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Abstract—Broadband internet service providers (ISPs) are for-
profit companies: they provide high speed internet service to
customers in order to maximize revenue. Their revenue depends
on prices they are able to charge the customers, which in turn
depends on the data rates provided. This paper defines the
revenue capacity of a communication channel as the maximum
revenue an ISP can achieve by allocating data rates to consumers,
given an exogenous price function and an exogenous underlying
physical layer model. This paper proposes an algorithm to
compute the revenue capacity for multiuser gaussian channels
with staircase price functions, and to produce feasible data rates
achieving the revenue capacity. The paper concludes with an
analysis of incremental migration of VDSL to vectored VDSL,
quantifying the increase in revenue capacity with the increase in
the percentage of vectored users.

I. INTRODUCTION

The demand for high speed data services is growing rapidly
and is expected to increase exponentially in coming years.
With the explosion of smart devices, every member of the
household now individually requires a high data rate connec-
tion. This translates to a sharp increase in data and bandwidth
demand for residential broadband services. Internet service
providers face the challenge of providing such services at
affordable prices. ISPs today are confronted with the obstacles
of sustainability and economic viability [1]. The economic
viability challenge necessitates the development of meaningful
metrics and assessment tools for joint performance and rev-
enue optimization. This paper introduces the revenue capacity
of a communication link as a useful and meaningful metric
for revenue optimization.

The information theoretic capacity of a communication
channel gives an upper bound on the rate at which information
can be reliably transmitted over the channel. In a similar man-
ner, revenue capacity gives an upper bound on the monetary
worth of a communication link given a price function. A price
function is a mapping from the data rate provided to a cus-
tomer to the price charged per month by the service provider.
Depending upon the physical layer technology, different users
can be provided different rates with tradeoffs between users’
rate. Revenue capacity gives the maximum revenue generating
rate tuple and therefore the maximum possible revenue of the
shared communication link given the underlying physical layer
constraints.

This paper presents a general revenue capacity formula-
tion for multiuser channels. A last-mile/residential broadband

service provider maintains a number of links that can be
twisted pair copper telephone wire, coaxial cable or optical
fiber. Each shared link to the customer premises represents a
multiuser communication channel. In coaxial cable systems,
the users share a single cable up to a drop point. For digital
subscriber line (DSL) transmission over twisted pair copper
cables, although a single line is not physically shared between
different users, crosstalk between lines sharing the same binder
or cable makes it a shared communication medium. The ISP
can find the revenue capacity for each of its links using the
appropriate physical layer model.

Broadband residential services are generally sold in fixed
rate tiers, with a fixed price per month for each tier. In a
competitive market, the prices are exogenous and are not
determined by each ISP alone. In many countries however,
the broadband market is considered a monopoly or oligopoly
where the service providers have a bigger control over pricing
of services. The service providers also have some control over
the rate tiers they offer to their customers. In any case, each
ISP has a price function that maps the data rate provided to the
price charged per month to the customer. These price functions
do not change over long periods of time. The price functions
are also the same over certain geographical regions and do
not change from one link to another. Revenue capacity is the
maximum revenue for a link given such a price function.

The capacity of a communication channel gives an upper
bound on the rate of information transmission. Similarly,
revenue capacity gives an upper bound on the monthly revenue
that a link can provide. It returns the rates for each user
that correspond to the revenue capacity point. It does not
incorporate user preference and assumes that each user will
accept whatever rate is offered and pay for it. The formulation
in the paper however can easily be extended to incorporate
user preference. Each user can specify a minimum desired
rate and a maximum monthly budget. The solution space for
the revenue capacity problem can simply be restricted to lie
in this region.

The revenue capacity characterizes the maximum revenue
that can be derived from a multiuser communication channel.
This characterization can be useful in many ways.

« Revenue capacity gives a single rate tuple which is opti-
mal in a meaningful way instead of a multi-dimensional
rate region [2]. The rate region for a multiuser commu-
nication channel is not only computationally complex to



build, it is also hard to visualize and difficult to use as a
basis for making operating decisions. Revenue capacity
however returns a single point in the multi-dimensional
rate region that is optimal in terms of its monetary return.

e Revenue capacity can be used to compare competing
physical layer technologies. It can be also used to make
technology or infrastructure upgrade decisions. This can
be done by comparing the cost of upgrade with the in-
crease in the revenue capacity resulting from the upgrade.

