief updates are

measured using the difference between posterior and prior beliefs, the average magnitude of belief

updates is substantially larger for Forecast Revision than for Inference. We refer to this discrepancy

in belief updating as the “inference-forecast gap.” This gap is robust across subsamples, across

rounds, and under alternative framings of the signal and the outcome. Moreover, the gap persists

in two additional treatments: one in which the signal follows a binary distribution and one in which

the outcome is different from the signal and completely determined by the state. These treatments
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not only demonstrate that the gap is robust to alternative DGPs, but also help rule out explanations

based on, for example, misperceptions of signal autocorrelation and related phenomena such as the

hot-hand bias.

After documenting the inference-forecast gap, we further examine the decision procedures used

by participants in the experiment. The gap should not arise if, in Forecast Revision, participants

correctly implement the standard “infer-then-LoIE procedure” by (a) first updating their beliefs

about the states as in Inference and then (b) using these posterior beliefs to compute the expected

value of the forecast outcome under the LoIE. The existence of the gap suggests the use of alter-

native, nonstandard decision procedures in Forecast Revision. One possibility is that participants

intend to follow the infer-then-LoIE procedure, but make errors or take shortcuts due to its com-

plexity. We run a treatment that shows participants their own inference answers when they solve

the corresponding forecast-revision problems, effectively reducing the two-step infer-then-LoIE

procedure to a one-step procedure of simply applying the LoIE. The treatment, however, has little

impact on the gap. Moreover, we confirm that participants are largely capable of applying the

LoIE correctly when solving a standalone expectation-formation problem. Taken together, these

results suggest that participants do not appear to be using the infer-then-LoIE procedure when

solving forecast-revision problems—correctly or with errors. Instead, they resort to alternative

procedures.

What alternative decision procedures do participants use? We shed light on this question by

detecting potential modal behaviors in the two updating tasks. In Inference, the modal behavior is

“non-updates:” in 30% of the answers, the posterior equals the prior. In Forecast Revision, the frac-

tion of non-updates drops to 23%; meanwhile, two other behaviors that rarely appear in Inference

become modal. Under the first mode, which represents 21% of the answers, participants answer

100 when the signal is good and 0 when it is bad. These participants make forecasts as if they were

100% sure about being in the more representative state—that is, the state more consistent with the

signal—a simplifying heuristic that we term “exact representativeness.” The second mode, consti-

tuting 12% of the answers, is to report a forecast that equals the signal. That is, participants directly
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use the realized signal as their expectation of the next outcome—a simplifying heuristic we term

“naive extrapolation.” Each of the three modal behaviors corresponds to participants using a dif-

ferent salient cue in the information environment—the prior, the outcome expectation conditional

on the representative state, and the realized signal—as an anchor in making forecasts (Kahneman

and Frederick, 2002; Shah and Oppenheimer, 2008). These modal behaviors are also important

drivers of the aggregate result; excluding them would largely reduce the inference-forecast gap.

Why do participants use different simplifying heuristics, even when the information environ-

ment remains unchanged? Building on the literature on salience and memory retrieval (Gennaioli

and Shleifer, 2010; Kahana, 2012; Bordalo et al., 2021a), we hypothesize that when answering a

belief updating question, people are more likely to rely on salient cues that appear similar to the

variable elicited by that question. For example, the expected outcome conditional on the represen-

tative state is a salient cue in the information environment. Moreover, this variable appears more

similar to the expected outcome conditional on the signal (the forecast-revision variable) than to

the posterior probabilities of the states (the inference variable). Therefore, our similarity-based hy-

pothesis predicts that participants are more likely to anchor on this cue when they revise forecasts,

which explains the prevalence of exact representativeness. Analogously, the realized signal as a

cue is more similar to the forecast-revision variable than to the inference variable, so it is more

likely to serve as an anchor when participants revise forecasts, resulting in the behavioral mode of

naive extrapolation.

To further test this similarity-based hypothesis, we run two additional treatments. In the first

treatment, we reframe the information environment and the belief updating questions in order to

increase the similarity between the inference variable and the two cues driving exact representa-

tiveness and naive extrapolation. This change makes these two heuristics more prevalent among

inference answers and reduces the inference-forecast gap. In the second treatment, we reframe

the forecast-revision question to decrease the similarity between the forecast-revision variable and

the two cues. Consistent with our hypothesis, exact representativeness and naive extrapolation be-

come less prevalent among forecast-revision answers, and the inference-forecast gap disappears.
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Overall, these treatments support the view that the similarity between cues in the information en-

vironment and the variable elicited in the belief-updating question can offer a unifying explanation

for underreaction and overreaction as well as the heuristics that drive them.

Our work is related to an active body of experimental research on the conditions of overreac-

tion and underreaction in belief updating (Afrouzi et al., 2020; Enke and Graeber, 2020; He and

Kucinskas, 2020; Enke et al., 2021; Hartzmark et al., 2021; Liang, 2021).2 We replicate the finding

from the bookbag-and-poker-chip paradigm that people underreact to information when updating

beliefs about underlying states (Phillips and Edwards, 1966; Benjamin, 2019). Importantly, we

show that underreaction does not generalize to forecast-revision problems that ask participants to

predict future outcomes, even though the information environment does not change.3 We thus

bring a new perspective to this literature; namely, that the direction of belief-updating biases de-

pends on the type of belief elicited. The documented inference-forecast gap is largely due to the

use of different simplifying heuristics in the two types of problems. This finding contributes to the

vast literature on heuristic decision making (e.g., Tversky and Kahneman, 1974; Shah and Oppen-

heimer, 2008) and is also consistent with recent evidence on the roles of complexity and incorrect

mental models in explaining belief-updating biases (Enke and Zimmermann, 2019; Enke, 2020;

Esponda et al., 2020; Andre et al., 2021; Graeber, 2021). Moreover, we build on recent work on

salience and memory retrieval (Gennaioli and Shleifer, 2010; Kahana, 2012; Bordalo et al., 2021a)

and argue that the similarity between belief-updating questions and salient cues in the information

environment plays an important role in reconciling the differential updating behaviors in inference

and forecast-revision tasks.4

2Empirical work using field or survey data, including Malmendier and Nagel (2011, 2016) and Wang (2020), also
discusses the conditions under which people overreact and underreact to new information.

3A few belief-updating experiments using the bookbag-and-poker-chip design elicit beliefs of future draws con-
ditional on the current draw. Moreno and Rosokha (2016), Bland and Rosokha (2021), Hartzmark et al. (2021) and
Epstein et al. (2021) find either near-Bayesian updating or overreaction in their average results, and Fehrler et al.
(2020) finds underreaction. None of these experiments compare beliefs of future draws with beliefs of the bookbag’s
composition.

4Our paper is also related to the psychology literature on the asymmetry between diagnostic reasoning
(Pr(Cause|Effect)) and predictive reasoning (Pr(Effect|Cause)) in a given causal structure (e.g., Tversky and Kahne-
man, 1980; Fernbach et al., 2011). While the inference problem in our paper is synonymous to diagnostic reasoning,
forecast revision is different from either kinds of reasoning in this literature because it elicits the belief of one “effect”
(the forecast outcome) of the “cause” (the underlying state) conditional on another effect (the signal). Moreover, in
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The finding of overreaction in forecast revisions provides experimental support for overreac-

tion in survey expectations.5 In this regard, our paper complements studies that find overextrapo-

lation in autocorrelated time-series forecasts (Hey, 1994; Frydman and Nave, 2017; Afrouzi et al.,

2020; He and Kucinskas, 2020).6 DGPs in our experiment, unlike those in these previous studies,

fully specify the underlying states, which in turn determine the signal and outcome distributions.

This design brings the setting closer to standard models in macroeconomics and finance and lends

several advantages to our analysis.7 First, the explicit separation between states and outcomes

makes it possible to design different problems targeting inference and forecast revision, respec-

tively, thereby allowing us to pin down where a specific updating bias arises. Second, it allows us

to separately identify the specific forms of overreaction, such as representativeness-based overreac-

tion (Kahneman and Tversky, 1972; Bordalo et al., 2018) and mechanical extrapolation (Barberis

et al., 2015, 2018). Third, having a fully-specified DGP allows us to attribute biases in posterior

beliefs to incorrect statistical reasoning rather than to misperceived DGPs.

Overreaction in Forecast Revision is reminiscent of the hot-hand bias, the exaggeration of belief

in an outcome after observing a long streak of the same outcomes (Gilovich et al., 1985; Tversky

and Gilovich, 1989; Suetens et al., 2016). In contrast, overreaction occurs in our experiment after

just one signal realization. Moreover, we find overreaction even when the forecast outcome is dif-

ferent from the signal variable and fully determined by the state, a setting in which misperceptions

of outcome autocorrelation and related phenomena such as the hot-hand bias, are irrelevant. Our

underinference result is also inconsistent with the leading account of the hot-hand bias, which is

based on overinference (Rabin, 2002; Rabin and Vayanos, 2010). At the design level, we use ex-

parts of our experiments, we elicit forecasts without showing participants any signal, which is more akin to predictive
reasoning. However, we show that biases in these parts cannot explain the inference-forecast gap. We thank Thomas
Graeber for pointing us to this literature.

5For example, see Greenwood and Shleifer (2014); Gennaioli et al. (2016); Conlon et al. (2018); Bordalo et al.
(2020); Barrero (2022); and Kohlhas and Walther (2021).

6In addition to overreaction in autocorrelated time-series forecasts, He and Kucinskas (2020) also finds that fore-
casts underreact to past observations of a different variable.

7In asset-pricing models, when investors are learning about firm quality (fundamentals), it is common to assume
that they observe noisy signals of quality such as stock returns (e.g., Glaeser and Nathanson, 2017). In the mutual
fund literature, investors learn about manager skills by observing past fund returns (e.g., Berk and Green, 2004; Rabin
and Vayanos, 2010). In the labor literature, job seekers learn about their employability from the offers they receive
(Burdett and Vishwanath, 1988).
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plicit instructions and comprehension checks to make sure participants do not commit the hot-hand

bias. Overall, it is unlikely that our results are driven by the hot-hand bias.

