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Abstract—When the denoiser has complete knowledge
about the clean source distribution, the Bayes optimal de-
noiser is the Bayes response of the posterior distribution
of the source given the noisy observations. However, in
many applications the source distribution is unknown. An
approximation of the posterior distribution is derived from
the universal probability assignment on the noisy process
induced by a universal lossless compression code. We use
the approximate posterior distribution to design a uni-
versal lossless compression-based denoiser. Motivated by
this approach, we consider a class of empirical conditional
entropy-based denoisers which have computational complex-
ity linearly proportional to the product of the data length
and the context length. Simulations show that when the
source alphabet is small, the empirical conditional entropy-
based denoiser achieves the performance of the Universal
Discrete DEnoiser (DUDE). Furthermore, if the alphabet size
increases, the empirical conditional entropy-based denoiser
has more graceful performance degradation than the DUDE.

I. Introduction

The setting of a denoising problem is shown in Fig. 1.
The clean source sequence may be a Markov process,
speech, or texts. The source is corrupted by a memo-
ryless noisy channel. The denoiser observes the chan-
nel output sequence and reconstructs an estimation se-
quence of the source. It is called a filtering problem if the
denoiser computes the estimation sequence causally. The
denoising performance is measured by a per-symbol loss
function. There are several well-developed approaches
to denoising, such as linear filtering [1], [2], nonlinear
denoising [3], and the forward-backward recursions for
hidden Markov processes (see [4]). Most of these tech-
niques assume that the denoiser has complete knowl-
edge about the source distribution. However, this is not
always realistic.

In a causal filtering problem, if the source distribution
is unknown, the source distribution approximation in-
duced by a universal lossless compression code yields
an universal predictor [5], and a universal predictor
induces a universal filter [6]. For the noncausal denois-
ing problem, the Discrete Universal DEnoiser (DUDE)
in [7] is the Bayes response of an approximate pos-
terior distribution of the source sequence given the
observed noisy sequence, which is derived from the

source channel denoiser estimate
noisy

sequence

Fig. 1. Discrete denoising problem

empirical two-sided context counts of the noisy se-
quence. The DUDE asymptotically achieves the optimal
performance of genie-aided stationary (sliding-window)
denoisers which know the clean source sequence. In [8],
the classical unidirectional context-tree models [9] are
generalized to multi-directional settings for universal
denoising. In [10], bidirectional models are established
from unidirectional models and achieve better denoising
performance than the DUDE does in some applications.

In this paper, we directly approximate the unknown
source distribution via a universal lossless compression
code and apply it to universal lossless compression-
based denoising. Our simulation results show that the
proposed denoiser is competitive with the DUDE for
denoising binary first-order Markov processes and ran-
domly corrupted texts.

In the next section, we formally define the discrete
denoising problem. In Section III, we present the empir-
ical conditional entropy-based denoiser. Simulations in
Section V compares the empirical conditional entropy-
based denoiser with the DUDE. We conclude this paper
in Section VI.

II. Discrete Denoising

We consider the discrete denoising problem in Fig. 1.
The source sequence is an n-block stochastic sequence
Xn , (X1, X2, . . . , Xn) (or deterministic sequence xn),
where Xi (or xi) is in a finite alphabet X . The source
sequence is corrupted by a discrete memoryless channel
Π ∈ RX×Z , where Z is a finite alphabet of noisy
symbols, and Π(x, z) = PZ|X=x(z). We assume that the
channel matrix Π has full row rank. The i-th component
of the n-block denoiser X̂i is a deterministic mapping from
Zn , Z ×Z × . . .×Z to the finite reconstruction alpha-
bet X̂ for i = 1, 2, . . . , n. A loss function Λ ∈ RX×X̂ is
given, where Λ(x, x̂) : X × X̂ → [0, ∞). The performance



of the n-block denoiser is evaluated by the expected per-
symbol loss function

E LX̂n(xn, Zn) = E

(
1
n

n

∑
i=1

Λ(Xi, X̂i(Zn))

)
.

In the following theorem, we recall The Bayes optimal
denoiser in [7].

