
Motivated Mislearning:

The Case of Correlation Neglect

Lukas Boltea Tony Q. Fana,∗

aDepartment of Economics, Stanford University, 579 Jane Stanford Way, Stanford, CA 94305, USA

September 19, 2022

Abstract

We design an experiment to study the role of motivated reasoning in correlation neglect. Partici-
pants receive potentially redundant signals about an ego-relevant state—their IQ test performance. We
elicit their belief that the signals came from the same source (and thus contain redundant information).
Participants generally underappreciate the extent to which identical signals are more likely to come
from the same source, but the bias is significantly stronger for good (ego-favorable) signals than for
bad (ego-unfavorable) signals. This asymmetric effect disappears in a control treatment where the state
is ego-irrelevant. These results suggest that individuals may neglect the correlation between desirable
signals to sustain motivated beliefs. However, the estimated effect is not quantitatively large enough to
generate significant asymmetric updating about own IQ test performance.
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1 Introduction

Correlated or redundant information is prevalent in the modern information economy. For instance,

marketers deploy similar advertising campaigns across multiple channels; different media outlets repeat

the same news generated from the same underlying sources; and individuals often self-select into clusters

of social networks with similar information and beliefs. Existing research suggests that individuals may

neglect such correlation in information sources and mislearn from correlated information because of inher-

ent cognitive limitations and the complexity of the learning problem (Fedyk and Hodson, 2019; Enke and

Zimmermann, 2019; Hossain and Okui, 2020).

In this paper, we propose a different perspective and study whether motivated reasoning could affect

the degree of correlation neglect. A large literature has documented that individuals could be motivated to

hold certain beliefs across different domains, as such beliefs may provide various benefits (Bénabou, 2015;

Zimmermann et al., 2019): For example, favorable beliefs about one’s own ability may provide ego utility

(Köszegi, 2006), incentivize individuals to overcome self-control issues and make more efforts (Bénabou

and Tirole, 2002; Chen and Schildberg-Hörisch, 2019), or help them to better persuade others (Schward-

mann and Van der Weele, 2019). Beliefs aligned with one’s political ideology may help to convey one’s

political identity (Bénabou and Tirole, 2011; Kahan, 2015), reduce cognitive dissonance (Akerlof and Dick-

ens, 1982), and justify certain political actions. Since correlated information potentially provides individuals

with additional flexibility to reach motivated beliefs without conscious self-deception, we hypothesize that

motivated reasoning may cause or exacerbate correlation neglect.

To test this hypothesis, we conduct a controlled online experiment where individuals receive potentially

redundant signals about an unknown state and make inferences about both signal redundancy and the state.

To isolate the role of motivated reasoning, we design a Main treatment where the state is ego-relevant and

thus motivated reasoning could be evoked, and a Control treatment where the state is ego-irrelevant and thus

motivated reasoning is plausibly absent.

In our Main treatment, participants first complete a short IQ test, which induces a binary ego-relevant

state: whether they scored in the top half of all our test takers. We elicit participants’ belief over the state

after they take the test. To study learning from correlated information, participants then receive signals about

the state as follows. For each participant, we first generate two independent binary signals about the state.

The participant is then matched with two information sources, each showing her one signal; in particular,
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they show her either the same underlying signal or the two independent signals, each with 50% probability.

Given the realization of the observed signal(s), we ask the participant to guess whether the two sources

show her the same underlying signal and indicate how likely she thinks this is the case. Finally, we elicit her

posterior belief about the binary state.

If the two sources show two signals of different values, then these are surely the two independent signals;

thus, our main interest lies in how participants update about signal redundancy if the two observed signals

are of identical values. Bayesian inference implies that observing two signals with the same value always

increases the likelihood that they are the same underlying signal, and the extent of the increase depends on

one’s prior belief about the binary state. However, motivated reasoning may lead individuals to underesti-

mate the likelihood that the signals are redundant when they are ego-favorable compared to when they are

ego-unfavorable.

Indeed, we find that participants update their beliefs about signal redundancy asymmetrically (and in-

sufficiently relative to the Bayesian benchmark): participants who see two identical ego-favorable signals

believe that they are about 4 percentage points more likely to be two independent signals compared with

those who see two identical ego-unfavorable signals, consistent with motivated reasoning driving partici-

pants’ inferences about signal redundancy. The effect is moderate in magnitude, statistically significant, and

cannot be accounted for by Bayesian updating. The estimated effect is not quantitatively large enough to

generate significant asymmetric updating about own performance in the IQ test. Nonetheless, this may be a

result of the remarkable simplicity of our information structure, which leads to power issues.

To further establish that our results are not driven by confounding factors, we design a Control treat-

ment where the binary state is ego-irrelevant and present participants with signals generated from the same

information structure as above. We observe no asymmetric updating about signal redundancy in the Con-

trol treatment, and we can reject the null hypothesis that there are equal degrees of asymmetric updating in

the Main and Control treatments. This strengthens our interpretation of the effect in the Main treatment as

driven by motivated reasoning.

This paper relates to a burgeoning literature in behavioral and experimental economics that has docu-

mented systematic patterns of mislearning from complex information structures, such as redundancy neglect

in social learning settings (Kübler and Weizsäcker, 2004; Eyster et al., 2015), correlation neglect in private

settings (Eyster and Weizsacker, 2016; Enke and Zimmermann, 2019; Hossain and Okui, 2020; Rees-Jones

et al., 2020), selection neglect (Esponda and Vespa, 2018; Barron et al., 2019; Enke, 2020), and feature
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neglect (Graeber, 2020). While the prior literature has shown how cognitive limitations and complexity can

lead to these “mistakes,” we contribute by documenting motivated reasoning as an additional explanation

for them. This (i) broadens the scope for when we expect them to happen, and (ii) adds nuance to their

welfare interpretations given the potential role of beliefs as a source of utility (Caplin and Leahy, 2001;

Brunnermeier and Parker, 2005). We thus join a nascent literature showing how “motivated” agents can

make systematic decision errors of the kind typically attributed to cognitive limitations (Exley and Kessler,

2019; Wang et al., 2021).

Our paper also contributes to the literature on motivated reasoning and motivated beliefs in psychology

and economics (Kunda, 1990; Bénabou and Tirole, 2016; Epley and Gilovich, 2016), which has found

applications in overconfidence (Bénabou and Tirole, 2002), moral behavior (Babcock et al., 1995), and

belief polarization (Kahan, 2012). On the “supply” side of motivated beliefs, there is now evidence for

motivated information demand and avoidance (Oster et al., 2013; Ganguly and Tasoff, 2016; Golman et al.,

2017; Castagnetti and Schmacker, 2022), asymmetric updating to noisy signals1 (Eil and Rao, 2011; Ertac,

2011; Sharot et al., 2011; Drobner and Goerg, 2021; Drobner, 2022; Möbius et al., 2022), motivated memory

management (Chew et al., 2018; Zimmermann et al., 2019), motivated recognition (Engelmann et al., 2019),

motivated evaluation of information veracity (Taber and Lodge, 2006; Thaler, 2020, 2021b), and the social

exchange of motivated beliefs (Oprea and Yuksel, 2022). We document a novel mechanism that could

contribute to motivated beliefs and overconfidence: asymmetric inference about information redundancy.

In sum, the literature has provided abundant evidence for both mislearning from complex information

structures (e.g., correlation neglect) and motivated reasoning. Our novel contribution is to provide a proof

of concept for how motivated reasoning can generate or exacerbate correlation neglect and potentially other

forms of mislearning.