The rest of the paper proceeds as follows. Section 2 outlines our experimental design. Section

3 documents the existence of the inference-forecast gap. Section 4 studies the decision procedures

used by participants. Section 5 explores the mechanisms behind these decision procedures. Section

6 concludes and discusses the implications of our results.

2 Experimental Design

2.1 Environment

To compare belief updating between making inferences and revising forecasts for the same

individual, we adopt a within-participant experimental design. For each inference problem a par-

ticipant solves, there is a corresponding forecast-revision problem with the same information en-

vironment, i.e., the same DGP and realized signal.

The main treatment, Baseline, has five parts, summarized in Table 1. Each part has eight rounds

of problems. In each round, participants are first presented with a “firm” randomly drawn from

a new pool of 20 firms. A firm’s state, θ, is either G(ood) or B(ad). Participants do not know

the state of the drawn firm, but are given the composition of the pool, which specifies the prior

distribution over the states. The firm generates signals, st, which are framed as the firm’s stock

price growth in month t. Participants are provided with the conditional distributions of signals:

signals of a good firm follow an i.i.d. normal distribution of N(100, σ2) and signals of a bad firm

follow i.i.d. N(0, σ2).8 Because good firms are more likely to have higher stock price growth than

bad firms, a signal of high stock price growth (higher than 50) is diagnostic of the firm being good.

To sum up, in each round, the DGP is fully specified by two pieces of information: the prior

distribution of states and the conditional distributions of signals. Both are presented to participants

8In the actual implementation, we discretize the supports of normal distributions to multiples of 10 and truncate at
both tails.
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Table 1: Summary of variables elicited in each part of Baseline

Number Part Show signal? Beliefs elicited

1 Inference Prior No Pr(θ)

2 Inference Yes Pr(θ|s0)

3 Forecast Prior No E(s1)

4 Forecast Revision Yes E(s1|s0)

5 Expectation Formation No E(s1)

Table 2: Parameter values for DGPs

Index 1 2 3 4 5 6 7 8

Pr(G) 50% 50% 50% 50% 50% 50% 80% 20%

σ 50 60 70 80 90 100 100 100

using figures and texts in a one-page display (see Figure 2 for an example), and we explain this

interface with detailed instructions.9 Table 2 summarizes the parameter values for the eight DGPs.

We include six DGPs with symmetric priors (Pr(G) = 50%) and two DGPs with asymmetric pri-

ors. The DGPs with symmetric priors allow us to identify underreaction and overreaction without

confounds from base-rate neglect, while the DGPs with asymmetric priors help us examine the

robustness of our results. Each DGP is represented by one problem in each of the five parts (the

DGP is modified in the Expectation Formation part, which we will explain later). As a result,

answers across parts are directly comparable. Unless mentioned otherwise, an observation refers

to a participant’s answers to the five corresponding questions in the five parts.

The two main parts of the experiment are Inference and Forecast Revision. In each round,

participants first observe the firm’s stock price growth in the current month s0. In Inference, after

seeing the realized signal, participants report their updated beliefs about the states Pr(θ|s0). The

9Screenshots of the experimental interface can be found in the Online Appendix.
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Figure 2: An example of the interface for the DGP
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beliefs are elicited in percentages, and henceforth we will refer to an inference answer as the

reported belief about the Good state without the % sign.10 In Forecast Revision, participants instead

report their updated expectations about the firm’s stock price growth next month E(s1|s0). To allow

for a direct comparison between the two parts, the signal realization is set to be the same in any

two corresponding rounds for the same participant, though it varies across participants.

In the other three parts, participants do not observe any signal realization before their beliefs are

elicited. In Inference Prior, participants directly report prior beliefs about the states Pr(θ) based on

their knowledge about the DGP. Similarly, in Forecast Prior, they directly report prior expectations

about the signal E(s1). These two parts test whether participants can correctly form prior beliefs.

The last part, Expectation Formation, is identical to Forecast Prior, except for the composition of

firms in the pool. While the composition of firms in Forecast Prior is set exogenously according to

Table 2, in Expectation Formation it is determined endogenously by participants’ reported posterior

beliefs about the states in Inference. For example, if a participant reports a posterior belief of

Pr(G|s0) = 40% in a round in Inference, then the pool of firms in the corresponding round in

Expectation Formation will have 8 (= 40% × 20) good firms and 12 bad ones.11 Expectation

Formation is designed to test whether participants can correctly form expectations about the next

signal when the states are distributed according to their own inference posteriors.

Participants need to stay on each page for at least eight seconds before they can type in their

answers. This requirement aims to ensure that sufficient attention is paid to the problems and to

prevent click-through behavior. For each participant, we further randomize (a) the order of different

DGPs in each part and (b) the order of the five parts. For the latter randomization, we require

that (a) priors are elicited before eliciting the corresponding posteriors and (b) the Expectation

Formation part comes after Inference. Hence, we are left with three orders of parts: 12345, 12534,

and 34125.
10In the experimental interface, there is one blank for the belief about the Good state and one for the Bad state. Once

a participant types a number into one of the two blanks, the other blank will be automatically filled with 100 minus
that number. Only numbers in the range [0, 100] are allowed.

11The numbers of good and bad firms in Expectation Formation are rounded to the nearest integer if the reported
beliefs in Inference are not a multiple of 5%. Fourteen percent of the answers in Inference are not multiples of 5%,
among which half are rounded up and the other half rounded down.
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After the five parts, participants complete an unincentivized exit survey. At the end of the

experiment, participants may receive a $5 bonus payment, and their chance of receiving the bonus

depends on their answer in one randomly selected round through a quadratic rule.12

Building on Baseline, we implement several straightforward extensions as robustness checks.

First, we frame the signal as revenue growth instead of stock price growth. Second, we ask partici-

pants about their expectations of the last signal s−1 (“stock price or revenue growth in the previous

month”) instead of the next signal s1. In Appendix A.5, we show that results are qualitatively

similar across all these extensions. Therefore, we pool the data from all versions of Baseline for

our main results.

2.2 The no inference-forecast gap benchmark

According to standard probability theory, answers in Inference and Forecast Revision should

be tightly linked. Specifically, the Law of Iterated Expectation (henceforth abbreviated as “LoIE”)

implies the following equation:

E(s1|s0) = Pr(G|s0)× E(s1|G, s0) + Pr(B|s0)× E(s1|B, s0). (1)

In our experiment, s1 and s0 are independent conditional on the state θ, so E(s1|G, s0) = E(s1|G) =

100 and E(s1|B, s0) = E(s1|B) = 0. Therefore, Equation (1) simplifies to the following equation:

E(s1|s0) = Pr(G|s0)× 100. (2)

We term Equation (2) the “no inference-forecast gap” condition. It summarizes the theoretical link

between the posterior belief about the underlying states and the updated forecast of the outcome

variable s1. If an inference answer and its corresponding forecast-revision answer satisfy this con-

12If their answer in that round equals the rational benchmark according to standard probability theory, then they
receive the bonus with certainty; otherwise, their chance of getting the bonus decreases quadratically in the difference
between their answer and the rational benchmark (see (Hartzmark et al., 2021) for a similar incentive structure). If the
answer is p and the rational benchmark is q (in % for the two Inference parts), then the chance of receiving the bonus
is max{0, (100− (p− q)2)%}.
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dition, then there should be no discrepancy between these two types of belief-updating problems:

Bayesian inference would translate to rational forecasts, and any deviation from Bayes’ rule in the

inference answer would imply the same deviation from rationality in the forecast-revision answer.

The computational simplicity of Equation (2) is an advantage of our experimental design. Un-

der the no inference-forecast gap condition, if a signal leads to a belief that the good state has 40%

probability, then the resulting expectation of the outcome should be 40. For participants who un-

derstand this condition, the computational cost of solving a forecast-revision problem is very close

to that of solving the corresponding inference problem. Therefore, computational complexity alone

is unlikely to cause violations of the no inference-forecast gap condition.13

When participants solve a forecast-revision problem, one simple and standard procedure that

satisfies the no inference-forecast gap condition is the following “infer-then-LoIE” procedure: In

the first step, participants update their beliefs about the states using the same (and possibly non-

Bayesian) rule as in the corresponding inference problem; in the second step, they apply the LoIE

using the posteriors from the first step to obtain their expectations about the forecast outcome. In

later parts of the paper, we will examine whether participants follow this procedure.

2.3 Instructions and comprehension questions

Participants receive extensive instructions, with the tasks and incentive structure explained in

detailed and intuitive terms. In particular, we go to great lengths to ensure that participants fully

understand the DGP. First, we emphasize that the state of a firm is constant across months but

the signals are i.i.d. conditional on the state. In doing so, we explicitly caution against incorrect

beliefs that the signals are autocorrelated conditional on the state. Second, we use an example

DGP to illustrate the discretized normal distributions of the signals. In particular, we highlight the

conditional means (0 and 100) and the property that signals higher (lower) than 50 are good (bad)

news about the firm’s quality. Third, we present participants with two explicit formulae, one for

13Moreover, because beliefs are equally incentivized across the two types of problems, rational tradeoffs between
monetary gains and computational costs, in the spirit of Sims (2003); Gabaix (2014); Caplin and Dean (2015); and
Woodford (2020), cannot generate an inference-forecast gap.
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calculating the prior distribution over states from the pool composition (Pr(G) = number of Good firms
20

)

and one for calculating the expectation about the signal from the belief about the states (E(s) =

Pr(G) × 100). However, we do not mention or nudge participants toward any specific belief-

updating rule.

At the end of the instructions, participants need to answer a set of comprehension questions

that test their understanding of the DGP, the incentive structure, and the two formulae. Participants

can proceed only if they have answered all the comprehension questions correctly.14

2.4 Procedural details

We programmed our experiment using oTree (Chen et al., 2016). For Baseline, we recruited

279 participants through Prolific, an online platform designed for social science research.15 Sig-

nals were framed as monthly revenue growth for 142 participants and as stock price growth for

137 participants. There was also some variation across participants in the order of parts: 102 par-

ticipants went through the experiment in the order of 12345, 103 in the order of 12534, and 74 in

the order of 34125. The participants, on average, spent about 30 minutes on the experiment and

earned a payment of $7.08, $5 of which was the base payment.

2.5 Other treatments

In addition to Baseline, we also implemented several other treatments to investigate the ro-

bustness of and the mechanisms behind our results. These treatments are summarized in Table 3.