Theorem 1 (see [7]): For the discrete denoising problem
with channel matrix Π, loss matrix Λ, and arbitrarily
distributed source Xn, the Bayes optimal denoiser X̂n

opt
which minimizes E LX̂n(Xn, Zn) is

X̂opt,i(zn) = X̂Bayes(PXi |zn) = Φ(Π, Λ, PZi |zn\i , zi). (1)

The vector PXi |zn is a column vector in RX with the x el-
ement PXi |zn(x) = P(Xi = x|Zn = zn). The vector PZi |zn\i

is defined in a similar way, where zn\i = (zi−1
1 , zn

i+1). The
functions X̂Bayes and Φ are defined as

X̂Bayes(PXi |zn) = arg min
x̂∈X̂

(
λT

x̂ PXi |zn

)
,

Φ(Π, Λ, PZi |zn\i , zi) = X̂Bayes

(
(ΠΠT)−1ΠPZi |zn\i � πzi

)
,

where λx̂ is the x̂ column of Λ, and πzi is the zi column
of Π.

We also need the following definitions of universal
lossless compression codes and universal probability
assignments.

Definition 1: A compression code cn is a mapping
from X n to {0, 1}∗, the set of all finite binary strings.
We denote the length of codeword cn(xn) as ln(xn). A
compression code is non-singular if cn(xn) 6= cn(x̃n) for
all xn 6= x̃n, and a compression code is lossless if its
extension is non-singular. A lossless compression code
is universal if E((1/n)ln(Xn)) → H(X) as n → ∞ for all
stationary processes X, where H(X) is the entropy rate
of the process X.

Definition 2: A probability assignment Q is a set of con-
ditional probabilities {{QXi |xi−1}xi−1∈X i−1}i≥1. A proba-
bility assignment is universal if

lim
n→∞

1
n

D(PXn‖QXn) = 0

for all stationary processes X with distribution P, de-
noted as X ∼ P, where QXn(xn) = ∏n

i=1 QXi |xi−1
(xi).

The following theorem shows that a universal lossless
compression code induces a universal probability assign-
ment.

Theorem 2 (see [11]): Given a universal lossless com-
pression code cn and the corresponding length function
ln, the probability assignment induced by

QXn(xn) =
2−ln(xn)

∑x̃n 2−ln(x̃n)
(2)

is universal.

III. Universal Lossless Compression-based Denoiser

In a discrete denoising problem, if the denoiser knows
the source distribution, it also knows the noisy source
distribution and so can compute the conditional prob-
ability PZi |zn\i and then find the Bayes optimal denoiser
in (1). However, the computational complexity may grow
too fast as n increases. Furthermore, in many practical
scenarios, the source distribution is unknown. Thus, al-
gorithms using approximations of the conditional prob-
ability PZi |zn\i are considered. For example, the DUDE of
order k in [7] uses the empirical two-sided context counts

mk

(
zn, u−1

−k , uk
1

)
[u] =

|{k + 1 ≤ i ≤ n− k : zi+k
i−k = (u−1

−k , u, uk
1)}|

as an (unnormalized) estimate of the distribution of the
noisy sequence to compute the Bayes response

X̂(k)
DUDE,i(z

n) = Φ
(

Π, Λ, mk

(
zn, zi−1

i−k , zi+k
i+1

)
, zi

)
.

The DUDE is a sliding-window denoiser of order 2k + 1,
that is, if zi+k

i−k = zj+k
j−k, then X̂DUDE,i(zn) = X̂DUDE,j(zn).

According to Theorem 2, the probability assignment
induced by a universal lossless compression code is also
a good approximation of the distribution of a sequence
in the Kullback-Leiber divergence sense. Thus, for any
universal lossless compression code employed on the
noisy process with length function ln, we consider the
universal lossless compression-based denoiser

X̂cmpr,i(zn) = Φ(Π, Λ, QZi |zn\i , zi) (3)

where QZi |zn\i is computed based on QZn(zn) as given
in (2). In general, a universal lossless compression-based
denoisers is not a sliding-window denoiser. The com-
putation complexity of a universal lossless compression-
based denoiser depends on the computation complexity
of the compression code. For example, if we use the
Lempel-Ziv compression in [12], the best known com-
putation complexity is Θ(n2): at each location i, we
need to compute ln(zi−1zzn

i+1) for all z ∈ Z , which
requires incremental parsing of the (n − i + 1)-block
sequence (z, zn

i+1). For context-tree weighting mothods,
there is also no known efficient algorithm to update the
probability estimate for the sequence (zi−1, z, zn

i+1) from
the estimate for the sequence zn, cf. discussions in [8],
[10].

