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Coding for Additive White Noise Channels
With Feedback Corrupted by Quantization

or Bounded Noise
Nuno C. Martins, Member, IEEE, and Tsachy Weissman, Senior Member, IEEE

Abstract—We present coding strategies, which are variants
of the Schalkwijk–Kailath scheme, for communicating reliably
over additive white noise channels in the presence of corrupted
feedback. Our framework comprises an additive white forward
channel and a feedback link. We consider two types of corruption
mechanisms in the feedback link. The first is quantization noise,
i.e., the encoder receives the quantized values of the past outputs
of the forward channel. The quantization is uniform, memoryless
and time invariant. The second corruption mechanism is an
arbitrarily distributed additive bounded noise. Here we allow
symbol-by-symbol encoding at the input to the feedback link.
We propose explicit schemes featuring positive information rate
and positive error exponent. If the forward channel is additive
white Gaussian (AWGN) then, as the amplitude of the noise at the
feedback link decreases to zero, the rate of our schemes converges
to the capacity of the channel. Moreover, the probability of error
is shown to converge to zero at a doubly exponential rate. If
the forward channel is AWGN and the feedback link consists
of an additive bounded noise channel, with signal-to-noise ratio
(SNR) constrained symbol-by-symbol encoding, then our schemes
achieve rates arbitrarily close to capacity, in the limit of high SNR
(at the feedback link).

Index Terms—AWGN channel, coding, error exponent, feed-
back, quantization.

I. INTRODUCTION

T HAT noiseless feedback does not increase the capacity
of memoryless channels, but can dramatically enhance

the reliability and simplicity of the schemes that achieve it, has
been well known since Shannon’s work [27]. The assumption
of noiseless feedback is an idealization often meant to capture
communication scenarios where the noise in the backward
link is significantly smaller than in the forward channel. In his
subsequent work, in the late 1950s, Shannon also investigated
communication in the presence of noisy feedback [24], [25].
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This was followed by vigorous research in the 1960s, where
various coding strategies were derived for making use of noisy
feedback. In particular, in the late 1960s, the success of the
Schalkwijk–Kailath scheme in [26] also spurred the use of
optimal linear quadratic estimation methods in the derivation of
coding schemes for reliable transmission with noisy feedback
[1], [5], [16], [14], [15], [12]. An attractive feature of these
methods is that the analysis of their performance is tractable
using second-order statistics, while the coding and decoding
relies on simple iterative schemes. The use of feedback in
communicating over white Gaussian interference networks has
been addressed in [11], while the multiple-access and broadcast
channels have been investigated in [19], [7], and [18]. The
author of [4] uses optimal control principles to address the
multiuser scenario, in the presence of perfect feedback. A
general control-theoretic framework to feedback capacity is
given in [28].

Another very important aspect of the scheme in [26] is that
if the forward channel is white and Gaussian, then the proba-
bility of error decays as a double exponential function of the
block length, as measured in channel uses. However, in contrast
with [26], such a double exponential decay of the probability of
error was never achieved in the presence of noisy feedback. In
fact, it was recently shown in [10] that, in the presence of noisy
feedback, no linear encoding (of which the Schalkwijk–Kailath
scheme and its variants are special cases) can feature such a
double exponential decay property. Notice that [10] does not
contradict the result in [8], where it is shown that noisy feedback
can be used to obtain a probability of error that decreases as a
double exponential function of the coding block duration in sec-
onds. The framework of [8] is specified in continuous time, and
it also allows for an arbitrarily large number of channel uses per
second, which is possible only with no bandwidth constraints
on the feedback channel. In fact, as it is remarked in [8, p. 476],
the strategy in [8] presupposes that the number of channel uses
per second grows as an exponential function of the coding block
duration in seconds. In contrast, the framework adopted in [10],
which is also adopted in our paper, is in discrete time, meaning
that not more than one channel use is allowed per time step. If we
were to cast our formulation in continuous time then this would
be equivalent to imposing a minimal duration (in seconds) for
each channel use. A unified and comprehensive presentation of
the main results that were available until 1998, on communica-
tion in the presence of feedback, is given in [17].