Details about these treatments will be described in their respective sections.

14If there are mistakes, participants will be asked to re-answer those questions.
15See Palan and Schitter (2018) on using Prolific as a participant pool. We recruited only US participants who had

completed more than 100 tasks on Prolific and who had an approval rate of at least 99%.
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Table 3: Overview of additional treatments

Treatment Section Key differences from Baseline

Deterministic Outcome 3.2 Forecast outcome is a different variable (100 if θ = G and 0 if θ = B)

Binary Signal 3.3 Signals are binary; forecast questions ask about full distributions

Nudge 4.1 Beliefs about states and forecasts are elicited on the same page

More Similar 5.1
State variable (profitability) = mean of signal or forecast outcome (profits);
inference questions ask about the expectation of the state

Less Similar 5.2
Forecast outcome is a different variable (up if θ = G and down if
θ = B); forecast questions ask about full distributions

3 Evidence for the Inference-Forecast Gap

3.1 Aggregate patterns

In this section, we compare belief updating between inference and forecast-revision problems

using two methods of analysis. First, we classify each answer into one of three categories—

Near-rational, Underreaction, and Overreaction—and examine the distributions of answers by cat-

egories. Second, we calculate the average belief movement from the prior to the posterior. Recall

that, if the no inference-forecast gap condition in Equation (2) is met, then results from Inference

and Forecast Revision should exhibit similar patterns. Any systematic difference, therefore, would

imply an inference-forecast gap.

For an inference problem in our experiment, the rational benchmark is given by Bayes’ rule:

PrRational(G|s0) =
Pr(G) · Pr(s0|G)

Pr(G) · Pr(s0|G) + Pr(B) · Pr(s0|B)
. (3)

For a forecast-revision problem in our experiment, the rational benchmark can be derived by ap-
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plying LIE to the corresponding rational inference answer:

ERational(s1|s0) = PrRational(G|s0)× E(s1|G) + PrRational(B|s0)× E(s1|B)

= PrRational(G|s0)× 100. (4)

Note that the no inference-forecast gap condition in Equation (2) is satisfied by the rational bench-

marks.

We first classify answers in Inference and Forecast Revision by how they compare to the ra-

tional benchmarks. An answer is classified as Near-rational if its difference from the rational

benchmark is no more than 2.5.16 To introduce the categories of Underreaction and Overreaction,

we first define an “update” by how much an answer moves from its (objective) prior value in the

direction of the realized signal s0:

update =


answer− prior, if s0 > 50

prior− answer, if s0 < 50

. (5)

For any two corresponding inference and forecast-revision problems, Equations (3) and (4) imply

that their rational updates are identical. We classify an answer as Underreaction (Overreaction) if

the update is smaller (larger) than the rational update by more than 2.5; we do not classify answers

when s0 = 50, i.e., the realized signal is uninformative.

Table 4 shows the aggregate patterns in Baseline (excluding observations with a signal of 50).

The first three columns concern the distribution of answers by categories. Results from Infer-

ence replicate the key finding from the classic bookbag-and-poker-chip literature: participants

overwhelmingly underreact to new information and update too little about the firm’s underlying

state. Out of all the answers, 60.5% are Underreaction, 24.2% are Overreaction, and 15.3% are

Near-rational. These patterns, however, flip in Forecast Revision: 53.3% of the answers indicate

16We choose the number 2.5 so that the interval for near-rational covers at least one multiple of five, on which
participants’ answers tend to cluster.
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Table 4: Aggregate patterns in Baseline

N=279, Obs.=2069 Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Inference 60.5% 15.3% 24.2% 14.6 (.7)

Forecast Revision 40.2% 6.6% 53.3% 31.9 (2)

Rational 23.4 (0.3)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows the average belief movement from the (objective) prior to the posterior, as well
as the rational benchmark. Observations with the signal equal to 50 are excluded. Standard errors are clustered by
participant.

overreaction to new information, higher than the fraction of 40.2% classified as Underreaction.

The last column of Table 4 concerns the average update. In Inference, the average update is

14.6, significantly lower than the average rational update of 23.4 (p < 0.01). By contrast, in

Forecast Revision, the average update is 31.9, significantly higher than the rational benchmark (p <

0.01). Therefore, both methods of analysis suggest an inference-forecast gap. In the Appendix,

Table A6 further confirms the statistical significance of the inference-forecast gap in a regression

framework.

The inference-forecast gap is highly robust in various cuts of the data (see Section A of the

Appendix for details). First, in a more “reasonable” subsample that only includes observations

with (a) answers within [0, 100] and (b) updates in the correct direction, Forecast Revision no

longer exhibits overreaction on average, but the inference-forecast gap remains highly significant.

Second, the gap is present under all eight DGPs, even though they entail different priors and signal

distributions. Third, the gap increases for stronger signals—that is, when the signal deviates more

from 50 and therefore becomes more informative—but exists even for the weakest signals. Fourth,

our results persist in a subsample that excludes observations with incorrect reported prior beliefs.

Fifth, there is no qualitative impacts on the inference-forecast gap (a) when we change the order of

experimental parts, (b) when the signal and outcome are framed as revenue growth, and (c) when
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we control for participant characteristics. One framing variation that has a significant impact on

the magnitude of the gap is the timing of outcome realization. The gap shrinks by over a third

when the outcome is framed as stock price of the last month rather than of the next month (see

Table A9). This result suggests that beliefs about unrealized outcomes may be more responsive to

signals than beliefs about realized outcomes.17

3.2 Deterministic Outcome treatment

In this and the next subsection, we investigate the inference-forecast gap in two additional

treatments with alternative DGPs. Both treatments generate patterns similar to those of Baseline.

These results demonstrate the prevalence of the inference-forecast gap in various environments and

help rule out several potential explanations for its emergence.

In Baseline, the forecast outcome and the realized signal are part of the same time series.

Therefore, the observed inference-forecast gap could be due to misperceived signal autocorrelation

and related phenomena such as the hot-hand bias (Gilovich et al., 1985; Tversky and Gilovich,

1989; Suetens et al., 2016). To rule out this explanation, we implement an additional treatment

called Deterministic Outcome. In this treatment, the outcome variable in Forecast Revision is

different from the signal variable: when the outcome variable is the firm’s stock price growth,

the signal variable is the revenue growth, and vice versa. Moreover, the outcome variable is fully

determined by the state: it equals 100 for sure in the Good state and 0 for sure in the Bad state. The

distributions of the state and the signal are the same as in Baseline. Under this alternative DGP,

the no inference-forecast gap condition remains the same: the forecast-revision answer equals

the corresponding inference answer (minus the % sign). But unlike in Baseline, the perceived

correlation between the signal and the outcome should be irrelevant for the inference-forecast gap

here: since the outcome is fully determined by the state, the perceived signal-outcome correlation

17To the best of our knowledge, our study is the first to uncover the effect of the timing of outcome realization on
belief-updating biases. Rothbart and Snyder (1970) and Heath and Tversky (1991) find that people are more willing
to bet on realized events than unrealized ones. Nielsen (2020) finds that people prefer earlier resolution of uncertainty
for realized events than for unrealized ones.
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Table 5: Aggregate patterns in Deterministic Outcome

N=100, Obs.=748 Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Inference 63.8% 15.1% 21.1% 13.8 (1.3)

Forecast Revision 40.6% 8.7% 50.7% 32.9 (3.3)

Rational 23.3 (.5)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors and
their rational benchmark. Observations with the signal equal to 50 are excluded. Standard errors are clustered by
participant.

should be the same as the perceived signal-state correlation.

Table 5 shows a similar inference-forecast gap for Deterministic Outcome compared to Base-

line. In the Appendix, Table A10 further confirms, in a regression analysis, that the gap is statisti-

cally significant.

Results from Deterministic Outcome clearly show that the hot-hand bias cannot account for

the inference-forecast gap. This further differentiates our results from overreaction in univariate

forecasts (Hey, 1994; Frydman and Nave, 2017; Afrouzi et al., 2020) in which exaggerated auto-

correlation is a key driving force. Moreover, the treatment helps address two additional robustness

issues. First, the inference-forecast gap is not limited to cases where the signal and the outcome

share the same variable name and distribution. Second, even when the state variable and the out-

come variable share the same distribution, an inference-forecast gap can still arise.

3.3 Binary Signal treatment

In a second treatment called Binary Signal, the signal st follows a binary distribution instead

of a continuous distribution. In particular, the signal is framed as the direction of the firm’s stock

price movement and is either up or down, and the probability of an upward movement is higher if

the firm’s state is Good. The parameters for the DGPs are listed in Table 6. In the Forecast Revi-
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Table 6: Parameter values for DGPs in Binary Signal

Index 1 2 3 4 5 6 7 8

Pr(G) 50% 50% 50% 50% 50% 50% 80% 20%

Pr(up|G) 60% 70% 80% 90% 70% 55% 70% 70%

Pr(up|B) 40% 30% 20% 10% 45% 30% 30% 30%

sion part of this treatment, the problem asks about the full probability distribution of the outcome

Pr(s1), instead of the expectation E(s1).

As in Baseline, the no inference-forecast gap condition in Binary Signal is given by the LIE:

Pr(s1 = up|s0) = Pr(G|s0)× Pr(up|G) + Pr(B|s0)× Pr(up|B). (6)

Substituting in Pr(up) = Pr(up|G)×Pr(G)+Pr(up|B)×Pr(B), which is the LIE applied to the

objective prior beliefs, we obtain the following equation:

Pr(s1 = up|s0)− Pr(up)
Pr(up|G)− Pr(up|B)

= Pr(G|s0)− Pr(G). (7)

Equation (7) states that under the no inference-forecast gap condition, the inference update equals

the normalized forecast-revision update, defined by how much the forecast revision answer moves

from the objective prior in the signal direction divided by the range of outcome probabilities,

Pr(up|G) − Pr(up|B). This equation is not as simple as Equation (2) in Baseline, so compu-

tational complexity could confound the comparison between inference and forecast revision an-

swers.18 However, one advantage of the Binary Signal treatment is that it is closer to the common

design in the bookbag-and-poker-chip paradigm (Benjamin, 2019).