Motivated by the complexity improvement of the
Yang-Kieffer lossy compression code [13] in [14], [15]
by replacing the Lempel-Ziv length function with the
empirical conditional entropy, we consider the following
denoiser.

Definition 3: The empirical conditional entropy of order k
of the n-block sequence zn is

Hk(zn) =
1

n− k ∑
uk∈Zk

‖ck(zn, uk)‖1H(ck(zn, uk)) (4)



where

ck(zn, uk)[u] = |{k + 1 ≤ i ≤ n : zi−1
i−k = uk, zi = u}|, and

H(ck(zn, uk)) = ∑
u∈Z

ck(zn, uk)[u]
‖ck(zn, uk)‖1

log
‖ck(zn, uk)‖1

ck(zn, uk)[u]
.

The empirical conditional entropy-based denoiser of order
k is denoted as X̂(k),n

emp where

X̂(k)
emp,i(z

n) = Φ(Π, Λ, Q(k)
Zi |zn\i , zi), (5)

Q(k)
Zi |zn\i (zi) =

2−nHk(zn)

∑z̃∈Z 2−nHk(zi−1 z̃zn
i+1)

. (6)

Note that the conditional probability in (6) is induced by
the probabiilty

Q(k)
Zn (zn) =

2−nl(k)n (zn)

∑z̃n∈Zn 2−nl(k)n (z̃n)
, (7)

which, in turn, is induced by the bona fide length
function

l(k)n (zn) = nHk(zn) + |Z|k+1 log n.

In the following theorem, we show that the probability
assignment induced by the empirical conditional entropy
is universal provided k is increased sufficiently slowly
with n.

Theorem 3: The probability assignment Q =

{{Q(k)
Zi |zi−1}zi−1}i≥1 given by (7) is universal provided if

k = kn such that kn → ∞ as n → ∞ and kn ≤ c log|Z| n
for c < 1.

Proof: For any stationary process Z ∼ P,

lim sup
k→∞

E Hk(Zn) ≤ lim sup
k→∞

H(Z0|Z−1
−k ) = H(Z).

Now we consider

0 ≤ 1
n

D(PZn‖Q(kn)
Zn ) = ∑

zn∈Zn
PZn(zn) log

PZn(zn)

Q(k)
Zn (zn)

≤ 1
n ∑

zn∈Zn
(PZn(zn) log PZn(zn)

+nPZn(zn)Hkn(Zn) + PZn(zn)|Z|kn+1 log n
)

≤ − 1
n

H(Zn) + E Hkn(Zn) + |Z|n
c log n

n
,

where the second inequality follows by the Kraft’s in-
equality, and the last inequality follows by assumptions.
Taking n→ ∞, we obtain

0 ≤ lim
n→∞

1
n

D(PZn‖Q(kn)
Zn ) ≤ −H(Z) + H(Z) = 0.

Thus, the probability assignment Q is universal.

The empirical conditional entropy-based denoising
process consists of two passes. In the first pass, at
location k + 1 ≤ i ≤ n, the context count ck(zn, zi−1

i−k)[zi]

and the associated term in empirical conditional entropy
Hk(zn) in (4) are updated. At the end of the first pass, we
obtain the empirical context counts ck(zn, uk)[uk+1] for
all uk+1 ∈ Z k+1 and the empirical conditional entropy
Hk(zn). In order to compute Q(k)

Zi |zn\i (zk) in (6), we need

to compute Hk(zi−1z̃zn
i+1) for all z̃ in the second pass. At

location k+ 1 ≤ i ≤ n, we first remove context counts as-
sociated with k + 1-block sequences zi

i−k, zi+1
i−k+1, . . . , zi+k

i
and update the corresponding terms in Hk(zn) in (4).
Then we flip zi to z̃ and denote the new sequence as
z̃n. Now we add context counts associated with these
new k + 1-block sequences z̃i

i−k, z̃i+1
i−k+1, . . . , z̃i+k

i and up-
date the empirical conditional entropy which is equal
to Hk(zi−1z̃zn

i+1). We repeat this process for each z̃ ∈
Z \ {zi} and compute the posterior distribution in (6)
and the estimate in (5). Note that if zi+k

i−k = zj+k
j−k, then the

second pass processes at locations i and j are identical,
which implies that x̂i = x̂j. Thus, a empirical conditional
entropy-based denoiser is a sliding-window denoiser of
order 2k+ 1. Furthermore, the computational complexity
of the empirical conditional entropy-based denoiser is
O(kn).