The rest of the paper proceeds as follows. Section 2 outlines our experimental design. Section 3 presents

results from the experiment, separately by the Main and Control treatments. Section 4 discusses the impli-

cations of our results and concludes.
1The evidence on asymmetric updating has been mixed in the motivated beliefs literature, with some papers finding significant

asymmetric updating while others finding null effects; see Benjamin (2019) for a detailed discussion. Drobner (2022) shows that the
anticipation of uncertainty resolution (or the lack thereof) is a key moderating factor for these mixed results: asymmetric updating
is stronger when participants do not expect the resolution of uncertainty about the state at the end of the experiment. Since in our
experiment such expectations are “ambiguous,” one could argue that our results provide a lower bound for the role of motivated
reasoning in interpreting correlated information and for the degree of asymmetric updating.
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2 Experimental Design

2.1 Environment and Treatments

Our study of the role of motivated reasoning in correlation neglect requires an environment with the

following features: (i) a treatment where motivated reasoning is prone to emerge, such as when people form

ego-relevant beliefs, and a control treatment where motivated reasoning is absent; (ii) researchers’ control

over signals and their correlation, as well as participants’ knowledge of the signal-generating process; and

(iii) incentivized belief elicitation. A laboratory experiment allows us to create such an environment.

In our main treatment (henceforth referred to as Main), participants first take an IQ test which defines

an ego-relevant state (test stage) and then receive possibly correlated (redundant) information about the

state (information stage). In the information stage, we elicit participants’ beliefs about the state both before

and after they receive the information, as well as their beliefs about the redundancy of the information,

with incentive-compatible mechanisms. At the end of the experiment, we randomly choose one of the two

stages to determine a participant’s bonus payment. Our main interest lies in how participants assess the

redundancy of the information depending on whether it is ego-favorable or ego-unfavorable. In order to

more convincingly attribute any effect we find to motivated reasoning, we also design a control treatment

(referred to as Control) where the state is ego-irrelevant.

Figure 1 provides a diagrammatic illustration of the different stages of the experiment, which we now

describe in greater detail.

2.1.1 Test stage

In both Main and Control, participants first complete an abridged IQ test. Participants are told about

the relevance of the IQ test in measuring reasoning ability and fluid intelligence. The test consists of 20

Raven’s Progressive Matrices problems that participants have 5 minutes to complete.2 The final score of

a participant is the number of correct answers minus the number of incorrect answers. If the test stage is

chosen to determine a participant’s bonus, she receives 10 cents for each point she scores, but she will not

lose any money if her score is negative; this leads to a bonus between $0 and $2. After participants complete
2Each of the 20 Raven’s Progressive Matrices consists of a visual pattern of eight symbols and a missing piece. Participants

are given eight options to complete the pattern. An example problem can be found in the experimental instructions given in
Section A.2 of the online appendix. We impose a time limit of 5 minutes both to reduce the duration of the experiment and to
increase the difficulty of the test.
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Figure 1: Experiment Stages

the IQ test, they answer the following question: “How important is it to you to be able to perform well

in the IQ test?” on a scale from 0 to 10. This unincentivized measure is intended to be a proxy for the

ego-relevance of the test for the participants.

2.1.2 Information stage

The information stage proceeds in several distinct steps, which we describe in order.

Prior elicitation. In both treatments, immediately after the test stage, we elicit each participant’s beliefs

about a binary ego-relevant state about her test performance: whether she scored in the top half of all

participants (the TOP state) or the bottom half (the BOTTOM state).3 In our experiment, we elicit all

probabilistic beliefs over binary states using the crossover mechanism (Allen, 1987; Grether, 1992; Karni,

2009). For example, we ask each participant the probability of the TOP state according to her subjective

beliefs, denoted by µ. We then draw a random number ν ∼ U [0, 1]. If ν > µ, the participant receives a bonus

of $2 with probability ν; if ν < µ, the participant receives a bonus of $2 if and only if she actually scored in

the top half (i.e., if the TOP state is realized).4 We explain to participants that they maximize their chances

of getting a bonus by reporting their true beliefs, but only reveal details about the crossover mechanism if

participants click on a button called “Payment Details”.5 We also inform participants truthfully that we will

elicit beliefs several times but implement only one of them at random for payment if the information stage

is chosen to determine the bonus payment.

Treatment assignment. After eliciting the priors, we assign each participant to either the Main treatment
3We use a binary state so that beliefs over the state can be summarized by a scalar probability, making them easier to elicit and

analyze.
4This elicitation mechanism is truth-inducing under two mild assumptions: (i) Participants’ preferences satisfy the monotonicity

axiom in the sense that among lotteries that pay $2 with probability q and $0 with probability (1−q), they strictly prefer those with
higher q; (ii) Participants’ marginal utility of earning $2 is independent of whether they scored in the top half (Möbius et al., 2022).

5Danz et al. (2022) shows that informing experimental participants of the incentive compatibility of the belief elicitation mech-
anism without providing precise quantitative information about the mechanism can lead to higher rates of truthful reporting. See
Section A.2 of the online appendix for our complete experimental instructions.
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or the Control treatment. Participants in Main will receive potentially correlated information about the ego-

relevant state. For participants in Control, we induce a neutral ego-irrelevant state designed to be roughly

comparable to the ego-relevant state (explained in detail below), and provide them with potentially correlated

information about the ego-irrelevant state. Participants only learn about the ego-irrelevant state and the

information structure after the prior elicitation, which minimizes the concern that they may distort their

reports of their prior beliefs.

To make the priors approximately comparable across the two treatments, we define the priors over the

ego-irrelevant state in Control using the following procedure: For a particular participant in Control, let µ

denote her prior belief of having scored in the top half in the IQ test. For this participant, we define the

ego-irrelevant state as a binary variable that takes the value of TOP with probability µ and BOTTOM with

probability (1 − µ), rounded to the nearest 5%. Specifically, we frame the ego-irrelevant state as a random

draw from 20 balls consisting of
[µ
5

]
TOP balls (balls with the word “TOP” written on them) and (20−

[µ
5

]
)

BOTTOM balls (balls with the word “BOTTOM” written on them).6 We then draw the actual realization of

the ego-irrelevant state based on these probabilities. The participant knows the prior probabilities but not the

realization of the state. One concern is that participants in Control may realize the relationship between the

ego-irrelevant state and the ego-relevant state given the similar probabilities, which may lead to motivated

reasoning even for the ego-irrelevant state and diminish the purpose of Control. However, we note that this

should only reduce the differences in behavior between Main and Control, going against our hypothesis

outlined in Section 2.2.

Provision of potentially correlated information. We next provide each participant with information about

the state (ego-relevant in Main and ego-irrelevant in Control). To study correlation neglect, we design an

information structure with potentially correlated information, which is used in both Main and Control. We

then elicit both participants’ beliefs about the redundancy of the information and their posterior beliefs about

the state.7

Figure 2 illustrates the information structure we use, which is the simplest one that features correlation

or redundancy. We first generate two independent “reports” (framed as “the blue report” and “the green
6See Section A.2.2 of the online appendix for detailed instructions. To avoid a degenerate distribution, we round very low priors

to 5% instead of 0% and very high priors to 95% instead of 100%.
7We do not explicitly inform participants that the true state will not be revealed at the end of the experiment. Drobner (2022)

argues that in this case, participants’ expectations about the resolution of uncertainty are “ambiguous,” which may attenuate the
role of motivated reasoning in interpreting information. See Section 3.2 for more discussion.
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report”) which are binary noisy signals about the state, each matching the state with probability θ = 2
3 . In

other words, if the true state is TOP, then each report says TOP with probability 2
3 and says BOTTOM with

probability 1
3 , and vice versa. Thus, θ indicates the informativeness or diagnosticity of the reports. The par-

ticipant does not directly observe the reports but receives two signals from computer players Ann and Bob.