In Binary Signal, the three categories—Near-rational, Underreaction, and Overreaction—are

defined in the same way as in Baseline, except that the categories for forecast-revision answers are

18For example, computational complexity could lead to higher degrees of cognitive uncertainty (Enke and Graeber,
2020). This could push forecast-revision answers toward underreaction.
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Table 7: Aggregate patterns in Binary Signal

N=140, Obs.=1120 Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Inference 61.0% 20.1% 18.9% 11.0 (0.9)

Forecast Revision 54.9% 6.7% 38.4% 14.2 (2.2)

Rational 18.7 (0.0)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors and
their rational benchmark. The updates of forecast-revision answers are normalized by Pr(up|G)− Pr(up|B) so that
they are comparable to the inference updates. Observations with the signal equal to 50 are excluded. Standard errors
are clustered by participant.

defined based on their normalized updates. Table 7 reports the results from Binary Signal. As in

Baseline, more answers are classified as Overreaction in Forecast Revision than in Inference, and

the average update in the former part is also larger.19 However, answers in Forecast Revision do

not exhibit overreaction on average. Overall, the Binary Signal treatment shows that the inference-

forecast gap extends to environments with alternative signal distributions. It also shows that this

phenomenon can persist when the elicited object in Forecast Revision is the full distribution of the

outcome instead of its expected value.

4 Decision Procedures

4.1 Implementation errors or alternative procedures?

In this section, we examine the decision procedures used by participants in the experiment. As

discussed in Section 2.2, the inference-forecast gap should not arise if participants, when answer-

ing a forecast-revision question, correctly implement the infer-then-LoIE procedure by: (a) first

updating their beliefs about the states, in the same way as in the corresponding inference problem,

and (b) then applying the LoIE to form expectations about the forecast outcome. The existence of

19In the Appendix, Table A11 shows in a regression that the gap in updates is significant at the 10% level.
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an inference-forecast gap therefore rejects that participants correctly implement this procedure in

Forecast Revision.

However, it is possible that participants implement this procedure incorrectly: they may intend

to follow the infer-then-LoIE procedure, but make errors or take shortcuts because the procedure

itself is inherently two-step rather than one-step. For instance, a participant may have limited

cognitive bandwidth to do one operation at a time. When solving the one-step inference problem,

she may be capable of forming probabilistic beliefs about the states. However, when trying to

implement the two-step infer-then-LoIE procedure in solving the forecast-revision problem, her

cognitive bandwidth may only allow her to form a binary belief (“the firm is good” or “the firm is

bad”) in the first step, an error that can lead to overreaction.

If it is indeed the implementation complexity of forecast-revision problems that is driving the

inference-forecast gap, then reducing this complexity should reduce the gap. To test this hypoth-

esis, we run an additional treatment, Nudge. In experimental parts that provide signals, after ob-

serving the realized signal, participants are first asked to report their beliefs about the states. And

then, while the answers they just typed are still on the screen, they are asked to report their expec-

tations about the next signal.20 For a participant intending to follow the infer-then-LoIE procedure,

this design makes a forecast-revision problem no more complex than applying the LoIE: one only

needs to multiply the inference posterior by 100 to complete the infer-then-LoIE procedure. In fact,

because the inference question is quoted in percentage terms and the forecast-revision question is

quoted in cents, participants can just type in the exact same number.

According to the hypothesis above, the reduction in complexity should mitigate any imple-

mentation errors in the procedure and reduce the inference-forecast gap. However, we find that

displaying the inference answer when participants revise their forecasts does not change the over-

all pattern of the inference-forecast gap. Table 8 shows the aggregate patterns in Nudge. Same as

before, participants overwhelmingly underreact in Inference and on average overreact in Forecast

20More specifically, participants have to stay on the page for eight seconds before answering each question. The
forecast-revision question appears only after the answer to the inference question has been submitted. Participants can
revise their answers to the inference question before they submit their answers to the forecast-revision question.
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Table 8: Aggregate patterns in Nudge

N=99, Obs.=715 Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Inference 70.6% 10.2% 19.2% 10.3 (1.3)

Forecast Revision 42.2% 6.7% 51.0% 28.9 (2.9)

Expectation Formation 60.6% 6.9% 32.6% 13.7 (2.1)

Rational 22.6 (.5)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors
and their rational benchmark. The expectation-formation answers are analyzed in the same way as the corresponding
forecast-revision answers: the update of an expectation-formation answer is defined as the answer minus the (objective)
prior in the corresponding forecast-revision problem if the signal in the latter problem is greater than 50 and the reverse
if the signal is smaller than 50. The classification of an expectation-formation answer is conducted against the rational
benchmark for the corresponding forecast-revision problem. Observations with the signal equal to 50 are excluded.
Standard errors are clustered by participant.

Revision.21

How can we explain the ineffectiveness of Nudge? One possibility is that while the treat-

ment indeed makes the infer-then-LIE procedure no more complex than solving a standalone

expectation-formation problem, even the latter is too complex for our participants, and the result-

ing errors lead to overreaction. To test this possibility, in another part of Nudge called Expectation

Formation, we ask participants to solve a standalone expectation-formation problem without see-

ing any signal realization. Specifically, in each round, we set the distribution over states in the

expectation-formation problem to match the participant’s own posterior beliefs reported in the cor-

responding inference problem. For example, if a participant reports Pr(G|s0) = 40% in a round

in Inference, then the pool of firms in the corresponding Expectation Formation round will have 8

(= 40%× 20) good firms and 12 bad ones.22

Figure 3 plots the average deviation from LoIE in expectation-formation problems by the prior

(probability of the Good state) and shows that, on average, the deviation is small in magnitude
21In fact, the inference-forecast gap in Nudge is even larger than in Baseline, according to the regression analysis in

Table A10.
22We implement a similar part in Baseline as well, and the results are similar (see Section C in the Appendix).
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Figure 3: Deviations from LIE in expectation-formation problems

Notes: Standard errors are clustered by participant.

across the board. Moreover, in the third row of Table 8, we classify expectation-formation answers

and calculate their updates.23 Comparing the average update in Inference, Forecast Revision, and

Expectation Formation, we find that mistakes in Expectation Formation can account for only 18%

(= 13.7−10.3
28.9−10.3

) of the inference-forecast gap. Therefore, it is unlikely that the inference-forecast gap

stems from the mistakes participants make in standalone expectation-formation problems.

Taken together, results from Nudge suggest that the inference-forecast gap does not stem from

complexity-induced errors or shortcuts. Therefore, participants do not appear to be following

the infer-then-LoIE procedure when solving forecast-revision problems—correctly or with errors.

Rather, they appear to be using alternative procedures.

4.2 Alternative decision procedures

What alternative decision procedures do participants use in Forecast Revision? To answer this

question, we examine the distributions of posterior beliefs to detect potential modal behaviors.

To illustrate, Figure 4 plots the answer against the realized signal for problems with symmetric

23Similar to before, the update of an expectation-formation answer is defined as the answer minus the (objective)
prior in the corresponding forecast-revision problem if the signal in the latter problem is greater than 50 and the reverse
if the signal is smaller than 50. The classification of an expectation-formation answer is conducted against the rational
benchmark for the corresponding forecast-revision problem.
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Figure 4: Scatterplots of answers against realized signals: subsample with symmetric priors

Notes: This figure plots the updated beliefs against the realized signals. The size of each circle represents the number
of answers that equal the value on the y-axis given the realized signal on the x-axis.

objective priors in Inference and Forecast Revision.24 In Inference, a large fraction of answers

equals the 50-50 prior, suggesting that many participants do not update based on the signal. The

prevalence of such non-updates replicates a stylized fact in previous inference experiments (e.g.,

Coutts, 2019; Graeber, 2021).

For Forecast Revision, non-updates also constitute a mode, shown by a cluster of answers

that equal the 50-50 prior. However, two other modes also emerge. First, many forecast-revision

answers cluster at 100 when s0 > 50 and at 0 when s0 < 50. Participants who give these an-

swers behave as if they were certain about being in the representative state (the state consistent

with the direction of the signal realization) and base their forecasts solely on that state. We term

this overreacting behavior “exact representativeness” because it is consistent with the represen-

tativeness heuristic (Kahneman and Tversky, 1972; Bordalo et al., 2018). This behavior is also

consistent with a type of belief-updating process induced by coarse thinking (Mullainathan et al.,

2008). Specifically, when updating beliefs, people consider only a finite set of categories rather

than the full continuum of categories, and they change categories only when they see enough data

to suggest that an alternative category better fit the data (Mullainathan, 2002).

24Distributions of answers in problems with asymmetric priors display similar patterns. See Appendix B for details.
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Table 9: Modes of behavior in Baseline

Mode Criterion for answer Inference Forecast Revision

Non-update = prior 29.7% 22.6%

Exact representativeness = 100 if s0 > 50, = 0 if s0 < 50 2.6% 20.5%

Naive extrapolation = s0 3.1% 11.8%

No inference-forecast gap

(excluding the other modes)
inference = forecast revision 3.3%

Unclassified 61.6% 44.3%

Observations 2069 2069

Notes: The column “Criterion for answer” shows the criterion for an answer to be classified into a mode. Note that
an answer may be classified into more than one mode. The percentages in the last two columns are the fractions of
answers in each mode in Inference and Forecast Revision. Observations with the signal equal to 50 are excluded.

Second, a smaller yet still significant fraction of forecast-revision answers are anchored at

the face value of the realized signal.25 We term this behavior “naive extrapolation” because it

suggests a particular form of extrapolative beliefs whereby participants directly (and naively) use

the most recent realization as their forecast for the next realization (Barberis et al., 2015, 2018;

Liao et al., 2021).26 This behavior leads to overreaction in the problems with symmetric priors in

our experiment.

In Table 9, we define the behavioral modes and quantify their prevalence in Baseline. Con-

firming the patterns in the scatterplots, non-updates are widespread in both Inference and Forecast

Revision, making up 29.7% and 22.6% of all answers, respectively. The other two behavioral

modes, exact representativeness and naive extrapolation, appear almost exclusively in Forecast

Revision, making up 20.5% and 11.8% of the answers, respectively. Only 3.3% of the answers

meet the no inference-forecast gap condition and are not in any of the three behavioral modes. We

25For each x-axis value—that is the value of the realized signal—we rank answers by the frequency of their occur-
rence. For 19 out of the 53 x-axis values, anchoring on the signal value is among the top three most frequent answers.
In comparison, non-updates and exact representativeness are each among the top two most frequent answers for 36
x-axis values.