IV. Context Length Selection

The empirical conditional entropy induces an uni-
versal probability assignment if context length k grows
with data length n at the rate given in Theorem 3. For
particular finite source and noisy sequences xn and zn,
the optimal context length for the empirical conditional
entropy-based denoiser is

k∗(xn, zn) = arg min
k

L
X̂n,(k)

emp
(xn, zn).

However, the denoiser only observes the noisy sequence
and cannot find the optimal context length. We thus con-
sider the heuristic method based on the compressibility
of the noisy sequence zn. For each fixed context length
k, we obtain the empirical conditional entropy Hk(zn)
after the first pass of empirical conditional entropy-based
denoising. The denoiser selects context length k̂ that
minimizes the compression code length of the noisy
sequence zn, that is,

k̂(zn) = arg min
k

l(k)n (zn)

= arg min
k

(
Hk(zn) + |Z|k+1 log n

n

)
.

Since the probability PZn(zn) is essentially given by

2−l(k)n (zn), the context length k̂(zn) maximizes the like-
lihood of the noisy sequence over all possible context
lengths. Note that, in [7], the heuristic method for choos-
ing the context length is based on the compressibility of
the estimation sequence, instead of the noisy sequence.
In the next section, we will show that in our experimental



data the context length k̂ is close to the optimal (genie-
aided) context length k∗ and, as a consequence, the
denoising performance achieved when using k̂ is close
to that based on the genie-aided k∗.

V. Simulation Results

We compare the performance of the empirical condi-
tional entropy-based denoiser and the DUDE for two
settings, the first-order Markov binary process source
with binary symmetric channel (BSC) and the corrupted
English texts.

A. Binary sequence denoising
In the binary case, we assume that X = Z = X̂ =
{0, 1} and the source X is a first-order Markov process
with transition matrix[

1− α α
α 1− α

]
.

The channel is BSC with parameter δ, and the loss
function is Hamming loss, that is,

Π =

[
1− δ δ

δ 1− δ

]
and Λ =

[
0 1
1 0

]
.

It can be shown that

Φ(Π, Λ, v, z) =


z if

v(z)
v(1− z)

≥ 2δ(1− δ)

δ2 + (1− δ)2 ,

1− z otherwise.

In this case, if the denoiser knows the source distribution,
the Bayes optimal denoiser can be computed by the
forward-backward recursions (see [4]). We compare the
per-symbol loss for denoising an individual sequence of
length n = 106. The context lengths k for the empiri-
cal conditional entropy-based denoiser and the DUDE
are chosen to minimize the per-symbol loss. Table I
shows the simulation results. Since we only consider
an individual source sequence rather than averaging the
per-symbol loss over multiple source realizations, some
per-symbol losses are greater than the BSC parameter
δ, which is the per-symbol loss when x̂i = 0 for all
1 ≤ i ≤ n. The performances of the empirical conditional
entropy-based denoiser and the DUDE are almost the
same as the performance of the Bayes optimal denoiser.
In general, the empirical conditional entropy-based al-
gorithm requires longer context length to achieve the
performance of the DUDE. In Fig. 2, we compare the per-
symbol losses of the empirical conditional entropy and
the DUDE and the properly-scaled compression code
length of the noisy sequence under different context
lengths for α = 0.01 and δ = 0.1. We also plot the per-
symbol loss of the optimal denoiser as a reference. For
the particular source and noisy sequences, the optimal
context length for the empirical conditional entropy-
based denoiser is k∗ = 8. If we use the heuristic method
in Section IV, we obtain the context length k̂ = 6.

1 2 3 4 5 6 7 8 9 10
k

LX̂n
emp

LX̂n
DUDE

LX̂n
opt

l(k)n (zn)

Fig. 2. Per-symbol losses and compressibility under different context
lengths for the binary case with parameters α = 0.01 and δ = 0.1

B. Text Denoising
The English texts are obtained from Project Gutenberg

(http://www.gutenberg.org). We remove punctuations
and convert uppercase letters into lowercase letters.
Thus, the source alphabet X = {‘a’, ‘b’, . . . , ‘z’, space}.
The text is corrupted by the QWERTY keyboard channel.
The non-space letter is corrupted with probability δ. If
a letter is corrupted, it is flipped to one of its neighbor
uniformly at random. For example, the letter ‘w’ has 3
neighbors ‘e’, ‘q’, and ‘s’. Thus,

Π(‘w’, z) =


1− δ if z = ‘w’,
δ/3 if z = ‘q’, ‘e’, ‘s’,
0 otherwise.