« Revenue capacity can be used to evaluate different price
functions. Experiments can be done with different rate
tiers and monthly prices, evaluating the benefits of offer-
ing different packages, without rolling them out.

« Revenue capacity gives the rate tuple that is optimal from
the ISPs point of view. Equipped with this knowledge,
the ISP can do targeted advertisement for plan upgrades
to existing customers and for new plans to potential
customers.

o Revenue capacity can enable the ISPs to make better
economic decisions for themselves. This in turn ensures
provision of low cost, high speed internet services to end
users, resulting in overall benefit for both the ISPs and
the customers.

o The revenue capacity solution presented in this paper
can be used for general utility maximization where the
utility functions are the similar but mean something other
than the monthly price of a broadband connection. For
example, a staircase price function can be used as a utility
function for multimedia services like the scalable video
coding extension of H.264 standard, where the video
quality only improves at certain step changes in data rate.

The rest of the paper is organized as follows: Section II
presents a review of the relevant literature. Section III sets up
the revenue capacity problem followed by solution methods
in Section IV. Section V presents an application of revenue
capacity to mixed vectored-unvectored VDSL deployment.

II. LITERATURE REVIEW

The revenue capacity problem is closely related to the
network utility maximization (NUM) problems found in litera-
ture. NUM problems generally assume a network of connected
links with fixed link capacities. In [3], the authors present
a generalized framework for cross layer optimization which
can be applied more broadly. They present generalized NUM
as cross-layer optimization problems where utility is a higher
layer metric and the optimization variables belong to a lower
layer in the internet protocol stack. If utility is a function of
data rate and the optimization variables are link transmission
powers, NUM is equivalent to utility-based power control. The
author in [4] presents a comprehensive discussion of utility
maximization for wireless systems. In case of concave utility
functions, dual decomposition is used to separate the problem
into two subproblems, a weighted sum rate maximization
subproblem and a concave utility maximization subproblem
[5]. This approach is intended for physical layer models that
provide efficient ways of finding maximum weighted sum rates
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and have convex capacity regions. For non-concave utility
functions, monotonic optimization from [6] is employed. The
authors in [6] use the polyblock algorithm for power control
over an interference channel for non-concave utilities that are
increasing functions of data rates.

The revenue capacity problem in this paper extends the dual
decomposition approach from [4] to non-concave, staircase
utility functions. It differs from existing polyblock algorithms
for non-concave utility maximization by employing branch and
bound methods for global maximization.

Revenue capacity also builds on the literature on network
pricing and congestion control. The works [7]-[9] define utility
as a somewhat abstract end-user notion. They assume that
the user (or an intelligent agent in the user’s modem) knows
the utility it derives from a certain data rate. The ISP sets
a price per unit of data rate and shares it with the users.
The end users optimize their utility minus cost, while the
service provider maximizes its revenue. The prices remain
in flux until equilibrium prices are found. This formulation
does not necessarily give real prices that can be charged for
bandwidth supplied. Although dynamic pricing for internet
services has been proposed, there are numerous reasons why
such dynamic pricing models cannot realistically be applied to
internet services. A survey of literature on pricing for residen-
tial broadband is presented in [1], along with the challenges
to dynamic pricing. Because of these challenges, the most
widely used pricing model today is fixed priced rate-tiers. The
rate-tiers are priced by the complex interaction of demand vs.
supply in the market, along with service differentiation and
smart marketing practices by the ISP, among other factors.
For this reason, this paper considers a price function that is a
staircase function of advertised rates. The function is assumed
to be decided in advance and does not change over time or
over different links, as would be the case in a real broadband
market. Figure 1 shows the price functions for three major
service providers in the US as an example.



III. PROBLEM STATEMENT

Consider an ISP providing service to K users over a single,
shared communication channel. Let r; be the rate provisioned
for user K, with r = [ry 7o ---7g|T the vector of user
data rates. The ISP has a price function v : R — R, that
maps a rate r to a price u(r) that is charged to a customer
per month. The function u is exogenous to the problem,
and is a monotonically increasing function of rate. The ISP
seeks to maximize its revenue for the link under consideration
by maximizing the sum of the prices charged to all users.
This maximum revenue depends on the set of achievable
rate vectors over the underlying communication channel and
is characterized by the capacity region C of the channel. A
general revenue capacity problem can be formulated as

K
maximize Z up(rg)

k=1
subject to r € C.