26In general, extrapolation refers to people’s tendency to rely heavily on past outcomes to forecast future outcomes.

27



conduct further analysis in Appendix B, where we find robust results when we relax the classifi-

cation criteria for the modes and when we classify the participants rather than the answers.27 At

the participant level, we also document a modest degree of consistency between a participant’s

types in the two parts. For example, many participants are classified as non-updaters in both parts.

We also present results on the modal behaviors in three other treatments, Deterministic Outcome,

Binary Signal, and Nudge, and we find similar patterns.

The difference in modal behaviors is an important driver of the inference-forecast gap. The

gap shrinks by 36% when we exclude observations with at least one answer classified as exact

representativeness or naive extrapolation. In a more “reasonable” subsample in which all forecast-

revision answers fall within [0, 100] and no answers update in the wrong direction, the inference-

forecast gap is in fact reversed when the two modes are excluded, suggesting that the gap is largely

explained by the presence of these modes. More details are reported in Tables A6 and A7 of the

Appendix.

It is worth noting that all three behavioral modes, albeit capturing different answers, share one

common feature: each solely relies on one salient cue in the information environment. Specifically,

answers in non-updates, exact representativeness, and naive extrapolation are based entirely on

the prior, the expected outcome conditional on the representative state, and the realized signal,

respectively. Therefore, instead of properly aggregating all the relevant information, participants

simply focus on a few cues—a defining feature of simplifying heuristics (Kahneman and Frederick,

2002; Shah and Oppenheimer, 2008; Gabaix, 2014).

5 Mechanisms

The use of simplifying heuristics per se is not surprising given the complexity of the belief-

updating tasks. The more surprising observation is the use of different heuristics for solving infer-

27In Table B2, we relax the classification criteria for the modes and find similar qualitative patterns. Table B3
shows similar patterns in a participant–part–level classification exercise, where a participant is classified into a type
for a given part (Inference or Forecast Revision) if more than half of her answers in that part are classified into the
corresponding mode.
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ence and forecast-revision problems, even though the information environment remains the same.

Building on the literature on salience and memory retrieval (Gennaioli and Shleifer, 2010; Kahana,

2012; Bordalo et al., 2021a), we hypothesize that the choice of simplifying heuristics is driven by

the similarity between salient cues in the information environment and the variable elicited by the

belief-updating question. When the similarity increases, participants are more likely to use that

salient cue as an anchor to form their posterior beliefs.28

This similarity-based mechanism offers a unifying explanation for the different heuristics ob-

served in Inference and Forecast Revision, as we summarize in Table 10. For example, in Forecast

Revision, the question asks participants to make forecasts about the stock price growth in the next

period conditional on the realized signal. The elicited variable, expected price growth conditional

on the realized signal, is similar to expected price growth conditional on the representative state:

both are values of the outcome variable and are expectations conditioned on the realized signal in

some way. This similarity may induce participants to use expected price growth conditional on the

representative state as an anchor in making forecasts, resulting in exact representativeness when

participants do not subsequently adjust it. In contrast, in Inference, the question asks about the con-

ditional probability distribution over the states, which appears less similar to expected price growth

(conditional on the representative state). As a result, exact representativeness is rarely observed.

A similar argument can be made to explain the different prevalence of naive extrapolation

in the two types of updating problems. The realized signal and the elicited variable in Forecast

Revision are both measures of the firm’s stock price growth. If participants use the realized signal

as an anchor and do not adjust it, it will result in naive extrapolation in forecasts. In contrast, the

realized signal is less similar to the conditional probability distribution over the states, which is

the Inference variable. As a result, we rarely observe naive extrapolation in Inference problems.

We can also use similarity to explain the prevalence of non-updates in both types of updating

problems: prior beliefs over states and prior outcome expectations are both similar to their posterior

28The memory literature suggests that similarity is a key force in memory recall. In particular, experiences that
share common features with the present cue are more “available” to be recalled and therefore have a greater influence
on decisions (Kahana, 2012; Bordalo et al., 2021a). In our setting, cues are that similar to the question could be more
likely to enter participants’ working memory and therefore affect their beliefs as a salient cue (Afrouzi et al., 2020).
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Table 10: Similarity between belief-updating questions and cues in Baseline

Cue
Inference

Pr(state|realized price)

Forecast Revision

E(price|realized price)
Behavior

E(price|representative state) Not similar Similar Exact representativeness

Realized price Not similar Similar Naive extrapolation

E(price) Similar Non-update

Pr(state) Similar Non-update

counterparts. If participants use the prior as the anchor and do not adjust it, it will result in non-

updates.

This similarity-based mechanism also suggests that when the similarity between cues and the

elicited variable changes, the prevalence of different simplifying heuristics will change as well. Be-

low, we design two treatments which manipulate the similarity between cues and elicited variables

by varying the framing of variables and questions.

5.1 More Similar treatment

In the first similarity treatment called More Similar, we reframe the information environment

and the questions to increase the similarity between the elicited variable in the inference question

and the cues. In this treatment, the signal and the outcome variable are respectively framed as the

firm’s profit in the current month and in the next month. The state variable is framed as the firm’s

profitability, which is defined as the long-run mean of the firm’s monthly profit. The profitability

of a firm is either 0 or 100, and the conditional distributions of a firm’s profits are the same as the

signal distributions in Baseline. The inference question asks about the expected profitability of the

firm after the realization of the current month’s profit. The forecast-revision question asks about

the expected profit in the next month conditional on the same signal.

Table 11 summarizes the similarity between cues and elicited variables in More Similar. The

key difference from Baseline is the increased similarity between E(profitability|realized profit),
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Table 11: Similarity between belief-updating questions and cues in More Similar

Cue
Inference

E(profitability|realized profit)

Forecast Revision

E(profit|realized profit)
Behavior

E(profit|representative state) Similar Similar Exact representativeness

Realized profit Similar Similar Naive extrapolation

E(profit) Similar Non-update

E(profitability) Similar Non-update

the variable elicited in the inference question, and two cues: E(profit|representative state), the

expected profit conditional on the representative state, and the realized profit. This increase in

similarity comes from the fact that the inference variable and the two cues are now all profit-related

measures that are conditioned in some way on the realized signal. According to our hypothesis,

participants should be more likely to anchor their inference answers on these two cues. Therefore,

we predict that exact representativeness and naive extrapolation in Inference will now be more

prevalent than before.

Results from More Similar support this prediction. Table 12 shows that exact representative-

ness and naive extrapolation become modal behaviors in Inference under this treatment. This is in

stark contrast with Baseline where these two behaviors are almost non-existent in the same part.

This treatment also generates a different aggregate pattern from Baseline (see Table 13): the num-

bers of underreacting and overreacting answers are approximately the same in Inference, and the

average inference update is even on the overreaction side. The inference-forecast gap also becomes

smaller.29

29In the Appendix, Table A10 shows in a regression that the inference-forecast gap is still significant. This suggests
that while making the state variable a monetary performance measure and asking about its expectation can increase the
responsiveness to signals in inference problems, these framing changes do not account for the entire inference-forecast
gap.
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Table 12: Modes of behavior in More Similar

Mode Inference Forecast Revision

Non-update 33.3% 31.2%

Exact representativeness 17.9% 19.9%

Naive extrapolation 22.6% 31.4%

No inference-forecast Gap

(excluding the other modes)
3.8%

Unclassified 25.8% 17.4%

Observations 442 442

Notes: The criterion for an answer to be classified into a mode is the same as in Table 9. The percentages are the
fractions of answers in each mode. Observations with the signal equal to 50 are excluded.

Table 13: Aggregate patterns in More Similar

Classification Update

N=60, Obs=442 Underreaction Near-rational Overreaction Mean (s.e.)

Inference 48.6% 4.8% 46.6% 30.1 (4.4)

Forecast Revision 38.0% 2.9% 59.0% 41.6 (5)

Rational 24.4 (.6)

Notes: The three columns under “Classification” present the percentages of answers classified as Underreaction,
Near-rational, and Overreaction. The last column shows average belief movements in the signal direction from the
(objective) priors and their rational benchmark. Observations with the signal equal 50 are excluded. Standard errors
are clustered by participant.

5.2 Less Similar treatment

In a second treatment called Less Similar, we reframe the forecast-revision question so that

the elicited variable appears less similar to two salient cues. The state variable, the signal, and

the inference question are the same as in Baseline. What is different is that in Forecast Revision,

after observing the realized stock price growth, participants are asked about the probability that

the firm’s revenue will go up next month. The direction of the firm’s revenue movement is fully
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Table 14: Similarity between belief-updating questions and cues in Less Similar

Cue
Inference

Pr(state|realized price)

Forecast Revision

Pr(revenue up|realized price)
Behavior

E(price|representative state) Not similar Not similar Exact representativeness

Pr(revenue up|representative state) Not salient Not salient Exact representativeness

Realized price Not similar Not similar Naive extrapolation

E(price) Similar Non-update

Pr(state) Similar Non-update

determined by the state—participants are told that a firm’s revenue always goes up if the state is

Good and it always goes down if the state is Bad.

Table 14 summarizes the similarity between the cues and the elicited variables in Less Simi-

lar. In this treatment, exact representativeness can arise if participants anchor at one of two cues,

both taking the values of 100 or 0: E(price|representative state), the expected stock price growth

conditional on the representative state, and Pr(revenue up|representative state), the probability of

the revenue going up conditional on the representative state. Compared to in Baseline, the first cue

E(price|representative state) is less similar to Pr(revenue up|realized price), the variable elicited

by the forecast-revision question, as the latter is now a probability distribution over revenue move-

ments. For the second cue Pr(revenue up|representative state), although it appears similar to the

elicited variable, its values (100% and 0%) are not explicitly stated in the description of the DGP

and therefore not as salient as the other cues in the information environment.30 Therefore, we pre-

dict that exact representativeness will become less prevalent. Relatedly, the realized signal (stock

price growth in the current month) is no longer similar to the elicited variable (probability of the

revenue going up), and we predict that naive extrapolation will also show up less.