It is therefore of primary importance, from both the theo-
retical and the practical viewpoints, to develop channel coding
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schemes that, by making use of noisy feedback, maintain the
simplicity of noiseless feedback schemes while achieving, for
a white Gaussian forward channel, probability of error that de-
cays as a double exponential function of the block length, as
measured in channel uses. It is the quest for such schemes op-
erating in discrete time, with one channel use per time step, that
motivates this paper. Our main contribution is the derivation
of simple coding strategies, which are variants of the Schalk-
wijk–Kailath scheme, for communicating in discrete-time over
additive white channels1 in the presence of corrupted feedback.
More specifically, we consider two types of corruption mecha-
nisms in the backward link.

• Quantization noise: the encoder receives the quantized
values of the past outputs of the forward channel. The
quantization is uniform, memoryless, and time invariant
(that is, symbol-by-symbol scalar quantization), with
bounded quantization error.

• Additive bounded noise: the noise in the backward link is
additive, and has bounded components, but is otherwise
arbitrarily distributed. Here we allow symbol-by-symbol
encoding at the input to the backward channel.

The coding schemes that we present achieve positive informa-
tion rate with positive error exponent. In addition, if the for-
ward channel is additive white Gaussian then our schemes are
capacity achieving, in the limit of diminishing amplitude of
the noise components in the backward link. Furthermore, if the
backward link consists of an additive bounded noise channel,
with instantaneous encoding, then our schemes are also capacity
achieving in the limit of high signal-to-noise ratio (SNR) (in
the backward link). We note that the diminishing of the gap
to capacity with vanishing noise in the backward link is a de-
sired property, not to be taken for granted in light of the neg-
ative results in [10]. In addition, the probability of error of our
coding schemes converges to zero as a doubly exponential func-
tion of the block length (channel uses), provided that the forward
channel is additive, white, and Gaussian. As will be seen in sub-
sequent sections, our analysis of the performance of the sug-
gested schemes is based on elementary linear systems theory.
Tools from linear systems theory were also used in [4], for ad-
dressing multiuser communication in the presence of noiseless
feedback.

The impact of noise in the feedback link on fundamental per-
formance limits and on explicit schemes that attain them has
received attention recently. Examples are the papers [22], [3],
where the authors study the tradeoff between reliability and
delay in coding for discrete memoryless channels with noisy
feedback, and suggest concrete coding schemes for this sce-
nario. One of the ideas suggested in our paper is to address
bounded noise in the feedback loop via quantization. A similar
technique, in the control context, was proposed in [23]. More-
over, the authors of [20] consider the capacity of discrete fi-
nite-state channels in the presence of noninvertible maps in the
feedback link, such as quantization, while [10] is primarily con-
cerned with the impact of noise in the backward link on the error
exponents. Further limits on the usefulness of noisy feedback

1Here we are not restricted to Gaussian channels. As such, white means that
distinct time samples are uncorrelated, but not necessarily independent.

Fig. 1. Basic feedback scheme.

are discussed in [6] and the Gaussian multiple-access channel
(MAC) with imperfect feedback is studied in [13].

The remainder of this paper is structured as follows. Section II
presents preliminary results and definitions, while Section III
specifies and analyzes a coding scheme in the presence of feed-
back corrupted by bounded additive noise, under the assumption
that the noise is observable at the decoder. The main results of
the paper are presented in Sections IV and V, where we describe
and analyze coding schemes for the cases where the backward
link features uniform quantization or bounded additive noise,
respectively. The paper ends with conclusions in Section VI.

Notation:
• Random variables are represented in upper case letters,

such as .
• Stochastic processes are indexed by the discrete time

variable , like in . We also use to represent
, provided that . If is a negative

integer then we adopt the convention that is the empty
set.

• A realization of a random variable is represented by
lower case letters, such as .