This paper considers capacity regions of Gaussian vector
channels with n independent subcarriers/tones. There are three
basic configurations of interest: the multiple access channel
(MACQ), the broadcast channel (BC) and the interference chan-
nel (IC). The MAC has a single receiver that accepts signals
from K separate transmitters. The BC has a single transmitter
that communicates with K uncoordinated receivers. The IC
has K transmitters and K receivers and no coordination is pos-
sible on either transmit or receive ends. User k receives/sends
by, » bits on tone n based on the power loading and the channel
and noise characteristics on that tone. A configuration agnostic
capacity relation for the nth tone can be written as,

b, € cn(Pr k=1, k), Hn),

where H,, is the noise-normalized channel matrix, b,, =
[b1n bap - bK,n]T is the vector of user bit capacities on tone
n and Py ,, is the transmit covariance matrix for user k', on
tone n (in case of multiple transmit and/or receive antennas).
The total data rate for user £ is the sum of by ,, over all tones,
ie. 7 = fs 22;1 by where f, is the transmit symbol rate.
Each transmitter has a total power budget of P, i.e.,

N
Z trace(Py ) < P;.

n=1

Let R denote the set of all achievable rate vectors ¥ corre-
sponding to transmit covariance matrices that satisfy the power
constraints. Then the capacity region C is the convex hull of
‘R. The revenue capacity problem finds the maximum revenue
rate vector over this convex capacity region. For rate vectors
that are in C\R the physical layer can achieve those rates by
time sharing between at most K rate vectors in R [4]

The capacity region C is characterized by its boundary.
The rate vectors on the boundary of the capacity region
can be found by solving a weighted sum rate maximization

lin case of BC, the dual MAC has K transmit covariance matrices

(WSRMax) problem. Assume f; = 1 for further discussion.
For a weight vector w € R, WSRMax solves the following
problem:

K N
maximize Z W Z by,
k=1 n=1
SUbjCCt to bn S Cn(Pk,n(k::Lm JK)» Hn) Vn
N
Ztraee(Pk’n) < P, Vk.
n=1
The procedure returns the optimal transmit covariance matrices
and corresponding tonal bit capacities. These can be used to
find a weighted sum rate maximizing rate vector I correspond-
ing to w, that lies on the boundary of R. Different weights
w correspond to different rate tuples that lie at the capacity
region boundary. The boundary of C is a convex combination
of these rate tuples.

A. MAC Capacity

A successive decoding implementation is assumed for the
MAC. The tonal capacity relation for the MAC is,

b, € Cn(Pk,n(k:I,--» ,K)an) =
{bn | 0< Z bk,n S 10g2 ‘ Z Hk,nPk,nHzm + I|}
kCK kCK

Let (k) be a decoding order for the MAC. Then,

k
bk =1082(1 > Ha(i) nPr(iynHigsy | + 1)
=1

k—1
— logs (| Z Ho (i), nPr(iynHy iy ol + 1)
=1

In the WSRMax problem for the MAC, the weights directly
translate to a decoding order. This results in a concave ob-
jective function. The WSRMax problem can be solved using
dual decomposition [2].

B. BC Capacity

For the scalar BC, dirty paper coding is the optimal
transmission scheme. Rate tuples achieving the capacity can
be found using duality between the BC and the MAC [2].
This solution method is extended to parallel vector broadcast
channels in [10]. The WSRMax problem can be solved as a
dual MAC problem.

C. IC Capacity

For the IC, single transmit and recieve antennas are consid-
ered. The bits for user k& on tone n are given by

‘Hﬁﬂkak,n )
k,j J
L4375 Hn? 2pjin

where H¥* is the noise normalized channel gain of user k£
on subcarrier n and H ,f ) is the noise normalized crosstalk
channel gain from user j to user k on subcarrier n. The bits
are a non-convex function of the powers.

br,n = logy (1 +



Optimum spectrum balancing (OSB) [11] is a method to
solve this problem for a discrete number of bits. If a system
supports only discrete bits, by, € {0, -, bymas }, V1 on each
subcarrier (this is the case in real systems), then the PSD
combinations are also limited to discrete values. OSB uses
dual decomposition to break the problem into per subcar-
rier dual subproblems. The tonal subproblems are solved by
exhaustive search over all possible user bit combinations on
each subcarrier. Separating the problem into tonal subproblems
significantly reduces the complexity of exhaustive search. The
solution is optimum for a multicarrier system with infinite
number of tones. The authors in [12] show that under time
sharing, the duality gap of the optimization problem is always
zero, regardless of the convexity of the objective function.