Table 15 shows the modal answers in Less Similar. Consistent with our prediction, exact

representativeness and naive extrapolation are much less prevalent in Forecast Revision compared

with Baseline. This change in modal behaviors supports our hypothesis that when a cue becomes

30Specifically, participants are told that “Good firms’ revenues grow every month. Bad firms’ revenues never grow
in any month.”
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Table 15: Modes of behavior in Less Similar

Mode Inference Forecast Revision

Non-update 31.7% 30.8%

Exact representativeness 9.0% 13.9%

Naive extrapolation 3.9% 3.6%

No inference-forecast Gap

(excluding the other modes)
11.8%

Unclassified 45.2% 41.5%

Observations 467 467

Notes: The criterion for an answer to be classified into a mode is the same as in Table 9. The percentages are the
fractions of answers in each mode. Observations with the signal equal to 50 are excluded.

less similar to the question, people are less likely to use heuristics that rely on this cue. Another

pattern is that the fraction of answers that satisfy the no inference-forecast gap condition increases

from 3.6% in Baseline to 11.8% in Less Similar. One possible explanation for this result is that

the design of Less Similar makes it easier for some participants to recognize the tight conceptual

connection between inference problems and forecast-revision problems. The change in modal

behavior also alters the aggregate pattern of the inference-forecast gap. Table 16 shows that the

inference-forecast gap almost completely vanishes in Less Similar, and we obtain the familiar

underreaction pattern even in the forecast-revision problems.

One may notice that in both the Less Similar treatment and the Deterministic Outcome treat-

ment in Section 3.2, the outcome in Forecast Revision and the signal are two different variables.

However, the forecast-revision answers in these two treatments exhibit very different patterns:

while forecasts underreact in Less Similar, they overreact in Deterministic Outcome. These differ-

ent results can also be reconciled by our hypothesis. Unlike in Less Similar, the expected outcome

conditional on the representative state remains a salient cue in Deterministic Outcome and it is still

similar to the elicited forecast variable (the expected outcome conditional on the realized signal).

As a result, exact representativeness remains a prevalent heuristic in the forecast-revision problems
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Table 16: Aggregate patterns in Less Similar

N=60, Obs=442 Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Inference 64.7% 12.2% 23.1% 14.3 (1.6)

Forecast Revision 62.1% 12.8% 25.1% 13.6 (1.8)

Rational 23.1 (.6)

Notes: The three columns under “Classification” present the percentages of answers classified as Underreaction,
Near-rational, and Overreaction. The last column shows average belief movements in the signal direction from the
(objective) priors and their rational benchmark. Observations with the signal equal 50 are excluded. Standard errors
are clustered by participant.

in Deterministic Outcome, which drives the overreaction.

Taken together, the two similarity treatments suggest that the similarity between cues in the

information environment and the elicited variables in belief-updating questions can offer a unifying

mechanism for underreaction and overreaction as well as the heuristics that facilitate them.

6 Concluding Remarks

In this paper, we show that people react more to new information when revising forecasts about

future outcomes than when making inferences about underlying states, even when the information

environment remains the same. Through a series of subsample analyses and additional treatments,

we show that the gap is robust to order effects, participant characteristics, and alternative data-

generating processes. Therefore, it offers a new perspective to the study of belief-updating biases:

the type of bias not only depends on the information environment, but also hinges on the belief-

updating question itself.

The fact that the inference-forecast gap we document is largely driven by simplifying heuristics

begs more examination of the underlying mechanisms. We show, in two treatments, that similarity

is key to explaining the different heuristics observed in inference problems and forecast-revision

problems. When the similarity between salient cues in the information environment and the vari-
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able elicited by the belief-updating question changes, the use of heuristics changes correspond-

ingly. This result further highlights the role played by salience and memory retrieval in belief

formation (Gennaioli and Shleifer, 2010; Kahana, 2012; Bordalo et al., 2021a).

Our results have implications for three broad settings in which underreaction and overreaction

have been shown to coexist: experiments, survey expectations, and other field settings such as asset

return predictability.31 In the experimental setting, bookbag-and-poker-chip inference experiments

often find underreaction while forecast experiments typically find overreaction. Our results can

immediately speak to this discrepancy: due to different levels of similarity between salient cues in

the information environment and the variable elicited by the belief-updating question, people use

different simplifying heuristics when solving inference and forecast-revision problems.

In the settings of survey expectations and markets, our experiment sheds light on why overreac-

tion, rather than underreaction, is more commonly observed among survey forecasters, especially

at the forecaster level (Bordalo et al., 2020). It is worth noting that our results are relevant to the

setting of survey expectations even when forecasters are professionals. In reality, the DGPs of key

macroeconomic and financial variables are much more complex than the DGPs in our experiment.

Even though professional forecasters are on average more sophisticated than the participants we

study, they may still need to resort to simplifying heuristics as the participants do in our experi-

ment. It is also worth noting that even professional forecasts have subjective inputs (Stark, 2013)

and are highly correlated with the expectations of households (Greenwood and Shleifer, 2014) who

are also important market participants and closer to the participants in our study.32 More broadly,

our experimental evidence suggests that, in order to explain underreaction and overreaction in the

field, it is important to consider the information environment and especially the similarity between

salient cues and the variables people form expectations on.

31We thank Nick Barberis for raising this point.
32Robert Shiller’s United States Stock Market Confidence Indices also show that U.S. institutions and individuals

exhibit highly correlated beliefs over time.
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A Robustness of the Inference-Forecast Gap

In this section, we examine the properties of the inference-forecast gap in various subsamples

of the data.

A.1 A more “reasonable” subsample

We start by examining the inference-forecast gap in a subsample of the Baseline treatment that

satisfies two basic rationality criteria. In this subsample, we only keep observations whose forecast-

revision answer falls within [0, 100], the range bounded by the expected outcome of the Good state

and of the Bad state. Furthermore, we exclude observations in which either the inference update

or the forecast-revision update is negative; these behavior indicate that the participants’ reactions

to signals are in the wrong direction.

Table A1: Aggregate patterns in Baseline: subsample with “reasonable” updates

N=279, Obs.=1345 Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Inference 54.3% 17.9% 27.7% 17.8 (.9)

Forecast Revision 42.7% 9.1% 48.2% 24.3 (1.2)

Rational 23.3 (.4)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors and
their rational benchmark. Observations with the signal equal to 50, forecast-revision answers that are outside [0, 100],
or updates in the wrong direction are excluded. Standard errors are clustered by participant.

Table A1 shows the results in this subsample. Although the average update in Forecast Revision

is close to rational, there is still more overreaction and less underreaction in Forecast Revision than

in Inference. The gap in updates between these two parts is significant, as is shown in a regression

analysis in Column (2) of Table A6.
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A.2 Priors and signals

The inference-forecast gap exists in all the eight problems with different DGPs (see Table A2).

Notably, the eight problems include DGPs with symmetric and asymmetric priors, indicating that

our result persists with and without the potential influence of base-rate neglect.

For the subsample with symmetric (objective) priors, we further examine how the inference-

forecast gap depends on the strength of the signal. We measure signal strength by the Bayesian

update it induces; the more a Bayesian agent moves her belief in response to the signal, the more

diagnostic it is about the underlying state. Table A3 shows the results. Overall, there is a larger

inference-forecast gap when the signal is more diagnostic, but the gap emerges even for the weakest

signals.

Most participants report correct prior beliefs about the states and about the outcome in Inference

Prior and Forecast Prior, but small errors sometimes occur (see Figure C1). To control for the

impact of errors in priors on our result, we repeat the classification exercise for the subsample in

which the reported inference prior and forecast prior are both correct. The pattern in this sample,

shown in Table A4 and in Column (3) of Table A6, is similar: there is more overreaction and less

underreaction in Forecast Revision than in Inference.

A.3 Order between parts

The gap is also robust to different ordering of the five parts. Table A5 compares the gap across

different orders and shows that there is a large and statistically significant gap for all three orders.

Comparing the inference answers under orders 12345 and 12534 with the forecast revision answers

under order 34125, our results also indicate that the gap persists in a between-participant analysis.

A.4 Participant characteristics

Finally, we examine the heterogeneity of the gap across participant characteristics, such as

gender, education, investment experience, familiarity with statistics and economics, and perfor-
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Table A2: Aggregate patterns in Baseline (by problem)

Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Pr(G) = 50% Inference 71.1% 19.8% 9.2% 18.7 (1.2)

σ = 50 Forecast Revision 44.3% 12.1% 43.6% 31.2 (2.4)

(Obs. = 273) Rational 35.9 (.8)

Pr(G) = 50% Inference 68.2% 16.7% 15.1% 17.1 (1.2)

σ = 60 Forecast Revision 48.4% 6.6% 45% 28.5 (2.8)

(Obs. = 258) Rational 31.8 (.8)

Pr(G) = 50% Inference 64.4% 13.6% 22% 15.4 (1.1)

σ = 70 Forecast Revision 40.5% 7.2% 52.3% 29 (2.6)

(Obs. = 264) Rational 26.9 (.8)

Pr(G) = 50% Inference 64.5% 12.8% 22.6% 13.8 (1.2)

σ = 80 Forecast Revision 40.8% 4.5% 54.7% 33.4 (3.2)

(Obs. = 265) Rational 24.8 (.8)

Pr(G) = 50% Inference 50% 18.6% 31.4% 16.3 (1.1)

σ = 90 Forecast Revision 37.1% 4.2% 58.7% 35.9 (3.2)

(Obs. = 264) Rational 21.6 (.7)

Pr(G) = 50% Inference 51.7% 15.6% 32.7% 12.9 (1.2)

σ = 100 Forecast Revision 32.3% 8% 59.7% 38.9 (3.3)

(Obs. = 263) Rational 19.5 (.7)

Pr(G) = 80% Inference 55.3% 13.1% 31.6% 11.4 (1.5)

σ = 100 Forecast Revision 39.8% 3.3% 57% 30.1 (4)

(Obs. = 244) Rational 12.6 (.6)

Pr(G) = 20% Inference 58% 11.3% 30.7% 10.1 (1.6)

σ = 100 Forecast Revision 37.8% 6.3% 55.9% 27.9 (3.6)