The participant knows that: (i) Ann’s signal (henceforth the “first signal”) is the blue report; (ii) Bob’s sig-

nal (henceforth the “second signal”) is either the blue report or the green report with equal probabilities, but

Bob does not disclose which report it is. Thus, the second signal possibly contains redundant information.

Participants receive extensive instructions and need to correctly answer a set of comprehension questions

about the information structure before they can proceed.

Blue Report

Green Report

Ann (First Signal)

Bob (Second Signal)

Participant

Figure 2: Information Structure with Correlation

We choose this simple information structure based on the following considerations: (i) By construction,

correlation already adds to the complexity of the environment, so additional complexity risks confusing

participants and adding noise to the data. (ii) A simple structure makes the environment easier to describe

and analyze, so it serves as a natural starting point for our investigation.

Posterior elicitation. Finally, we ask participants to confirm the values of the two signals they observe and

then elicit three beliefs from them, which are the main outcomes we analyze. (i) We first ask them to make

a binary guess about whether the second signal is the blue report (and hence redundant) or the green report

(and hence informative). They get a $2 bonus payment if their guess is correct and this question is randomly

selected to determine their bonus. (ii) We further ask them to “indicate their confidence in their guess” by

providing their subjective probability that the second signal is the report they guessed.8 (iii) Finally, we elicit

their posterior beliefs about the binary state, which is ego-relevant in Main and ego-irrelevant in Control. We

again incentivize both probabilistic beliefs, (ii) and (iii), using the crossover mechanism described above.
8We divide the elicitation of beliefs about signal redundancy into two parts (the binary guess and the probabilistic beliefs) to

help participants intuitively understand the object to be elicited.
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Finally, the experiment ends with an unincentivized exit survey that asks about several demographic

variables, which we control for in our analysis. At the end of the experiment, we randomly choose one

of the two stages to determine a participant’s bonus payment: if the test stage is chosen, the participant’s

performance in the IQ test determines her bonus payment; if the information stage is chosen, we randomly

choose one of the incentivized belief elicitations to determine the participant’s bonus payment.9

2.2 Theoretical Benchmarks and Hypotheses

We now derive the posteriors for a Bayesian agent in our experiment, which provide a set of benchmarks

against which our participants’ posteriors can be compared. We then discuss our main hypothesis in this

paper — motivated reasoning may distort participants’ inferences about information redundancy asymmet-

rically depending on whether the information is ego-favorable or ego-unfavorable.

A Bayesian agent who sees two different signals, i.e., one TOP signal and one BOTTOM signal, should

clearly conclude that these are the two underlying reports. Figure A1 in the online appendix shows that most

of our participants indeed do so. In the rest of the main text, we will focus on the case where participants

see two identical signals: either two TOP signals or two BOTTOM signals. In such cases, the identity of the

second signal cannot be inferred with certainty: Either it is a repetition of the first signal, or it is a different

report which turns out to coincide with the first signal.

We first derive the Bayesian posteriors about the redundancy of the second signal. Recall that, uncondi-

tionally, the second signal is a repetition of the first signal with 1
2 probability. When a participant sees two

identical signals such as two TOP signals, the probability that the second signal is new (i.e., NOT redundant)

decreases:

Pr(Second Signal New|Two TOP Signals)

=
Pr(Second Signal New,Two TOP Signals)

Pr(Second Signal Redundant,Two TOP Signals) + Pr(Second Signal New,Two TOP Signals)

=
1
2 [µθ

2 + (1− µ)(1− θ)2]
1
2 [µθ + (1− µ)(1− θ)] + 1

2 [µθ
2 + (1− µ)(1− θ)2]

=
3µ+ 1

6µ+ 4
∈ [25%, 40%]

where µ denotes the agent’s prior belief that the state is TOP and θ = 2
3 indicates the diagnosticity of the

9Azrieli et al. (2018) discusses the rationales for paying for exactly one randomly selected task in an experiment with multiple
tasks.
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signals. Analogously,

Pr(Second Signal New|Two BOTTOM Signals) =
3(1− µ) + 1

6(1− µ) + 4
∈ [25%, 40%]

Thus, a Bayesian agent who sees two identical signals, regardless of their prior beliefs over the state, should

infer that it is more likely that the second signal is redundant (and hence guess that the second signal is the

blue report).

However, we hypothesize that ego-relevance may affect how individuals interpret possibly redundant

information about the state in the following way: When the state is ego-relevant, as in Main, individuals

may be motivated to underestimate redundancy when the information is “good,” relative to the case in

which the information is “bad,” so as to update positively about the state. In other words, participants in

Main who observe two ego-favorable signals may be motivated to assign a relatively high probability of

the second signal being new, compared to participants who observe two ego-unfavorable signals. Since the

motivated reasoning mechanism should be plausibly shut down in Control, we hypothesize that these effects

diminish in that treatment. We refer to our hypothesis as the Motivated Mislearning Hypothesis.

Finally, we consider the Bayesian posteriors about the state after receiving the information. Let logit(x) =

ln( x
1−x) be the logit or log odds function. If a Bayesian agent observes two TOP signals, the logit of her

posterior can be written as the sum of the logit of the prior and the log likelihood ratio of the signals:

logit(η) = logit(µ) + ln

(
Pr(TOP state,Two TOP Signals)

Pr(BOTTOM state,Two TOP Signals)

)

where µ denotes the agent’s prior belief that the state is TOP and η denotes the posterior belief. With a

signal diagnosticity of θ = 2
3 , the likelihood ratio of two TOP signals is 2.5. The symmetry of the signal

structure implies that the likelihood ratio of two BOTTOM signals is given by 1
2.5 or 0.4. Along the same

lines, if someone receives one TOP signal and one BOTTOM signal, then they should exactly cancel each

other out, and the Bayesian posterior exactly equals the prior. Thus, the general expression for the Bayesian

posterior belief for the TOP state is:

logit(η) = logit(µ) + ln(2.5) · 1Two Good Signals − ln(2.5) · 1Two Bad Signals + 0 · 1Mixed Signals

However, the Motivated Mislearning Hypothesis predicts that participants may react more to ego-favorable
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than to ego-unfavorable signals through the channel of motivated mislearning from correlated signals.

2.3 Procedures

We programmed our experiment using oTree (Chen et al., 2016). From March to May in 2021, we

recruited our participants through Prolific, an online platform designed for social science research10. 601

participants participated in our Main treatment, among whom 444 got two identical signals. Another 601

participants participated in our Control treatment, among whom 454 got two identical signals. Our main

sample in the rest of the paper consists of 898 participants, including the 444 participants who see two

identical signals in Main and the 454 participants who see two identical signals in Control.

Participants spent on average about 20 minutes on the experiment and earned an average payment of

$3.9, including a $3 base payment.

3 Results

This section presents the evidence for the Motivated Mislearning Hypothesis from our experiment. After

confirming that our sample is balanced between Main and Control, we show that participants update asym-

metrically about signal redundancy in Main but such asymmetric updating disappears in Control, supporting

the Motivated Mislearning Hypothesis.

3.1 Descriptive Statistics and Treatment Balance

In Table 1, we provide some descriptive statistics of several pre-treatment variables (raw score in the

IQ test, subjective importance of the IQ test, and prior belief of the TOP state) and demographic variables,

separately for participants in Main and Control. These variables are evidently well balanced between Main

and Control, as none of the p-values from unpaired t-tests of equal means is smaller than 0.10.