IV. SOLUTION METHODS

This section first discusses the revenue capacity problem for
concave price functions. The algorithm for non-concave, stair-
case, price functions builds on the concave function approach.

A. Dual Decomposition

For concave utilities, a dual approach for solving the rev-
enue capacity problem over convex capacity regions has been
discussed in [4]. Dual decomposition is used to divide the
problem into two subproblems that can each be solved to
optimality for fixed dual variables. An outer loop iterates over
the dual variables to find the optimal solution. The problem is
first modified by introducing additional variables,

K
maximize Zu(sk)
k=1
subject to 0 <sp <r, Vk
recC.

The Lagrangian for the above problem S is given by,

K
L(r,b) = (ulsk) + Ae(ri — sx))
k=1
For fixed dual variables Ay, the problem can be decomposed
into two subproblems S,

K
maximize Z(u(sk) — Ak5k))
k=1

subject to s, >0 Vk,

and Ss,

K
maximize E ATk
k=1

subject to r € C,

S1 is convex by assumption and can be maximized to obtain
s*(A). Sz is a weighted sum rate maximization (WSRMax)
problem which can be solved for the physical layer models
under consideration. However, the WSRMax procedure returns

a point in R N C. The following discussion shows why this is
not a problem for dual decomposed problem.
The dual problem is written as

minimize g(A\) = gs, (A) + gs, (M)

subjectto A >0

Because of time sharing over the rate region, g is not differ-
entiable. The dual problem therefore can be solved using a
cutting plane method, a subgradient method or an ellipsoid
method. The procedure has an outer loop that iterates over
the dual variables and an inner loop that solves the two
subproblems for the current value of A. At each iteration, a
subgradient of g is needed to find the next iterate of A. The
subgradient is given r — s. Since each point in C is a convex
combination of points in R,

max Ar,r e C=max \NT#,f € R

A point in R therefore returns a valid subgradient at each
iteration. Problem S, can simply be written as the original
WSRMax problem from Section III.

The authors in [4] show that strong duality holds for concave
utility function maximization over convex and proper rate
regions C. Even when the capacity is a non-convex function of
powers, the convex hull operation ensures that the overall rate
region is convex. The dual decomposition procedure therefore
returns the optimal objective function value along with the
optimal dual variables. These can be used to recover the
optimal primal variables using primal recovery methods [13],
[14].

It should be mentioned here that most widely used WSR-
Max algorithms for parallel vector channels use dual decom-
position as well. The WSRMax problem is decoupled across
tones and can be separated into N tonal Lagrangian terms.
The utility maximization problem can therefore be split into
N + 1 subproblems that can be solved in parallel.

Revenue capacity is applicable to downstream transmission
over wired communication systems. Downstream data rates
usually determine the price of a broadband package. Also, the
assumption that channel characteristics don’t change over time
is better suited to wired communication systems. Such systems
today do not use multiple antennas or non-linear precoding.
However, the revenue capacity analysis is still valid as an
upper bound on the revenue.

B. Staircase Price Functions

Price functions for broadband services used by the industry
today are mostly staircase functions. Broadband services are
offered in rate tiers with a fixed monthly price per tier.
This section shows how find revenue capacity of a multiuser
channel using a staircase price function.

A staircase function can be represented as a sum of sig-
moidal functions. The authors in [15] present a sigmoidal pro-
gramming framework that solves the problem of maximizing
a sum of sigmoidal functions over a convex constraint set.
They use a branch and bound technique to globally optimize
sigmoidal programming problems by solving a sequence of



convex subproblems. This paper draws inspiration from that
work and uses a branch and bound method for utility maxi-
mization over a staircase utility function.

1) Branch and Bound: The branch and bound method starts
with an initial rectangle @Q;,;; and recursively divides the
rectangle into smaller rectangles. It constructs a lower bound
as well as an upper bound on the value of the objective
function over each rectangle. Let p*(Q) be the optimal value
of the problem

K
maximize Z ug ()

k=1
subjectto re(CNQ

for any rectangle Q. If U(Q) and L(Q) are the upper and
lower bounds on p*(Q), they satisfy

L(Q) < p™(Q) < U(Q).