(Obs. = 238) Rational 12.2 (.6)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors and
their rational benchmark. Observations with the signal equal to 50 are excluded. Standard errors are clustered by
participant.
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Table A3: Aggregate patterns in Baseline (by signal strength)

Signal Strength Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Weakest Inference 47.7% 23% 29.3% 4.5 (.8)

(Obs. = 239) Forecast Revision 48.1% 11.7% 40.2% 10.3 (1.5)

Rational 6.5 (.2)

Weak Inference 59.2% 13.6% 27.2% 9.7 (1)

(Obs. = 309) Forecast Revision 44.3% 5.2% 50.5% 19.1 (2.1)

Rational 15.9 (.2)

Medium Inference 63.8% 10.4% 25.8% 15.1 (1.1)

(Obs. = 279) Forecast Revision 37.6% 5% 57.3% 33.3 (2.7)

Rational 25.1 (.1)

Strong Inference 64.9% 12.2% 23% 20.4 (1.4)

(Obs. = 296) Forecast Revision 35.1% 4.1% 60.8% 48.8 (4.1)

Rational 34.4 (.2)

Strongest Inference 64% 25.3% 10.7% 25.6 (1.4)

(Obs. = 356) Forecast Revision 43.3% 11.2% 45.5% 39.8 (3.5)

Rational 44.7 (.2)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors and
their rational benchmark. Observations with the signal equal to 50 or asymmetric (objective) priors are excluded. The
five categories for signal strength correspond to five intervals of rational updates: [0, 10), [10, 20), [20, 30), [30, 40),
and [40, 50]. Standard errors are clustered by participant.
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Table A4: Aggregate patterns in Baseline: subsample with correct priors

N=279, Obs.=1496 Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Inference 57.8% 17.9% 24.3% 15.6 (.8)

Forecast Revision 43.8% 7.7% 48.5% 27.4 (2.2)

Rational 24 (.3)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors and
their rational benchmark. Observations with the signal equal to 50 or with incorrect priors are excluded. Standard
errors are clustered by participant.

Table A5: Aggregate patterns in Baseline (by order between parts)

Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Order: 12345 Inference 55.3% 17.7% 27% 15.8 (1.1)

(N = 102) Forecast Revision 37.6% 7.3% 55% 34 (2.8)

(Obs. = 763) Rational 22.9 (.4)

Order: 12534 Inference 59.9% 15.7% 24.3% 14.7 (1.1)

(N = 103) Forecast Revision 40.9% 5.4% 53.7% 32.4 (3.5)

(Obs. = 756) Rational 23.3 (.5)

Order: 34125 Inference 68.5% 11.3% 20.2% 12.6 (1.5)

(N = 74) Forecast Revision 42.7% 7.1% 50.2% 28.4 (4.3)

(Obs. = 550) Rational 24.3 (.5)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors and
their rational benchmark. Observations with the signal equal to 50 are excluded. Standard errors are clustered by
participant.
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mance in the comprehension questions. Table A8 show regression results by interacting variables

for these characteristics with a Forecast Revision dummy. One notable result is that participants

who pass all comprehension checks in one pass exhibit less underreaction in Inference and less

overreaction in Forecast Revision, which leads to an inference-forecast gap that is only half as that

of the other participants. In addition, participants who report being familiar with economics or

finance also exhibit a smaller gap. These results suggest that better comprehension of the subject

matter is associated with a smaller inference-forecast gap.

A.5 Framing

In different versions of the Baseline treatment, we show that the gap is robust to several changes

in the framing of the signal and forecast outcome. First, we frame the signal as the firm’s revenue

growth (rather than stock price growth); we find a quantitatively smaller but still significant gap

with this alternative framing. Second, in the three forecast parts, we ask participants to make

predictions about the previous signal instead of the next signal; we find an inference-forecast gap

that is quantitatively smaller but still significant at the 5% level. Table A9 show these results in

regressions.

A.6 Regression analyses
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Table A6: The inference-forecast gap in Baseline under various sample restrictions

Update

Full sample “Reasonable” updates Correct priors

(1) (2) (3)

Forecast Revision 17.364∗∗∗ 6.512∗∗∗ 11.751∗∗∗

(2.198) (1.219) (2.448)

Rational Update 1.040∗∗∗ 0.587∗∗∗ 0.951∗∗∗

(0.064) (0.038) (0.066)

Problem FE Yes Yes Yes

Subject FE Yes Yes Yes

Observations 4138 2690 2992

R2 0.333 0.469 0.357

Notes: *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors
are clustered by participant. This table presents results for our Baseline treatment. Each observation corresponds
either to an inference answer or a forecast-revision answer. We define the dependent variable, Update, as the answer
minus the (objective) prior if the signal is greater than 50, and the opposite if it is smaller than 50. Rational Update is
the update prescribed by Bayes’ rule (and the Law of Iterated Expectations). Observations with the signal equal to 50
are excluded. In Column (2), based on the full sample, we further drop observations with the forecast-revision answer
outside the [0, 100] range and observations with at least one update that is in the opposite direction as the signal. In
Column (3), based on the full sample, we further drop observations with an incorrect answer for either Inference Prior
or Forecast Prior.
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Table A7: The inference-forecast gap in Baseline excluding modal behaviors

Update

Full sample &

excluding two modes

“Reasonable” updates &

excluding two modes

(1) (2)

Forecast Revision 11.049∗∗∗ -2.749∗∗

(2.844) (1.123)

Rational Update 1.002∗∗∗ 0.440∗∗∗

(0.088) (0.049)

Problem FE Yes Yes

Subject FE Yes Yes

Observations 2738 1632

R2 0.342 0.503

Notes: *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors
are clustered by participant. This table presents results for our Baseline treatment excluding observations falling into
two types of modal behaviors: exact representativeness and naive extrapolation. Each observation corresponds either
to an inference answer or a forecast-revision answer. We define the dependent variable, Update, as the answer minus
the (objective) prior if the signal is greater than 50, and the opposite if it is smaller than 50. Rational Update is the
update prescribed by Bayes’ rule (and the Law of Iterated Expectation). Observations with the signal equal to 50
are excluded. In Column (1), based on the full sample, we exclude observations in which the inference answer or
the forecast revision answer is classified into one of two modes: exact representativeness and naive extrapolation. In
Column (2), we further drop observations with the forecast revision answer outside the [0, 100] range and observations
with at least one update that is in the opposite direction as the signal.
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Table A8: Heterogeneity of the inference-forecast gap across demographics

Update

Forecast Revision 29.612∗∗∗

(3.715)

Male × Forecast Revision -4.993

(4.292)

College × Forecast Revision -2.075

(4.279)

Investor × Forecast Revision -3.965

(4.340)

Familiar with Stats × Forecast Revision -6.406

(4.775)

Familiar with Econ × Forecast Revision -4.765

(5.115)

High Comprehension × Forecast Revision -8.614∗∗

(3.788)

Male 0.089

(1.379)

College -1.325

(1.455)

Investor 5.014∗∗∗

(1.595)

Familiar with Stats 2.677∗

(1.553)

Familiar with Econ -1.473

(1.678)

High Comprehension 4.409∗∗∗

(1.509)

Rational Update 1.016∗∗∗

(0.063)

Problem FE Yes

Observations 4138

R2 0.162

Notes: *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors are clustered by participant.
This table presents results for our Baseline treatment. Each observation corresponds either to an inference answer or a forecast-revision answer. We
define the dependent variable, Update, as the answer minus the (objective) prior if the signal is greater than 50, and the opposite if it is smaller than
50. Rational Update is the update prescribed by the Bayes’ rule (and the Law of Iterated Expectation). Observations with the signal equal to 50 are
excluded. We define Male as 1 if the participant indicates their gender as Male; the base group is thus Female or Others. We define College as 1 if
the participant has a bachelor’s or postgraduate degree. We define Investor as 1 if the participant indicates that they have investments in stocks or
mutual funds. We define Familiar with Stats as 1 if the participant indicates that they are familiar with probability theory and statistics. We define
Familiar with Econ as 1 if the participant indicates that they are familiar with economics or finance. We define High Comprehension as 1 if the
participant correctly answers all the comprehension questions in one pass.
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Table A9: Heterogeneity of the inference-forecast gap across alternative framing

Update

Stock price vs. revenue Next vs. last signal

(1) (2)

Stock Price × Forecast Revision 19.798∗∗∗

(2.857)

Revenue × Forecast Revision 14.984∗∗∗

(3.120)

Revenue 1.729

(1.410)

Next × Forecast Revision 17.364∗∗∗

(2.120)

Last × Forecast Revision 14.305∗∗∗

(1.977)

Last 0.227

(1.112)

Rational Update 1.021∗∗∗ 0.979∗∗∗

(0.064) (0.047)

Problem FE Yes Yes

Observations 4138 7392

R2 0.147 0.141

Notes: *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors
are clustered by participant. This table presents results for our Baseline treatment. Each observation corresponds
either to an inference answer or a forecast-revision answer. We define the dependent variable, Update, as the answer
minus the (objective) prior if the signal is greater than 50, and the opposite if it is smaller than 50. Rational Update
is the update prescribed by the Bayes’ rule (and the Law of Iterated Expectation). Observations with the signal equal
to 50 are excluded. In the first two columns, we explore heterogeneity of the effects depending on whether we frame
the signal as stock price growth or revenue growth. In the last two columns, we explore heterogeneity of the effects
depending on whether we ask about the expectation of the next signal or the last signal in Forecast Revision.
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Table A10: The inference-forecast gap across different treatments

Update

Baseline × Forecast Revision 17.364∗∗∗

(2.121)

Deterministic Outcome × Forecast Revision 19.198∗∗∗

(3.304)

Nudge × Forecast Revision 18.640∗∗∗

(2.962)

More Similar × Forecast Revision 11.559∗∗∗

(3.526)

Less Similar × Forecast Revision -0.665

(1.642)

Deterministic Outcome -1.167

(1.555)

Nudge -4.218∗∗∗

(1.552)

More Similar 14.143∗∗∗

(4.109)

Less Similar -0.564

(1.783)

Rational Update 0.942∗∗∗

(0.051)

Problem FE Yes

Observations 8882

R2 0.161

Notes: *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors
are clustered by participant. In this table, we pool the data from our Baseline treatment, Deterministic Outcome
treatment, Nudge treatment, More Similar treatment, and Less Similar treatment. Each observation corresponds either
to an inference answer or a forecast-revision answer. We define the dependent variable, Update, as the answer minus
the (objective) prior if the signal is greater than 50, and the opposite if it is smaller than 50. Rational Update is the
update prescribed by the Bayes’ rule (and the Law of Iterated Expectation). Observations with the signal equal to 50
are excluded.
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Table A11: The inference-forecast gap in Binary Signal treatment

Update

Forecast Revision 3.632∗

(1.992)

Rational Update 0.532∗∗∗

(0.074)

Problem FE Yes

Subject FE Yes

Observations 2240

R2 0.204

Notes: *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors
are clustered by participnt. This table presents results for the Binary Signal treatment. Each observation corresponds
either to an inference answer or a forecast-revision answer. We define the dependent variable, Update, as the answer
minus the (objective) prior if the signal is up, and the opposite if it is down. The updates of forecast-revision answers
are normalized by Pr(up|G)−Pr(up|B) so that they are comparable to the inference updates. Rational Update is the
update prescribed by the Bayes’ rule.
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B Additional Analyses on Modes of Behavior

In this section, we provide additional analyses of the modes of behavior in Inference and Fore-

cast Revision in the Baseline treatment.