II. PRELIMINARY RESULTS AND DEFINITIONS

In this section, we define and analyze a feedback system
whose structure is described by the diagram of Fig. 1. The
aforementioned system will be present in the coding schemes
proposed in subsequent sections.

For the remainder of this paper, we consider that is a zero
mean and white2 stochastic process of variance and that
is a real random variable taking values in . In addition,
and are assumed independent for all . The feedback noise

is a real stochastic process with bounded support, whose am-
plitude has a least upper bound denoted as , implying that the
following holds:

Other than its boundedness, we impose no restrictions on .
In fact, all of our results hold under the sole assumption that

has bounded support. In addition, is the only a priori
information about that we use in our proofs. Hence, can
be any bounded arbitrarily varying stochastic process and it may
be chosen so as it is dependent, or even a function of and/or

. In particular, from Section IV onwards, we focus on the

2Here we are not restricted to Gaussian channels. As such, white means that
distinct time samples are uncorrelated, but not necessarily independent.
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specific case where is the quantization error associated with
the uniform quantization of the output of the channel.

The remaining signals and are also real stochastic
processes. The block represented in Fig. 1 by is a causal
operator that maps and into for all . Similarly,
maps and into . The description of the maps and
is given in the following definition.

Definition 2.1: Given a positive real constant , the operators
and , represented

in Fig. 1, are defined as follows:

if

if
(1)

if
if

(2)

Notice that (1) has a term, given by , that grows expo-
nentially. However, it should be observed that if the feedback
loop is closed (see Fig. 1) by using then

is given by

(3)

In order to arrive at (3), we observe that (1) can be equivalently
expressed via the following recursion:

(4)

By substituting into (4), we obtain the
following:

(5)

which, when expanded as a sum, leads to (3). Notice that (3)
specifies a system that is stable, in the sense described in the
following proposition.

Proposition 2.1: Let and be given positive con-
stants and consider the equality expressed in (3). The following
holds:

(6)

If we view the feedback loop of Fig. 1, with input to state
representation given by (3), as a system with three inputs

and state , then Proposition 2.1 leads to the
conclusion that the second moment of the state will not grow
unbounded.

Proof of Proposition 2.1: Let be a random variable with
finite second moment. We define the following semi-norm:

(7)

Notice that satisfies the triangle inequality. Hence, we
can use (3) to write the following inequality:

(8)

Now notice that we can use the fact that and
to obtain the following:

(9)

(10)

where the inequality in (9) follows by noticing that is white
and zero mean, while (10) is a direct application of the triangle
inequality. The proof follows by substitution of (9) and (10) into
(8).

In the absence of noise at the backward link, i.e., , (1)
and (2) are equivalent to the equations used in the original work
by Schalkwijk–Kailath [26]. An alternative minimum variance
control interpretation to (1) and (2), in the presence of perfect
feedback, is given in [4]. The following lemma states a few prop-
erties of (1) and (2), motivating their use in the construction of
coding schemes.

Lemma 2.2: Let and be given positive real con-
stants. Consider the feedback system of Fig. 1, which is de-
scribed by (1) and (2) in conjunction with the following equa-
tions:

(11)

(12)

The following holds:

(13)

(14)

If is zero-mean, white and Gaussian, with variance , then
the following holds:

(15)

where and are the following positive real constants:

(16)

(17)
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Proof: In order to check the validity of (13), we only need
to substitute (2) in (13) and verify that, indeed, we arrive at (3).
The validity of (14) follows from Proposition 2.1. In order to
prove (15), under the assumption that is zero mean white
Gaussian, we define the following auxiliary Gaussian process:

if
if (18)

The following inequality follows from (9):

(19)

From (10) and the fact that the equality below holds

we obtain the following:

(20)

Consequently, we arrive at

(21)

where we used the facts that the inequalities
and hold, as well as the fact that is normally
distributed. The derivation of (15) is complete once we use the
following upper bound [21, p. 220, eq. (5.1.8)]:

(22)