The bounds become tight as the rectangles shrink. By recur-
sively branching into smaller rectangles and computing upper
and lower bounds, the algorithm obtains global bounds on the
value of the solution.

In order to find an upper bound on the objective function
value over rectangle (), the function u is replaced by its
concave envelope 4y : [lg,ur] — R along each dimension.
An upper bound on the objective function value is found by
solving the revenue capacity problem over rectangle () with
Uy, as the price functions.

K
maximize Z G (1)

k=1
subjectto re(CNQ,

where r € C is the capacity region constraint from the
multiuser channel. This problem has a concave utility function
and can be solved using the dual decomposition approach of
problem S. Subproblem S1(Q) is now given by,

K

maximize Z(ﬁk(sk) — ASk))
k=1

subject to s € Q,

while problem S5 remains the same.

As mentioned earlier, problem Sg is solved by an outer
subgradient method that updates the dual variables A\ at each
iteration and passes them to the WSRmax problem as weights.
Each inner iteration solves a WSRMax problem and a small
linear program. The procedure converges to give the optimal
objective function value and the optimal dual variables. The
solution to Sy in each iteration lies on the boundary of C
while the solution to S1(Q) lies in Q. After solving the
dual problem, the primal solution r*(Q) € C N @ can be
obtained using primal recovery techniques. This solves the
maximization problem for the concave envelope of the price
function over rectangle @) and provides the upper bound U (Q).

The lower bound is constructed by evaluating the original
objective function at r*(Q). A bound on U(Q)— L(Q) can be
given in terms of the nonconvexity p(u) of the functions py (u).
In [16], the authors define py(u) = sup(ig(s) — ux(s)), s €
Q. For the U(Q) and L(Q) chosen above, in each rectangle
Q.

As the algorithm proceeds, the size of the rectangles decreases
and the bound becomes increasingly tight.

For branching, the method in [15] is followed. The al-
gorithm branches by splitting the rectangle with the largest
upper bound along the coordinate with maximum gap between
up(ri(Q)) and 4k (r;(Q)) into two subrectangles that meet
at 75 (Q). Such a branch maximally reduces the error at the
previous solution.

2) Concave Envelope: The staircase function with M stairs
is represented as a sum of M sigmoidal functions,

M
u(s) =3 fuls)
i=1

where fp,(s) : [l,u] — R is a sigmoidal function param-
eterized by «, a,, and b,,. o controls the steepness of the
transition between the minimum and maximum value of the
sigmoidal function, and b,,, determines the inflection point of
for each stair.

= (Tremrzoi)

The concave envelope is generated in the following way:
For each function f,,, there is a point w,, >= b,, such that
f(s) = f(s), for w,, < s < w. The point w,, can easily
be found by bisection. Given [, the slope J,, between each
point w,, and [ can be determined. Let moth step have the
maximum slope d,;,. Then for [ < s < w,y,

(s) = u(l) + Oy (s — 1).

Now let [ = wyys,. Find the new w,,s for the new [. The stairs
with b,, < w,;, can be ignored. For the remaining stairs,
find the new maximum slope J,;,. Repeat the process to find
complete concave envelope,

u(l) + Oy (s = 1) I <s<wpy,

w(Wriy) + Oy (8 —
N R

u(s)
Since the transitions of the staircase function are sharp, it is
more convenient to form a piecewise linear upper bound on the
last stair as well. Figure 2 shows the piecewise linear concave
envelope of u formed by the above procedure.

3) Convergence: The convergence of this algorithm follows
from the proof of convergence for general sigmoidal programs
in [15], since each function uj can be expressed as a sum of
M sigmoidal functions f,, .

wy <s<u
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V. APPLICATION EXAMPLE

This section presents the merits of revenue capacity using a
problem very relevant to DSL broadband service providers.
As ISPs make the decision to migrate to vectored VDSL,
the problem of coexistence with legacy or unvecoted VDSL
arises. Dynamic spectrum management (DSM) can enable
coexistence of vectored and unvectored VDSL but the rollout
of vectored VDSL has been slow. A revenue capacity analysis
can present a picture of the economic benefits of migration to
vectored VDSL, assuming efficient DSM solutions are used to
ensure acceptable performance for all customers.