Table 1 also shows that there is a large variation among participants in all the pre-treatment IQ-test-

related variables. The average participant attaches reasonable importance to being able to perform well

in the IQ test (higher than 7 out of 10), which bolsters our confidence in inducing motivated reasoning in

Main. Participants’ average prior beliefs of the TOP state are only slightly higher than 50%, indicating
10See Palan and Schitter (2018) and Gupta et al. (2021) for using Prolific as a participant pool. We only recruited US participants

who have completed more than 100 tasks on Prolific and have an approval rate of at least 95%.
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that the difficulty of the test is well calibrated. For completeness, Table 1 also shows the statistics for the

posterior belief of the TOP state: On average, the posteriors are close to the priors in both Main and Control,

implying no significant asymmetric updating on average in either treatment. We expand on this point with

more detailed results in Section 3.2.

3.2 Results from Main

We first use the data from our Main treatment to test our Motivated Mislearning Hypothesis — partic-

ipants’ inferences about signal redundancy may depend on whether the signals are ego-favorable or ego-

unfavorable. We focus on the two outcomes that measure participants’ beliefs about signal redundancy:

the binary guess and the probabilistic belief about the identity of the second signal. We then look at how

participants update their beliefs about their IQ test performance after receiving the signals.

As discussed above, if one’s prior belief of scoring in the top half is µ, then the Bayesian inference about

signal redundancy after seeing two identical signals should be

Pr(Second Signal is NOT Redundant|Both Signals are TOP) =
3µ+ 1

6µ+ 4
∈ [25%, 40%]

and

Pr(Second Signal is NOT Redundant|Both Signals are BOTTOM) =
4− 3µ

10− 6µ
∈ [25%, 40%]

Therefore, the correct binary guess after seeing two identical signals is always that the second signal is

redundant.

Panel A of Figure 3 shows the percentages of participants who make the wrong guess (i.e., guess that

the second signal is new or non-redundant) after seeing two identical signals. Although our main interest

lies in comparing participants’ reactions after seeing two TOP signals or two BOTTOM signals, we also

break down the sample by participants’ IQ test performance (top half vs. bottom half): Since the signals are

informative about test performance, participants who see two TOP signals are more likely to have scored in

the top half than those who see two BOTTOM signals, and thus may have higher cognitive ability or may be

more attentive. Making the comparison within each performance group eliminates this confounding factor

and exploits only the exogenous variation from signal randomness built into our design.
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Indeed, we find that participants scoring in the top half are in general less likely to make the wrong guess

than those in the bottom half (24% vs. 43%, p < 0.01), which necessitates our within-performance-group

comparison. However, we fail to reject the null hypothesis that participants seeing two TOP signals are as

likely to make the wrong guess as participants seeing two BOTTOM signals within each performance group.

We thus find no evidence for our Motivated Mislearning Hypothesis in the binary guess outcome.

The binary guess is only a coarse proxy for the inference about signal redundancy, so we next look at

participants’ probabilistic belief that the second signal is new after seeing two identical signals. Note that

given our design the Bayesian benchmark for this probability depends on the participant’s prior belief about

their test performance, and is generally different between people who see two TOP signals and people who

see two BOTTOM signals. For example, if a participant’s prior belief of scoring in the top half is higher

than 50% (i.e., they are initially relatively confident about their performance), then they should think that

the second signal is relatively more likely to be new after seeing two TOP signals; by contrast, if they see

two BOTTOM signals, they should think that there is a high chance that the second signal is redundant. It

is thus important that we control for the Bayesian benchmark when we compare the inferences about signal

redundancy made by the “two TOP” group and the “two BOTTOM” group.

Panel B of Figure 3 shows both the average elicited posteriors and the average Bayesian posteriors that

the second signal is new after seeing two identical signals, separately by IQ test performance group and

signal valence. Focusing first on participants who scored in the top half, we notice that the average Bayesian

posterior of the second signal being new is slightly (∼ 3%) higher after seeing two TOP signals than after

seeing two BOTTOM signals, consistent with this subgroup of participants being relatively confident about

their performances initially. Their actual posteriors are much higher than the Bayesian posteriors on average,

suggesting that they infer too little about signal redundancy from two identical signals. Importantly, the

average elicited posterior about the probability that the second signal is new is around 5% higher for the two

TOP group than the two BOTTOM group, a gap that is 2% wider than the corresponding gap for the Bayesian

posteriors. This is directionally consistent with our Motivated Mislearning Hypothesis: Individuals who see

repeated ego-favorable signals may be motivated to overestimate the chance that they contain independent

information.

Analysis of the beliefs of participants who scored in the bottom half yields the same pattern. As these

participants’ prior beliefs about their performance are less confident, the average Bayesian posterior of the

second signal being new is 1% lower with two TOP signals than with BOTTOM signals. However, the
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elicited posteriors from the participants show the opposite: Participants seeing two TOP signals on average

decide that it is 49% likely that the second signal is new, which is 3% higher than participants seeing two

BOTTOM signals. This provides even stronger evidence for the Motivated Mislearning Hypothesis that

cannot be explained by Bayesian inference.

Appendix Figure A2 replicates the above results by showing the full distribution of elicited posterior

beliefs (separately by IQ test performance and signal valence) and p-values from two-sided t-tests of the

effect of signal valence: the effect is statistically significant (p = 0.030) for participants who scored in the

top half but statistically insignificant (p = 0.264) for participants who scored in the bottom half, which is

not unreasonable since the Bayesian prediction goes in the opposite direction for the latter group.

To increase power and formally control for the Bayesian posterior in the statistical test, we put these

results into regression form by pooling participants who scored in the top and bottom halves and estimating

the following specification:

Posterior Belief = β11Two Good Signals + β21Top Half in Test + β3Bayesian Posterior + γX + ε (1)

where the dependent variable is the posterior belief (in %) that the second signal is new, andX may be empty

or include a set of controls. β1 measures the degree of motivated bias in posterior beliefs, and the Motivated

Mislearning Hypothesis predicts that β1 > 0: a participant who sees two good signals is motivated to believe

that the second signal is more likely to be new compared with someone who sees two bad signals and who

has the same Bayesian posterior. It is also likely that β2 < 0 as those who scored in the top half in the IQ

test have on average higher cognitive ability and may thus be less susceptible to correlation neglect. 11 The

test of the Motivated Mislearning Hypothesis here exploits the random variation in signals within the same

IQ test performance group.

Columns (1) and (2) in Table 2 present the regression results using the full sample of 444 participants

who see two identical signals. Controlling for test performance and the Bayesian posterior, we find that

participants who see two good signals believe that the second signal is 4 percentage points more likely to be

new compared with those who see two bad signals (p = 0.036), consistent with the Motivated Mislearning

Hypothesis. This effect, while moderate in magnitude, is still notable as probabilistic beliefs elicited in

experiments are often compressed towards 50% due to issues such as extreme-belief aversion (Benjamin,
11As has been pointed out before, since good signals are correlated with good IQ test performance, our test of the Motivated

Mislearning Hypothesis will be invalid if we do not control for IQ test performance.
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2019) and cognitive uncertainty (Enke and Graeber, 2019). The effect becomes slightly larger when we

additionally control for personal characteristics including gender, race, age, education, and the raw score

in the IQ test. Scoring in the top half in the IQ test is negatively and significantly associated with the

posterior belief, but the coefficient switches signs and becomes insignificant once the raw score in the test

is controlled for, since the two covariates are highly correlated. We also find that the coefficients before the

Bayesian posterior are generally small and insignificant, which suggests that across participants their actual

posteriors are only weakly correlated with the Bayesian posteriors.12

Table A1 in the online appendix explores potential gender differences in the motivated bias by reporting

regression results separately for male and female participants. The motivated bias is statistically significant

for female participants and is smaller and statistically insignificant for male participants; the magnitude

and statistical significance of the gender difference are sensitive to the regression specification.13 These

results stand in contrast to certain findings in the literature that suggest males may be more susceptible to

performance-related motivated reasoning than females (Thaler, 2021a).