III. A CODING SCHEME WITH FEEDBACK

In this section, we describe a coding scheme in the presence
of feedback according to the framework of Fig. 2, where and

are defined by (1) and (2), while the maps and will
be defined below. Notice that the scheme of Fig. 2 assumes that

has direct access to the feedback noise . Under such an
assumption, in this section we construct an efficient and simple
coding and decoding scheme that will be used as a basic building
block in the rest of the paper. In Section IV, we use the fact
that if the backward link is corrupted by uniform quantization
then, in fact, is the quantization error, which can be recovered
from the output of the forward channel and used as an input to

. Finally, in Section V, we show that bounded noise in the
feedback link can be dealt with by using a modification of the
quantized feedback framework of Section IV. It should be noted
that in the schemes presented in Sections IV and V, the decoder
relies solely on the output of the forward channel.

The main result of this section is stated in Theorem 3.2, where
we compute a rate of reliable3 transmission, in bits per channel

3By reliable transmission we mean that the probability of error converges to
zero with increasing block length �.

Fig. 2. Basic feedback scheme with encoding and decoding.

use, which is achievable by the scheme of Fig. 2, in the pres-
ence of a power constraint at the input of the forward channel.
Such a transmission rate is a function of the parameters ,

, and it also depends on the forward channel’s input power
constraint, which we denote as . Theorem 3.2 also provides
a lower bound on the error exponent of the resulting scheme. If
the forward channel is additive, white, and Gaussian then The-
orem 3.2 shows that the probability of error of the scheme of
Fig. 2 decreases as a doubly exponential function of the block
length.

We start with the following definitions of the ceiling and floor
functions denoted by and , respectively.

(23)

(24)

The following definition specifies the maps and rep-
resented in Fig. 2.

Definition 3.1: Given a positive integer , a positive real
constant , a random variable taking values in the set

, and a real stochastic process , the fol-
lowing is the definition of the maps and

:

(25)

(26)

For the remainder of this paper, denotes the block length
of the coding schemes and represents a design parameter that
quantifies the desired information rate, in bits per channel use.
The following equations, describing the coding scheme of Fig.
2, will be used in the statement of Lemma 3.1 and Theorem 3.2:

(27)

(28)

(29)

Lemma 3.1: Let and be given positive real parame-
ters. Consider that the block length is given by a positive integer

, that the desired transmission rate is a positive real number
strictly less than , and that is a random variable arbitrarily
distributed in the set . If we adopt the scheme of
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Fig. 2, alternatively described by (27)–(29), then the following
holds:

(30)

If is zero mean, white, and Gaussian with variance then
the following doubly exponential decay, with increasing block
size , of the probability of error holds:

(31)

where and are positive real constants given by (16) and (17),
respectively.

Proof: We start by using (25) and (26) and the fact that
is in the set to conclude the fol-

lowing:

(32)

leading to

(33)

Using (13), (33), and the fact that , we get

(34)
The inequality (30) follows from Markov’s inequality applied

to (34). Finally, the inequality (31) follows from (34) and (15).

A. Lower Bounds on the Achievable Rate of Reliable
Transmission in the Presence of a Power Constraint at the
Input of the Forward Channel

Below, we define a function that quantifies an achievable rate
of reliable transmission for the scheme of Fig. 2, in the presence
of a power constraint at the input of the forward channel.

Definition 3.2: For every choice of positive real parameters
and satisfying , define a function

as the nonnegative real solution
of the following equation:

(35)

If, instead, then .

It is readily verifiable that a nonnegative real solution of (35),
in terms of , exists and is unique, provided that and are
strictly positive and that is less or equal than .

Henceforward, we will show that, given and ,
the communication scheme proposed at the beginning of this
section attains rates of reliable transmission that are arbitrarily
close to . Hence, from Definition 3.2, we can
also infer that the power inequality is a sufficient

condition for the existence of a positive rate of reliable trans-
mission. This fact has physical significance since it establishes
that, for any given , there is a minimal critical value of ,
above which our communication scheme is guaranteed to have
positive rate of reliable communication.