B.1 Problems with asymmetric priors

Table B1 quantifies the prevalence of the modal behaviors in problems with asymmetric priors.

The overall pattern is similar to that for problems with symmetric priors: non-updates are prevalent

in both Inference and Forecast Revision, while exact representativeness and naive extrapolation

show up almost exclusively in the latter.

Table B1: Modes of behavior in Baseline: subsample with asymmetric priors

Mode Criterion for answer Inference Forecast Revision

Non-update = prior 31.5% 20.1%

Exact Representativeness = 100 if s0 > 50, = 0 if s0 < 50 2.9% 16.2%

Naive Extrapolation = s0 3.1% 9.5%

No Inference-Forecast Gap

(excluding the other modes)
inference = forecast revision 2.5%

Unclassified 61.2% 53.3%

Observations 482 482

Notes: The column titled “Criterion for answer” shows the criterion for an answer to be classified into a given mode.
Note that an answer may be classified into more than one mode. The percentages in the last two columns are the
fractions of answers in each mode in Inference and Forecast Revision in the Baseline treatment. Observations with the
signal equal to 50 are excluded.

In forecast-revision problems with symmetric priors, an alternative interpretation of answers

classified as exact representativeness is that participants form expectations solely based on the

ex-post more likely state. This interpretation is distinguishable from the representativeness inter-

pretation in problems with asymmetric priors. For example, consider a forecast-revision problem

in which the prior belief Pr(G) is 20% and the realized signal s0 is only slightly above 50. Because
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the signal is good news, the representative state is G. However, because the signal contradicts the

prior and is relatively weak, the ex-post more likely state (judged from the participant’s own in-

ference) could still be B. Therefore, this problem allows us to differentiate whether participants,

when revising forecasts, are more likely to focus exclusively on the representative state or the

ex-post more likely state.

We focus on a subsample of observations in which the objective prior is asymmetric, the re-

ported inference prior and forecast prior are both correct, the signal direction is opposite to the

prior direction, and both the inference answer and its rational benchmark are between the prior and

50. Within this subsample, five forecast-revision answers equal the expected outcome of the rep-

resentative state, whereas none equal the expected outcome of the ex-post more likely state. While

the sample size is too small to draw any definitive conclusion, the result nevertheless suggests that

participants are more likely to focus on the representative state when they revise forecasts.

B.2 Relaxing criteria for classification

Table B2 shows the prevalence of behavioral modes when we relax the classification criteria

to allow for errors within [−4, 4]. Compared to the results with strict classification criteria (Table

9), the fraction of answers in each mode increases only slightly, and the overall qualitative pattern

remains the same.

B.3 Participant–part–level classification

To study the consistency of behavior within each participant, we conduct a classification ex-

ercise at the participant-part level. Specifically, a participant is classified into a type in a part

(Inference or Forecast Revision) if more than half of her answers in that part are classified into the

corresponding mode. Table B3 shows the joint distribution of types across the two parts. The num-

bers of participants classified in the two parts are 74 and 112, and the marginal distribution of types

in each part resembles that of the answer-level classification. On the relationship between types in

the two parts, many participants are non-updaters in both parts. Meanwhile, participants classified
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as exact representativeness and naive extrapolation in Forecast Revision are mostly unclassified in

Inference.

Table B2: Modes of behavior in Baseline with relaxed criteria for mode classification

Mode Criterion for answer Inference Forecast Revision

Non-update ≈ prior 32% 23.5%

Exact Representativeness ≈ 100 if s0 > 50, ≈ 0 if s0 < 50 6% 21.3%

Naive Extrapolation ≈ s0 3.8% 12.1%

No Inference-Forecast Gap

(excluding the other modes)
inference ≈ forecast revision 3.9%

Unclassified 54.8% 41.9%

Observations 2069 2069

Notes: The column titled “Criterion for answer” shows the criterion for an answer to be classified into a given mode.
The ≈ sign means that the criterion allows for errors within [−4, 4]. Note that an answer may be classified into more
than one mode. The percentages in the last two columns are the fractions of answers in each mode in Inference and
Forecast Revision in the Baseline treatment. Observations with the signal equal to 50 are excluded.

Table B3: Joint distribution of Inference types and Forecast Revision types in Baseline

Forecast Revision type

Inference type Non-update
Exact Repre-
sentativeness

Naive
Extrapolation

No Inference-
Forecast

Gap
Unclassified Total

Non-update 24 1 1 0 24 50

Exact Representativeness 3 2 0 0 33 38

Naive Extrapolation 9 0 0 0 13 22

No Inference-Forecast Gap 0 0 0 2 0 2

Unclassified 31 0 1 0 136 168

Total 67 3 2 2 206 279

Notes: This table shows the number of participants that are classified into each type in Inference and Forecast Revision
in the Baseline treatment. Note that a participant may be classified into more than one type in a part.

B.4 Modes of behavior in other treatments

Table B4 presents results on the modal behaviors in Deterministic Outcome. The distribution of

modes is similar to Baseline. Non-updates are prevalent in both Inference and Forecast Revision,
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Table B4: Modes of behavior in Deterministic Outcome

Mode Criterion for answer Inference Forecast Revision

Non-update = prior 35.7% 23.3%

Exact Representativeness = 100 if s0 > 50, = 0 if s0 < 50 5.3% 20.6%

Naive Extrapolation = s0 3.9% 13.5%

No Inference-Forecast Gap

(excluding the other modes)
inference = forecast revision 4.8%

Unclassified 51.3% 41%

Observations 748 748

Notes: The percentages in the last two columns are the fractions of answers in each mode in Inference and Forecast
Revision in the Deterministic Outcome treatment. Observations with the signal equal to 50 are excluded.

while exact representativeness and naive extrapolation are only prevalent in the latter.

Table B5 shows that the distribution of modals behaviors in Binary Signal are also similar to

those in Baseline. Non-updates are prevalent in both Inference and Forecast Revision. In Forecast

Revision, 17.4% of the answers equal the outcome probability of the representative state, which

constitutes the behavioral mode of exact representativeness. Very few answers are classified as

exact representativeness in Inference.

Table B6 presents the distribution of modal behaviors in Nudge. The fraction of non-updates

in Inference is 53.4%, a notable increase from the 29.7% in Baseline. However, the fraction of

non-updates in Forecast Revision remains almost the same as in Baseline, as does the fraction of

answers classified as exact representativeness and naive extrapolation. In addition, the fraction of

answers that satisfy the no inference-forecast gap condition increases to 9.2% from the 3.3% in

Baseline, suggesting that Nudge induces a greater tendency to give internally consistent answers

to the two types of updating questions.
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Table B5: Modes of behavior in Binary Signal

Part Mode Criterion for answer % of answers

Both
No Inference-Forecast Gap

(excluding the other modes)
Equation (7) 2.1%

Inference

Non-update Pr(θ|s0) = Pr(θ) 27.1%

Exact Representativeness
Pr(G|s0) = 100% if s0 = up

Pr(G|s0) = 0 if s0 = down
3.1%

Unclassified 67.6%

Forecast

Revision

Non-update Pr(s1|s0) = Pr(s1) 19.8%

Exact Representativeness
Pr(s1|s0) = Pr(s1|G) if s0 = up

Pr(s1|s0) = Pr(s1|B) if s0 = down
17.4%

Unclassified 60.6%

Observations 1120

Notes: The percentages in the last column are the fractions of answers in each mode for each part in the Binary Signal
treatment.

Table B6: Modes of behavior in Nudge

Mode Criterion for answer Inference Forecast Revision

Non-update = prior 53.4% 22%

Exact Representativeness = 100 if s0 > 50, = 0 if s0 < 50 2.7% 17.9%

Naive Extrapolation = s0 3.6% 9.1%

No Inference-Forecast Gap

(excluding the other modes)
inference = forecast revision 9.2%

Unclassified 32.6% 44.2%

Observations 715 715

Notes: The percentages in the last two columns are the fractions of answers in each mode in Inference and Forecast
Revision in the Nudge treatment. Observations with the signal equal to 50 are excluded.
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C Beliefs without realized signal

In this section, we present results from the parts of our experiment in which participants do not

see any realized signal: Inference Prior, Forecast Prior, and Expectation Formation. Figure C1

shows the distribution of answers in Inference Prior and Forecast Prior in the Baseline treatment.

The majority of answers are correct, with the fraction of correct answers larger under symmetric

priors. Participants are more likely to report incorrect priors in Forecast Prior than in Inference

Prior. There are no systematic patterns in the distribution of errors.

Like Forecast Prior, the Expectation Formation part asks about participants’ expectations of

the outcome without seeing any realized signal. The unique feature of this part, however, is that the

distribution over states in an expectation-formation problem for each participant is set to match the

posterior over states reported by this participant in the corresponding inference problem. Figure

C2 shows how much expectation-formation answers deviate from the correct answers prescribed

by the LoIE in the Baseline treatment. The errors are generally small and not large enough to

account for much of the inference-forecast gap.
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Figure C1: Distributions of answers in Inference Prior and Forecast Prior in Baseline
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