We further examine the robustness of the results in two ways. First, in columns (3) and (4) of Table

2, we drop participants who report a higher than 50% posterior that the second signal is new after seeing

two identical signals, which indicates that they update in the wrong direction about signal redundancy. The

effect becomes even stronger in the restricted sample. Second, Table A2 in the online appendix presents

an alternative regression specification using the difference between the actual posterior and the Bayesian

posterior as the dependent variable, which generates similar results.

Why do we find an asymmetric effect in the probabilistic beliefs but no effect in the binary guess? In

Appendix Table A3, we present a two-way tabulation of the probabilistic beliefs and the binary guess. The

results suggest that receiving two good signals (instead of two bad signals) shifts around 10% of participants

from providing a posterior belief of less than 50% to providing a posterior belief of exactly 50%. This is

consistent with the Motivated Mislearning Hypothesis. However, since only around a fourth to a half of

those reporting exactly 50% guess that the second signal is new in the binary guess, the effect size on the
12Note that the Bayesian posteriors only vary between 25% and 40%, and the variation is only driven by participants’ prior

beliefs in the binary state and the realizations of the signals (TOP or BOTTOM). More specifically, the Bayesian posteriors should
be the same between someone with a prior belief of µ in the TOP state and sees two TOP signals, and someone with a prior belief
of (1− µ) in the TOP state and sees two BOTTOM signals. What our regression essentially identifies is that the actual posterior of
the first person is higher than that of the second person, controlling for other covariates.

13Note that the sample size of female participants is somewhat larger than that of male participants. Also, note that these results
do not imply that females update more optimistically than males in general: in results unreported here, we in fact find that males
overall update slightly more to good signals than to bad signals, and females overall update slightly more to bad signals than to
good signals, although neither of these effects is statistically significant. Results are available upon request.
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binary guess would be only a fourth to a half of 10%. There is also a small fraction of participants who

indicate beliefs different from 50% but provide guesses inconsistent with their own beliefs, which further

diminishes the effect on the binary guess. We conclude that the binary guess as a crude measure is not able

to pick up the subtle effects on beliefs that we document.

Finally, we examine whether the asymmetric inference about signal redundancy that we document leads

to significant asymmetric updating about participants’ own IQ test performance. Recall that the Bayesian

posterior about own test performance is as follows:

logit(η) = logit(µ) + ln(2.5) · 1Two Good Signals − ln(2.5) · 1Two Bad Signals + 0 · 1Mixed Signals (2)

where µ denotes the prior belief for the TOP state and η denotes the posterior belief. Equation (2) says that

the log likelihood ratio of beliefs should go up by log(2.5) if one receives two (possibly redundant) good

signals, should go down by log(2.5) if one receives two (possibly redundant) bad signals, and should not

change if one receives one good signal and one bad signal.

In light of Equation (2), and focusing on the subsample of participants who receive two identical signals,

we estimate the following specification (Grether, 1980):

logit(η) = δ logit(µ) + αG ln(2.5) · 1Two Good Signals − αB ln(2.5) · 1Two Bad Signals + ε (3)

We report the results in Table 3. We estimate αG = 0.641 and αB = 0.621, without a statistically sig-

nificant difference between the two coefficients (p = 0.802), while both are significantly different from 1

(p < 0.001). In short, even in our setting of potentially redundant signals, the asymmetric inference about

signal redundancy is not quantitatively large enough to generate significant asymmetric updating about par-

ticipants’ own IQ test performance. This stands in contrast to some existing evidence in the literature such

as Möbius et al. (2022) which finds significant asymmetric updating with mutually independent signals.14

Why do we find an asymmetric updating effect on signal redundancy but in the end no significant asym-

metric updating about test performance? Power issues arise because: (i) the effect on the inference about

signal redundancy is moderate in magnitude to begin with; and (ii) all in all participants still underreact to

the signals by a factor of 0.6 relative to the Bayesian benchmark, implying a large degree of conservatism,
14As mentioned in Section 1, there is mixed evidence on asymmetric updating in the literature. See Footnote 1 for a more detailed

discussion.
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even as they do not fully appreciate the potential redundancy of the second signal. For example, back-

of-the-envelope calculations suggest that a 5% effect on the posterior probability that the second signal is

redundant can generate no more than an effect of 0.03 on the αG coefficient in (3). Our remarkably simple

information structure, intended as the most transparent way to introduce correlation, may not be sufficient to

ultimately generate a statistically detectable asymmetric effect on inference about the state. Nonetheless, the

mechanism it illustrates may lead to larger effects in richer environments with a larger number of correlated

signals, which we leave for future work.

3.3 Results from Control

Although evidence from the belief data in Main is consistent with the Motivated Mislearning Hypothesis,

the need to control for the Bayesian posterior may lead some to worry that our results are sensitive to the

chosen specification. To alleviate this concern, we conduct a “placebo” exercise by testing for a similar

asymmetric effect in Control where participants receive potentially redundant signals about an ego-irrelevant

state and the priors over the states are matched with participants’ prior beliefs about their test performance.

Figure 4 exactly replicates Figure 3 using data from Control.15 Specifically, Panel A shows the percent-

ages of participants who make the wrong guess (i.e., guess that the second signal is new or non-redundant)

after seeing two identical signals in Control. Here we find that participants seeing two TOP signals are ac-

tually less likely to guess that the second signal is new.16 This implies that in Main the motivated bias may

be overshadowed by an intrinsic cognitive bias working in the opposite direction, leading to a null result

for the binary guess outcome. Panel B further shows the average elicited and Bayesian posteriors that the

second signal is new after seeing two identical signals in Control, separately by IQ test performance group

and signal valence. Again we find that participants seeing two TOP signals believe that it is slightly less

likely that the second signal is new compared with participants seeing two BOTTOM signals, which goes in

the opposite direction compared to Main.17 Overall, the asymmetric updating effect on signal redundancy

that we document in Main disappears or even reverses signs in Control. To ease the comparison between
15When interpreting Figure 4, note that in Control having scored in the top half in the IQ test is not equivalent to the ego-irrelevant

state being TOP, because the ego-irrelevant state is randomly drawn based on prior probabilities matched to the participant’s prior
beliefs of having scored in the top half.

16We explore the source of this gap in Appendix Table A4, which shows a two-way tabulation of the probabilistic beliefs and the
binary guess in Control. The gap seems to be partly driven by a higher propensity to provide a posterior belief of higher than 50%
for those who see two BOTTOM signals.

17Figure A3 in the online appendix presents the full distribution of elicited posterior beliefs separately by IQ test performance
and signal valence in Control.
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Main and Control treatments, Figure A4 in the online appendix shows the above outcomes for Main and

Control side by side. The evidence is consistent with motivated reasoning exacerbating correlation neglect

in Main relative to Control when the two signals are TOP; in the case of two BOTTOM signals, the degree

of correlation neglect is either similar or lower in Main relative to Control.18 These patterns are broadly

consistent with the Motivated Mislearning Hypothesis.

In Table 4, we present regression results pooling data from Main and Control, using the following

specification:19

Posterior Belief = β11Main Treatment × 1Two TOP Signals + β21Control Treatment × 1Two TOP Signals

+β31Main Treatment × 1Top Half in Test + β41Control Treatment × 1Top Half in Test

+β51Main Treatment + β6Bayesian Belief + γX + ε (4)

where the dependent variable is the posterior belief (in %) that the second signal is new, and X may be

empty or include a set of controls.20 Again the Motivated Mislearning Hypothesis predicts that β1 > 0 and

β2 ≈ 0 as the motivated bias in inference should diminish in Control.