Theorem 3.2: Let and be given positive real
parameters satisfying . In addition, select a posi-
tive transmission rate and a positive real constant satisfying

. For every positive integer block
length , the coding scheme of Fig. 2, alternatively described
by (27)–(29), leads to

(36)

(37)

where is a random variable arbitrarily distributed in the set
. If is zero mean, white, and Gaussian with

variance , then the following doubly exponential decay, with
increasing block size , of the probability of error holds:

(38)

where and are positive real constants given by (16) and (17),
respectively.

Theorem 3.2 shows that the scheme of Fig. 2, under the con-
straint that the time average of the second moment of is less
or equal4 than , allows for reliable transmission at any rate
strictly less than . Theorem 3.2 also states that
any rate of transmission , if strictly less than ,
is viable with error exponents that are arbitrarily close to

. In addition, Theorem 3.2 shows that if the for-
ward channel is additive, white ,and Gaussian then the prob-
ability of error decreases with the block length at a doubly
exponential rate (see (38)).

Proof of Theorem 3.2: The inequalities (37) and (38)
follow directly from (30) and (31), as stated in Lemma 3.1.
We now proceed to the derivation of (36), which we start
by noticing that the following holds for every positive real
strictly less than :

(39)

In the derivation of (39), we used the fact that, given positive
, , and , the function

is strictly increasing with respect to positive real . Now, recall

4See inequality (36).
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Fig. 3. Plot of ��� � � � �� � using � � �� � � �� and �� � ��� �	.

that since we assume that , from Definition 3.2 we
conclude that the following equality holds:

(40)

which, when substituted into (39), leads to the following in-
equality:

(41)

In order to obtain (36), we only need to substitute (41) into (14),
as stated in Lemma 2.2.

It follows from its definition, as the solution to (35), that
also satisfies the following three properties:

(42)

(43)

(44)

where indicates that the ratio between the left- and right-hand
sides of (44) tends to as . If is white Gaussian
then (42) indicates that in the limit, as the second moment of
feedback noise goes to zero, the scheme of Fig. 2 approaches
capacity.5 We have computed for

and one thousand equally spaced values of , ranging
from zero to one and the results are plotted in Fig. 3. The plot
illustrates a graceful (continuous) degradation of
as a function of , going from the highest rate of ,
achieving capacity when is Gaussian, down to zero when

, which is consistent with (42) and (43), respectively.

5It is a standard fact [2] that the capacity in bits per channel use of an additive
Gaussian channel, with noise variance � and input power constraint � , is

given by 
�� � 
 .

Fig. 4. A coding and decoding scheme in the presence of uniformly quantized
feedback.

IV. SPECIFICATION OF A CODING SCHEME USING UNIFORMLY

QUANTIZED FEEDBACK

In this section, we consider the scheme of Fig. 4, where
represents a memoryless uniform quantizer with sensitivity
and gives the associated quantization error. The main re-
sult of this section is Corollary 4.1, where we indicate that the
results of Section III hold in the presence of uniformly quan-
tized feedback. Notice that the diagram of Fig. 4 follows from
Fig. 2 by adopting as the quantization error, which the de-
coder reconstructs by making use of applied to the output
of the forward channel. The precise definitions of the uniform
quantizer and of the quantization error function are
given below as follows.

Definition 4.1: Given a positive real parameter , a uniform
quantizer with sensitivity is a function defined as

(45)

Similarly, the quantization error is given by the following func-
tion:

(46)

which satisfies the following bound:

(47)

The coding scheme of Fig. 4 can be equivalently expressed
by the following equations:6

(48)

(49)

(50)

(51)

The next corollary follows directly from Theorem 3.2 applied
to the scheme of Fig. 4, along with the upper bound (47).