Figure 1 shows the current broadband packages offered by
three of the biggest service providers in the US. Based on the
technology used, the offered packages differ in their advertised
speeds. AT&T provides services mainly over twisted pair
copper cables using DSL technologies, Comcast offers data
services over coaxial cables, whereas Verizon offers lower rate
tiers over DSL and higher rate tiers over optical fiber. Ac-
cording to a 2014 FCC report on Consumer Fixed Broadband
Performance in the U.S. [17], one-third of the ISPs delivered
only 60 percent or better of advertised speeds 80 percent of
the time to 80 percent of the consumers. This performance
was exceeded by most of the ISPs providing data rates very
close to advertised rates even in peak hours. Out of the popular
broadband packages considered in the 2014 report, the only
package with speeds above 50 Mbps was provided by Verizon
over optical fiber. Vectored VDSL can easily attain rates higher
than 50 Mbps and even higher than 100 Mbps over short lines.
DSL service providers can offer these high rate packages to
their customers by migrating to vectored VDSL.

Figure 3 presents a price function that will be used for
the example. This function builds on the packages presented
in Figure 1. The ISPs advertise packages as being ‘upto’
certain Mbps, as shown in the ‘Original’ curve in figure 1.
However, following the results in the FCC report, a 60 to 120
percent restriction is imposed on the data rate provided to the

customer, i.e. the ISP can charge the amount for a certain
package only if the rate provided is within 60 to 120 percent
of the advertised rate for that price. This is shown in the
‘Shifted staircase’ function in figure 2. This staircase function
will be the price function for the results below. A concave
approximation (of the form a — be~*/¢) of the price function
is also used for comparison of results, shown in the figure as
the ‘l-exp approximation’.

The simulations here calculate VDSL2 downstream bit
rates with both vectored VDSL2 and un-Vectored VDSL2.
Downstream VDSL?2 Profile 17a is simulated. The transmit
PSD is at most 3.5 dB below the VDSL2 profile 998ADE17-
M2x-A PSD limit mask defined in Annex B of G.993.2 [18].
The margin is 6 dB and the total coding gain is 3 dB. Bit
rates are calculated by summing the capacity calculation of
each 4.3125 kHz tone with a 9.75 dB SNR gap, with bits
per Hz per sub-carrier lower limited to at least one bit and
upper limited to 16 bits per Hz per subcarrier. Simulations use
1 percent worst-case same-binder FEXT plus -140 dBm/Hz
noise. There are 25 active lines in the binder and the transmit
PSDs of all lines are shaped by OSB. There is no crosstalk
between the vectored lines, with the unvectored lines causing
crosstalk into the vectored lines, and with vectored lines as
well as non-vectored lines causing crosstalk to the unvectored
lines. Note that since 1 percent worst-case crosstalk is used,
the results here have worse crosstalk than a typical case with
a filled 25-pair binder. For the simulations, it is assumed that
the un-vectored lines and the vectored lines all originate at the
same cabinet and are of the same length.

Figure 4 shows the revenue capacity for the sigmoidal utility
function as well as the approximate concave utility function as
a function of the loop length. The decrease in revenue capacity
as a function of loop length is expected since the data rates go
down as loop length increases. The figure gives several curves
for the revenue capacity of the binder as the percentage of
vectored lines in the binder increases from 20 percent to 80
percent. As more customers migrate to vectored VDSL, the
expected revenue in dollars/month/line increases. For instance,
for the case of 1000 feet loop length, the revenue capacity
increases from about 78$ per month to 106$ per month as the
percentage of vectored users increases from 20 to 80 percent.
This is a 36% increase in revenue per line per month.

Figure 5 shows the rates assigned to the vectored and
unvectored lines at revenue capacity. These rates can be used
as guidelines for offering service packages as vectored VDSL
is rolled out.

VI. CONCLUSION

This paper presents a general framework for revenue max-
imization for physical layer models that have two major
properties. First, they provide a way to compute a maximum
weighted sum rate given any weights. Second, the physical
layer can use time sharing to achieve rate tuples that it cannot
achieve otherwise, making the capacity region convex. As
future work, particular solutions for different types of channel
models can be studied in more detail. The revenue capacity
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algorithm presented here finds the maximum revenue rate
vector. It does not return the corresponding input autocorre-
lation matrices in case of time sharing solutions. The current
formulation also does not take user preference into account.
The authors intend to address this in future.

Revenue capacity can have many real world applications.
This paper presents a single example. The authors intend
to apply the concept to different technologies and channel
models. Revenue capacity is also useful for comparison of
pricing strategies. Furthermore, it can be useful for provision
of on-demand bandwidth.
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