Columns (1) and (2) in Table 4 present results using the full sample of 898 participants in the two

treatments who see two identical signals. In column (1), the interaction term between the Main treatment

and the “Two TOP Signals” dummy replicates the result that in the Main treatment participants’ beliefs that

the second signal is new is 4% higher if they see two TOP signals (p = 0.030). Importantly, the interaction

term between the Control treatment and the “Two TOP Signals” dummy is estimated to be negative and

insignificant, indicating that the asymmetric effect disappears in Control. We reject that the effect is the

same in the two treatments at the 5% level (p = 0.049). In column (2), we additionally control for a battery

of demographic and pre-treatment variables. In columns (3) and (4), we drop participants who report a

higher than 50% posterior that the second signal is new. Finally, Table A7 in the online appendix presents

an alternative regression specification using the difference between the actual posterior and the Bayesian
18Figure A5 in the online appendix pools the data from Main and Control treatments and presents the full distribution of elicited

posterior beliefs separately by IQ test performance, signal valence, and treatment.
19Tables A5 and A6 in the online appendix present regression results with the Control treatment data only, using exactly the same

specifications as those for the Main treatment in Section 3.2.
20In Control, participants who see two TOP signals have higher prior beliefs about their test performance and thus may have

higher cognitive ability. To control for this, we add dummies for each possible level of the prior probability of the TOP state. To
maintain symmetry in the specification, we define these dummies for participants in Main as well, rounding their prior beliefs about
their own test performance to the nearest 5%, moving very low priors to 5% instead of 0% and very high priors to 95% instead of
100%. We then include all these dummies interacted with the treatment in the regressions.
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posterior as the dependent variable. In all these alternative specifications, we obtain similar results.

In summary, the results from Control suggest that the asymmetric effect in Main is specific to the ego-

relevant state of own test performance. Moreover, when the two signals are TOP, the degree of correlation

neglect is consistently higher in Main compared with in Control. Overall, these results strengthen the em-

pirical case for the Motivated Mislearning Hypothesis.

4 Conclusion

In this paper, we design an experiment to study whether motivated reasoning could affect individual

learning from correlated information. We find that participants who receive identical ego-favorable signals

indicate that the signals are 4 percentage points less likely to be redundant compared with participants who

receive identical ego-unfavorable signals; this effect disappears or even reverses signs when the signals are

framed as ego-irrelevant. This finding demonstrates the degree of flexibility in interpreting correlated infor-

mation in settings prone to motivated beliefs. Although such asymmetric inference about signal redundancy

does not lead to significant asymmetric updating about own performance in our experiment, we note that

this may result from the remarkable simplicity of our design. In richer settings with a larger number of

correlated signals, the asymmetric effect we document may well build up and ultimately generate more

significant effects on the beliefs of interest.

More generally, our findings suggest that motivated reasoning can be an additional driver of learning

“mistakes” that have typically been associated with cognitive limitations and complexity, which has a few

further implications. First, we may expect these “mistakes” to emerge or intensify in settings where they help

individuals reach certain desirable beliefs. For example, for managers and marketers considering persuading

consumers or other stakeholders with repeated information, our findings suggest that this strategy may be

more effective when such information caters to the information receivers’ motivated beliefs (e.g., when

it enhances their self-image). Second, the welfare interpretations of these “mistakes” become less clear-

cut given the potential role of beliefs as a source of utility (Caplin and Leahy, 2001; Brunnermeier and

Parker, 2005). Therefore, for policymakers interested in de-biasing consumers, we note that reducing these

“motivated mistakes” may require different approaches compared to the case of purely cognitive mistakes

(Exley and Kessler, 2019) and may not even be welfare-enhancing in the first place.

We highlight two avenues for future research. First, it is of interest to explore the effect of motivated
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reasoning on other types of learning biases. For example, motivated reasoning may lead individuals to learn

narrowly from selected information without accounting for the information that is filtered out but can in

principle be deduced from observed information (Enke, 2020). Second, our findings can be applied to other

settings where motivated reasoning may play a role, such as political beliefs.
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Figures and Tables

Table 1: Descriptive statistics and tests of balance between Main and Control.

Main Treatment Control Treatment Main = Control
(p-value)

Raw Score in IQ Test 3.48 3.11 0.46

(6.98) (7.66)

Importance of IQ Test (0 – 10) 7.17 7.10 0.67

(2.36) (2.38)

Prior Belief of TOP State (%) 51.93 53.85 0.20

(22.90) (23.68)

Posterior Belief of TOP State (%) 51.78 52.27 0.78

(26.07) (27.00)

Male 0.44 0.40 0.25

(0.50) (0.49)

White 0.68 0.72 0.22

(0.47) (0.45)

Age ≤ 35 0.49 0.54 0.14

(0.50) (0.50)

College Degree 0.51 0.54 0.29

(0.50) (0.50)

Observations 444 454 898

Notes: This table provides the means and standard deviations of the demographic and individual-level experimental variables, for
the 444 participants who see two identical signals in the Main treatment and the 454 participants who see two identical signals in
the Control treatment. Entries in the last column are two-sided p-values from unpaired t-tests of equal means for the Main treatment
and the Control treatment. *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively.
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Figure 3: Beliefs about whether the second signal is new by IQ test performance group and signal valence in
the Main Treatment. Panel A shows the percentages of participants who make the wrong guess (i.e., guess
that the second signal is new) after seeing two identical signals, separately by IQ test performance group
and signal valence. Panel B shows both the average elicited posteriors and the average Bayesian posteriors
that the second signal is new after seeing two identical signals, separately by IQ test performance group and
signal valence.
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Figure 4: Beliefs about whether the second signal is new by IQ test performance group and signal valence in
the Control Treatment. Panel A shows the percentages of participants who make the wrong guess (i.e., guess
that the second signal is new) after seeing two identical signals, separately by IQ test performance group
and signal valence. Panel B shows both the average elicited posteriors and the average Bayesian posteriors
that the second signal is new after seeing two identical signals, separately by IQ test performance group and
signal valence.
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Table 2: Inference about signal redundancy after seeing two good signal or two bad signals, the Main
treatment.

Dep Var: Posterior of Pr(Second Signal is New) (%)

Full Sample Drop Wrong Direction

(1) (2) (3) (4)

Two Good Signals 3.625∗∗ 3.949∗∗ 4.637∗∗∗ 5.141∗∗∗

(1.722) (1.643) (1.414) (1.356)

Top Half in Test -5.303∗∗∗ 2.507 -2.055 -0.839

(1.694) (2.479) (1.424) (2.007)

Bayesian Posterior (in %) 0.157 0.033 -0.030 -0.063

(0.284) (0.281) (0.223) (0.211)

Controls No Yes No Yes

Observations 444 444 369 369

R2 0.025 0.090 0.029 0.100

Notes: Robust standard errors are in parentheses. *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels,
respectively. The sample in columns (1) and (2) includes the 444 participants who see two identical signals in the Main treatment.
In columns (3) and (4), we drop participants who report a higher than 50% posterior that the second signal is new after seeing two
identical signals, which indicates that they update in the wrong direction about signal redundancy. “Controls” include: dummy
variables for Male, White, Age ≤ 35, and College Degree; the raw score in the IQ test; the subjective importance of the IQ test (0
– 10); and the prior belief of the TOP state.
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Table 3: Inference about own IQ test performance after seeing two good signal or two bad signals, the Main
treatment.

Dep Var: Posterior logit(Pr(Top Half))

(1)

δ 0.798∗∗∗

(0.051)

αG 0.641∗∗∗

(0.052)

αB 0.621∗∗∗

(0.061)

Observations 420

R2 0.696

p-value: αG = αB 0.802

p-value: αG = 1 <0.001

p-value: αB = 1 <0.001

Notes: Robust standard errors are in parentheses. We restrict the sample to the 420 participants in Main who receive two identical
signals and whose prior and posterior beliefs are not 0% or 100%. The outcome in the regression is the log likelihood ratio of the
posterior belief. δ is the coefficient on the log likelihood ratio of the prior belief; αG and αB are the estimated effects of the log
likelihood ratio for two good signals and two bad signals, respectively. Bayesian updating corresponds to δ = αG = αB = 1.
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Table 4: Inference about signal redundancy, pooling data from the Main treatment and the Control treatment.