Corollary 4.1: Let and be positive real constants
satisfying , where represents the sensitivity of the

6Some of these equations have been used before, but we repeat them here for
convenience.
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quantizer. In addition, select a positive transmission rate and
a positive real constant satisfying the sequence of inequali-
ties . For every positive integer block
length , the coding scheme specified by (48)–(51) (see Fig. 4)
leads to

(52)

(53)

where is a random variable arbitrarily distributed in the set
. If is zero mean, white, and Gaussian with

variance then the following doubly exponential decay, with
increasing block size , of the probability of error holds:

(54)

where and are positive real constants given by (16) and (17),
respectively.

Notice that Corollary 4.1 shows that, in the presence of uni-
formly quantized feedback with sensitivity , any strictly
less than is a viable rate of reliable trans-
mission. This implies that the properties (42) and (43), along
with the conclusions derived in Section III, hold for uniformly
quantized feedback. In particular, the achievable rate of reliable
transmission of the coding scheme of Fig. 4 degrades gracefully
as a continuous function of the quantizer sensitivity (see
the numerical example shown in Fig. 3).

V. CODING AND DECODING IN THE PRESENCE OF FEEDBACK

CORRUPTED BY BOUNDED NOISE

From Corollary 4.1, we conclude that there exist simple ex-
plicit coding strategies based on Schalkwijk–Kailath’s frame-
work that, even in the presence of uniformly quantized feed-
back, provide positive rates with positive error exponents. In
this section, we aim at designing coding schemes in the pres-
ence of feedback corrupted by bounded noise. The main result
of this section is discussed in Section V-A, where we describe
a communication scheme whose structure is that of Fig. 5. In
addition, we analyze the performance of such a scheme in the
presence of power constraints at the input of the forward and
backward channels. The proposed scheme retains the simplicity
of the Schalkwijk–Kailath scheme [26], but, in contrast to the
original scheme (which breaks down in the presence of noise
in the backward link [26, Sec. III-D]), achieves a positive rate
of reliable communication and is in fact capacity achieving in
the limit of high SNR in the backward link (assuming white
Gaussian noise in the forward channel). The scheme proposed in
Section V-A also guarantees that, if the forward channel is addi-
tive, white, and Gaussian, then the probability of error converges
to zero as a doubly exponential function of the block length, as
measured in channel uses. The main results of this section are
stated in Theorem 5.1.

Fig. 5. Communication scheme in the presence of bounded feedback noise.

Fig. 6. Schematic representation of the equivalence expressed in Remark 5.1.

A. Performance in the Presence of a Power Constraint at the
Input of the Backward Channel

For the remainder of this section, we will define a coding
scheme whose structure is that of Fig. 5. The additive noise
in the feedback link is arbitrarily distributed, bounded and the
tightest upper bound to its amplitude is denoted as , meaning
that the following holds:

The following remark will be used in the construction of a
coding scheme with the structure of Fig. 5.

Remark 5.1: Let be a positive real constant and be a
real-valued stochastic process satisfying with prob-
ability one. Given a positive real parameter , the following
holds with probability one:

(55)

where is given by

(56)

The schematic representation of the equivalence expressed in
Remark 5.1 is displayed in Fig. 6. In such a scheme, is the
bounded additive noise at the backward channel with input .

Aiming at constructing a coding scheme according to the
structure of Fig. 5, we use Remark 5.1 to obtain a new coding
strategy by substituting the feedback quantizer of Fig. 4
with the equivalent additive noise channel diagram of Fig. 6.
The resulting scheme, along with the encoding and decoding
strategy of Section IV, provides a solution to the problem of
designing encoders and decoders in the presence of an additive
(bounded) noise backward channel (see Fig. 7). Under such a
design strategy, becomes a design parameter. Notice that
viewing as a design knob is in contrast with the framework
of Section IV, where was a given constant.
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Fig. 7. Proposed coding scheme for dealing with the feedback corruption that
results from additive noise � in the backward channel. The scheme is con-
structed by replacing the quantizer in the diagram of Fig. 4 with the scheme of
Fig. 6. The encoder and decoder blocks are described in detail in Fig. 4.