The loss function is Hamming loss, that is,

Λ(x, x̂) =

{
0 if x = x̂,
1 otherwise.

In this case, we cannot compute the Bayes optimal
denoiser in (1) since the source statistics are unknown.
We only compare the empirical conditional entropy-
based denoiser with the DUDE. The context length
k for both denoisers are optimized over 1, 2, and 3.
Table II shows the simulation results for corruption
probability δ = 0.05. The empirical conditional entropy-
based denoiser corrects more errors than the DUDE
does. This may be explained by the following obser-
vation. We consider context length k = 2 for both
denoisers. At location i, the estimate X̂DUDE,i(zn) de-
pends on the vector m(zn, zi−k

i−k, zi+k
i+1) and the symbol

zi, while the estimate X̂emp,i(zn) depends on vectors
ck(zn, zi−1

i−k), . . . , ck(zn, zi+k−1
i ) and the symbol zi. Since

ck(zn, zi−1
i−k)[zi] = ∑

uk∈Zk

m(zn, zi−k
i−k, uk)[zi],

http://www.gutenberg.org


TABLE I
Per-symbol loss for denoising a binary sequence with optimal context length shown in the brackets

δ = 0.01 δ = 0.10
α emp DUDE opt emp DUDE opt

0.01 0.0714 δ [5] 0.0683 δ [2] 0.0681 δ 0.0627 δ [8] 0.0663 δ [5] 0.0567 δ
0.05 0.4313 δ [3] 0.4324 δ [3] 0.4313 δ 0.2971 δ [6] 0.3000 δ [5] 0.2953 δ
0.10 1.0202 δ [5] 1.0203 δ [2] 1.0203 δ 0.5577 δ [4] 0.5566 δ [4] 0.5568 δ
0.15 1.0076 δ [6] 1.0076 δ [3] 1.0076 δ 0.7518 δ [5] 0.7521 δ [3] 0.7521 δ
0.20 0.9972 δ [7] 0.9971 δ [5] 0.9972 δ 0.9253 δ [4] 0.9254 δ [3] 0.9254 δ

TABLE II
Per-symbol loss for denoising corrupted texts

length errors emp DUDE
992050 40235 20169 25394

2230536 90325 41593 44457
3099626 126763 56422 61651

m(zn, zi−k
i−k, zi+k

i+1)[zi] may be much smaller than
ck(zn, zi−1

i−k)[zi] when the alphabet size |Z| or the
context length k is large. However, the empirical
distribution is close to the distribution of the noisy
sequence only when the number of counts are large
enough. In this case of denoising corrupted texts, the
alphabet size is 27, which is much larger than 2, the
alphabet size of the binary case. Thus, the performance
of DUDE is worse than the performance of the empirical
conditional entropy-based denoiser.

VI. Conclusions

It has been shown in the literature that a universal
lossless compression code induces a universal probabil-
ity assignment, and a universal probability assignment
directly yields an asymptotically optimal universal pre-
dictor as well as a universal filter (causal denoiser). In
this work, we use the universal probability assignment
to approximate the posterior distribution of the clean
source given the noisy sequence, and we present the
universal lossless compression-based denoiser. We then
specialize and take a close look at this approach when
employing the empirical conditional entropy-based de-
noiser, which is a sliding-window denoiser and has
lower computational complexity than the denoiser that
would be induced from Lempel-Ziv or context tree
weighting compression. The simulation results show that
the empirical conditional entropy-based denoiser has the
same performance as the DUDE for denoising binary
sequences corrupted by binary symmetric channels. In
correction of corrupted English texts, the sizes of the
source and reconstruction alphabets are large, and the
empirical conditional entropy-based denoiser corrects
more errors than the DUDE does.

We are currently working on comparing the conver-
gence rate of the empirical conditional entropy-based
denoiser and the DUDE, and on proving that universal
lossless compression-based denoisers are universal, i.e.,
achieve the optimum (Bayes) denoising performance on
any stationary source.
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