Dep Var: Pr(Second Signal is New), Actual Posterior (in %)

Full Sample Drop Wrong Direction

(1) (2) (3) (4)

Main × Two Good Signals 3.749∗∗ 4.168∗∗ 4.680∗∗∗ 4.814∗∗∗

(1.727) (1.660) (1.428) (1.391)

Control × Two Good Signals -0.774 -0.003 1.387 1.250

(1.519) (1.601) (1.210) (1.286)

Main × Top Half in Test -5.329∗∗∗ -0.687 -2.063 -1.978

(1.700) (2.024) (1.427) (1.674)

Control × Top Half in Test -1.582 1.802 0.096 -0.298

(1.477) (1.725) (1.184) (1.441)

Main Treatment 0.698 -1.944 -1.375 1.114

(1.817) (7.358) (1.518) (6.908)

Bayesian Posterior (in %) -0.036 -0.094 -0.071 -0.002

(0.190) (0.206) (0.151) (0.160)

Controls No Yes No Yes

Observations 898 898 771 771

R2 0.018 0.092 0.018 0.115

p-value (Equal Effects) 0.049 0.071 0.081 0.061

Notes: Robust standard errors are in parentheses. *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels,
respectively. The sample in columns (1) and (2) includes the 444 participants who see two identical signals in the Main treatment
and the 454 participants who see two identical signals in the Control treatment. In columns (3) and (4), we drop participants who
report a higher than 50% posterior that the second signal is new after seeing two identical signals, which indicates that they update
in the wrong direction about signal redundancy. “Controls” include: a dummy for each possible level of the prior probability of the
TOP state, interacted with the treatment; dummies for Male, White, Age ≤ 35, and College Degree; the raw score in our IQ test;
and the subjective importance of the IQ test (0 – 10).
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A Online Appendix

A.1 Additional Figures and Tables
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Figure A1: Percentages of participants guessing the second signal is new after seeing two different signals
in Main and Control.
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p = 0.030 (two-sided t-test)
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p = 0.264 (two-sided t-test)
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Figure A2: Full distribution of elicited posteriors that the second signal is new after seeing two identical sig-
nals in the Main Treatment, by IQ test performance group and signal valence. Panel A shows the distribution
for participants scoring in the top half in the IQ test, separately for those seeing two TOP signals and those
seeing two BOTTOM signals. Panel B shows the distribution for participants scoring in the bottom half in
the IQ test, separately for those seeing two TOP signals and those seeing two BOTTOM signals. P-values
from two-sided t-tests are also provided.
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p = 0.210 (two-sided t-test)
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p = 0.824 (two-sided t-test)
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Figure A3: Full distribution of elicited posteriors that the second signal is new after seeing two identical
signals in the Control Treatment, by IQ test performance group and signal valence. Panel A shows the
distribution for participants scoring in the top half in the IQ test, separately for those seeing two TOP signals
and those seeing two BOTTOM signals. Panel B shows the distribution for participants scoring in the bottom
half in the IQ test, separately for those seeing two TOP signals and those seeing two BOTTOM signals. P-
values from two-sided t-tests are also provided (note that the difference here goes in the opposite direction
of the prediction of the Motivated Mislearning Hypothesis).
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Figure A4: Beliefs about whether the second signal is new by IQ test performance group, signal valence,
and treatment, pooling data from both the Main treatment and the Control treatment. Panel A shows the
percentages of participants who make the wrong guess (i.e., guess that the second signal is new) after seeing
two identical signals, separately by IQ test performance group, signal valence, and treatment. Panel B shows
both the average elicited posteriors that the second signal is new after seeing two identical signals, separately
by IQ test performance group, signal valence, and treatment.
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p = 0.176 (two-sided t-test)
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p = 0.061 (two-sided t-test)
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p = 0.045 (two-sided t-test)
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p = 0.449 (two-sided t-test)
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Figure A5: Full distribution of elicited posteriors that the second signal is new after seeing two identical
signals by IQ test performance group, signal valence, and treatment, pooling data from both the Main treat-
ment and the Control treatment. Panel A shows the distribution for participants scoring in the top half in the
IQ test and seeing two TOP signals, separately for those in Main and those in Control. Panel B shows the
distribution for participants scoring in the top half in the IQ test and seeing two BOTTOM signals, separately
for those in Main and those in Control. Panel C shows the distribution for participants scoring in the bottom
half in the IQ test and seeing two TOP signals, separately for those in Main and those in Control. Panel
D shows the distribution for participants scoring in the bottom half in the IQ test and seeing two BOTTOM
signals, separately for those in Main and those in Control.
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Table A1: Inference about signal redundancy after seeing two good signals or two bad signals, separately
by gender, the Main treatment.

Dep Var: Posterior of Pr(Second Signal is New) (%)

Male Female

(1) (2) (3) (4)

Two Good Signals 1.923 3.047 5.267∗∗ 4.676∗∗

(3.003) (3.003) (2.063) (1.988)

Top Half in Test -5.115∗ 3.722 -5.067∗∗ 2.059

(2.915) (3.909) (2.029) (3.318)

Bayesian Posterior (in %) -0.214 -0.357 0.513 0.343

(0.499) (0.494) (0.318) (0.303)

Controls No Yes No Yes

Observations 195 195 249 249

R2 0.019 0.077 0.050 0.119

Notes: Robust standard errors are in parentheses. *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels,
respectively. The sample in columns (1) and (2) includes the 195 male participants who see two identical signals in the Main
treatment. The sample in columns (3) and (4) includes the 249 female participants who see two identical signals in the Main
treatment. “Controls” include dummy variables for White, Age ≤ 35, College Degree, the raw score in the IQ test, the subjective
importance of the IQ test (0 – 10), and the prior belief of the TOP state.
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Table A2: Inference about signal redundancy in the Main treatment, alternative specification.

Dep Var: Actual Posterior − Bayesian Posterior (in %)

Full Sample Drop Wrong Direction

(1) (2) (3) (4)

Two Good Signals 3.083∗ 3.250∗ 3.566∗∗ 3.974∗∗∗

(1.731) (1.659) (1.484) (1.433)

Top Half in Test -5.191∗∗∗ 1.813 -1.852 -1.640

(1.700) (2.541) (1.472) (2.098)

Controls No Yes No Yes

Observations 444 444 369 369

R2 0.021 0.077 0.017 0.084

Notes: Robust standard errors are in parentheses. *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels,
respectively. The sample in columns (1) and (2) includes the 444 participants who see two identical signals in the Main treatment.
In columns (3) and (4), we drop participants who report a higher than 50% posterior that the second signal is new after seeing two
identical signals, which indicates that they update in the wrong direction about signal redundancy. “Controls” include: dummy
variables for Male, White, Age ≤ 35, and College Degree; the raw score in the IQ test; the subjective importance of the IQ test (0
– 10); and the prior belief of the TOP state.
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Table A3: Detailed two-way tabulation of beliefs and guesses in the Main treatment.