Regarding the role of , we have shown in (42) that as
approaches zero, the achievable rate of reliable transmission
converges to a positive value, which, in the case where is
white Gaussian, coincides with capacity. However, for any given
positive real , the smaller the larger the scaling constant

in (56) and that may lead to having an arbitrarily large
second moment. In Theorem 5.1, we show that the function de-
fined below solves the aforementioned problem by providing a
suitable choice for , in the presence of power constraints at
the input of the forward and backward channels.

Definition 5.1: Let and be given positive
real constants, where symbolizes a power constraint at the
input of the backward channel . Below, we define the function

, which we will use as a selection for the design
parameter

(57)

The following Theorem is one of the main results of this
paper.

Theorem 5.1: Let and be positive constants
satisfying and . In ad-
dition, select a positive transmission rate and a positive real
constant satisfying the sequence of inequalities

For every positive integer block length , the coding scheme of
Fig. 7, alternatively described by (48)–(51) and (56), leads to

(58)

(59)

(60)

where is a random variable arbitrarily distributed in the set
. If is zero mean, white, and Gaussian with

variance then the following doubly exponential decay, with
increasing block size , of the probability of error holds:

(61)

where and are positive real constants given by (16) and
(17), respectively, where is given by the assumed selection

.
Proof: The inequalities (58), (60), and (61) follow directly

from Corollary 4.1. In order to arrive at (59), we start by noticing
that we can use the triangle inequality to find the following
inequalities:

(62)

(63)

In addition, substitution of (62) in (63), leads to

(64)

which, from (58), implies the following:

(65)

The proof is complete since (59) follows by substituting our
choice in (65).

Under the conditions of Theorem 5.1, including our choice of
the design parameter , the following limit holds:

(66)

Notice that (66) leads to the conclusion that, under our choice
of , the performance of the scheme of Theorem 5.1 (see
Fig. 7) degrades gracefully as a function of , in terms of both
the rate and the error exponent. If is white Gaussian then (66)
indicates that as tends to zero, the scheme of Theorem 5.1
can be used to reliably communicate at a rate arbitrarily close
to capacity. Moreover, such a conclusion holds in the presence
of an arbitrarily low power constraint at the backward channel.
The plot of Fig. 8 displays how the achievable rate changes as
a function of , under the choice .
Such a plot also illustrates that by increasing , we can reduce
the sensitivity of the achievable rate of reliable transmission, rel-
ative to variations in .

B. Further Comments on the Location of the One-Step
Feedback Delay

In the framework of Fig. 7, the one-step delay block is lo-
cated after the feedback decoder. However, we should stress
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Fig. 8. Plot of ��� � � � �� �� using� � �� � �
�� and �� � ��� ��, for � taking values �� 	� �� and 
.

Fig. 9. A coding scheme equivalent to the one described by Fig. 7.

that, since the feedback decoder is time invariant, our coding
scheme would be unaltered if we had placed the delay block be-
fore as indicated in Fig. 9. Indeed, the diagrams of Figs. 7 and
9 are equivalent, implying that Theorem 5.1 holds also for the
coding scheme of Fig. 9.

VI. CONCLUSION

We derived simple schemes for reliable communication over
a white noise forward channel, in the presence of corrupted feed-
back. Both the case of uniform quantization noise and the case
of additive bounded noise in the backward link were consid-
ered, where, in the latter case, encoding at the input to the back-
ward channel is allowed. The schemes were seen to achieve
a positive rate of reliable communication, and in fact be ca-
pacity-achieving in the presence of an additive white Gaussian
forward channel, in the limit of small noise (or high SNR when
encoding is allowed) in the backward link. In addition, still
under the assumption that the forward channel is additive white
Gaussian, the proposed schemes guarantee that the probability
of error converges to zero as a doubly exponential function of
the block length.

Our approach to the construction and analysis of coding
schemes carries over naturally to the case where the noise in the
forward channel is nonwhite. In this case, we expect to obtain
variations on the schemes in [9] that are analogous to those in
the present work and whose gap to capacity behaves similarly.
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