Group Posterior Belief
Pr(Second Signal is New)

Number of
Participants

Binary Guess
Second = First

Binary Guess
Second 6= First

Top Half in IQ Test,
Two Good Signals

(N = 141)

Belief < 50% 63 (44.7%) 61 (43.3%) 2 (1.4%)

Belief = 50% 62 (44.0%) 46 (32.6%) 16 (11.3%)

Belief > 50% 16 (11.3%) 0 (0%) 16 (11.3%)

Top Half in IQ Test,
Two Bad Signals

(N = 60)

Belief < 50% 32 (53.3%) 30 (50%) 2 (3.3%)

Belief = 50% 22 (36.7%) 16 (26.7%) 6 (10%)

Belief > 50% 6 (10%) 0 (0%) 6 (10%)

Bottom Half in IQ Test,
Two Good Signals

(N = 82)

Belief < 50% 24 (29.3%) 20 (24.4%) 4 (4.9%)

Belief = 50% 40 (48.8%) 18 (22.0%) 22 (26.8%)

Belief > 50% 18 (22.0%) 6 (7.3%) 12 (14.6%)

Bottom Half in IQ Test,
Two Bad Signals

(N = 161)

Belief < 50% 63 (39.1%) 52 (32.3%) 11 (6.8%)

Belief = 50% 63 (39.1%) 35 (21.7%) 28 (17.4%)

Belief > 50% 35 (21.7%) 8 (5.0%) 27 (16.8%)

Notes: In this table, we first divide all participants in the Main treatment who see two identical signals into four groups depending
on their performance in the IQ test (top half vs. bottom half) and whether their signals are good (ego-favorable). Within each group,
we divide participants into subgroups according to whether their posterior belief that the second signal is new is lower than, equal
to, or higher than 50%. In the third column, we provide the numbers and percentages of participants who fall into each subgroup.
In the fourth and fifth columns, we provide the numbers of participants who provide each possible guess within the corresponding
subgroup; the percentages are still calculated relative to the four broad groups.
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Table A4: Detailed two-way tabulation of beliefs and guesses in the Control treatment.

Group Posterior Belief
Pr(Second Signal is New)

Number of
Participants

Binary Guess
Second = First

Binary Guess
Second 6= First

Top Half in IQ Test,
Two TOP Signals

(N = 136)

Belief < 50% 70 (51.4%) 70 (51.4%) 0 (0%)

Belief = 50% 61 (44.9%) 47 (34.6%) 14 (10.3%)

Belief > 50% 5 (3.7%) 1 (0.7%) 4 (2.9%)

Top Half in IQ Test,
Two BOTTOM Signals

(N = 78)

Belief < 50% 33 (42.3%) 31 (39.7%) 2 (2.6%)

Belief = 50% 35 (44.9%) 27 (34.6%) 8 (10.3%)

Belief > 50% 10 (12.8%) 2 (2.6%) 8 (10.3%)

Bottom Half in IQ Test,
Two TOP Signals

(N = 87)

Belief < 50% 36 (41.4%) 34 (39.1%) 2 (2.3%)

Belief = 50% 40 (46.0%) 27 (31.0%) 13 (14.9%)

Belief > 50% 11 (12.6%) 1 (1.1%) 10 (11.5%)

Bottom Half in IQ Test,
Two BOTTOM Signals

(N = 153)

Belief < 50% 68 (44.4%) 61 (39.9%) 7 (4.6%)

Belief = 50% 59 (38.6%) 30 (19.6%) 29 (19.0%)

Belief > 50% 26 (17.0%) 4 (2.6%) 22 (14.4%)

Notes: In this table, we first divide all participants in the Control treatment who see two identical signals into four groups depending
on their performance in the IQ test (top half vs. bottom half) and whether their signals are TOP or BOTTOM. Within each group,
we divide participants into subgroups according to whether their posterior belief that the second signal is new is lower than, equal
to, or higher than 50%. In the third column, we provide the numbers and percentages of participants who fall into each subgroup.
In the fourth and fifth columns, we provide the numbers of participants who provide each possible guess within the corresponding
subgroup; the percentages are still calculated relative to the four broad groups.
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Table A5: Inference about signal redundancy after seeing two good signal or two bad signals, the Control
treatment.

Dep Var: Posterior of Pr(Second Signal is New) (%)

Full Sample Drop Wrong Direction

(1) (2) (3) (4)

Two Good Signals -0.485 0.436 1.458 1.836

(1.549) (1.577) (1.228) (1.263)

Top Half in Test -1.692 0.414 0.072 -1.093

(1.478) (1.735) (1.185) (1.460)

Bayesian Posterior (in %) -0.246 -0.267 -0.116 -0.124

(0.248) (0.238) (0.201) (0.196)

Controls No Yes No Yes

Observations 454 454 402 402

R2 0.008 0.036 0.005 0.045

Notes: Robust standard errors are in parentheses. *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels,
respectively. The sample in columns (1) and (2) includes the 454 participants who see two identical signals in the Control treatment.
In columns (3) and (4), we drop participants who report a higher than 50% posterior that the second signal is new after seeing two
identical signals, which indicates that they update in the wrong direction about signal redundancy. “Controls” include: dummy
variables for Male, White, Age ≤ 35, and College Degree; the raw score in the IQ test; the subjective importance of the IQ test (0
– 10); and the prior belief of scoring in the top half in the IQ test.
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Table A6: Inference about signal redundancy in the Control treatment, alternative specification.

Dep Var: Actual Posterior − Bayesian Posterior (in %)

Full Sample Drop Wrong Direction

(1) (2) (3) (4)

Two Good Signals -2.196 -1.487 -0.322 -0.123

(1.541) (1.612) (1.239) (1.279)

Top Half in Test -1.039 0.592 0.664 -0.938

(1.536) (1.832) (1.238) (1.527)

Controls No Yes No Yes

Observations 454 454 402 402

R2 0.009 0.034 0.001 0.038

Notes: Robust standard errors are in parentheses. *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels,
respectively. The sample in columns (1) and (2) includes the 454 participants who see two identical signals in the Control treatment.
In columns (3) and (4), we drop participants who report a higher than 50% posterior that the second signal is new after seeing two
identical signals, which indicates that they update in the wrong direction about signal redundancy. “Controls” include: dummy
variables for Male, White, Age ≤ 35, and College Degree; the raw score in the IQ test; the subjective importance of the IQ test (0
– 10); and the prior belief of scoring in the top half in the IQ test.
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Table A7: Inference about signal redundancy in Main and Control, alternative specification.

Dep Var: Actual Posterior − Bayesian Posterior (in %)

Full Sample Drop Wrong Direction

(1) (2) (3) (4)

Main × Two Good Signals 3.328∗ 3.372∗∗ 3.485∗∗ 3.723∗∗

(1.699) (1.691) (1.463) (1.463)

Control × Two Good Signals -1.523 -1.429 -0.104 -0.401

(1.671) (1.671) (1.335) (1.334)

Main × Top Half in Test -3.361∗ -0.850 0.349 -2.222

(1.856) (2.050) (1.520) (1.744)

Control × Top Half in Test -0.052 2.026 1.359 -0.257

(1.595) (1.796) (1.345) (1.485)

Main Treatment 5.282 4.141 4.017 5.909

(7.861) (7.898) (7.908) (7.819)

Controls Yes Yes Yes Yes

Observations 898 898 771 771

R2 0.080 0.093 0.098 0.121

P(Same Effect) 0.042 0.043 0.070 0.036

Notes: Robust standard errors are in parentheses. *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels,
respectively. The sample in columns (1) and (2) includes the 444 participants who see two identical signals in the Main treatment
and the 454 participants who see two identical signals in the Control treatment. In columns (3) and (4), we drop participants who
report a higher than 50% posterior that the second signal is new after seeing two identical signals, which indicates that they update
in the wrong direction about signal redundancy. “Controls” include: a dummy for each possible level of the prior probability of the
TOP state, interacted with the treatment; dummies for Male, White, Age ≤ 35, and College Degree; the raw score in our IQ test;
and the subjective importance of the IQ test (0 – 10).
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