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Outline

Preconditioned gradient descent
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Gradient methods converge quickly on well-conditioned data
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Gradient methods converge slowly on ill-conditioned data
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Recap: convergence analysis for gradient descent

minimize f(x)
recall: we say (twice-differentiable) f is pu-strongly convex and L-smooth if

pl < V3f(x) < LI

recall: if f is u-strongly convex and L-smooth, gradient descent converges linearly
K
FNH) — pt < LSt — 7,

where ¢ = (n+1) , £ =4 = 1is condition number
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Recap: convergence analysis for gradient descent

minimize f(x)
recall: we say (twice-differentiable) f is pu-strongly convex and L-smooth if

pl < V3f(x) < LI

recall: if f is u-strongly convex and L-smooth, gradient descent converges linearly
K
FNH) — pt < LSt — 7,

where ¢ = (n+1) K= ﬁ > 1 is condition number = want Kk ~ 1
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Recap: convergence analysis for gradient descent

minimize f(x)
recall: we say (twice-differentiable) f is pu-strongly convex and L-smooth if

pl < V3f(x) < LI

recall: if f is u-strongly convex and L-smooth, gradient descent converges linearly
K
FNH) — pt < LSt — 7,

/1—1)2 K = L

where ¢ = (m = ﬁ

> 1 is condition number — want Kk ~ 1

idea: can we minimize another function with k ~ 1 whose solution will tell us the
minimizer of 7
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Preconditioning

for invertible D, the two problems
minimize f(x) and minimize f(Dz)

have solutions related by x* = Dz*
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Preconditioning

for invertible D, the two problems
minimize f(x) and minimize f(Dz)
have solutions related by x* = Dz*

» gradient of f(Dz) is DT Vf(Dz)
> the second derivative (Hessian) of f(Dz) is DT V2f(Dz)D
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Preconditioning

for invertible D, the two problems

minimize f(x) and minimize f(Dz)

have solutions related by x* = Dz*

» gradient of f(Dz) is DT Vf(Dz)
> the second derivative (Hessian) of f(Dz) is DT V2f(Dz)D

a gradient step on f(Dz) with step-size t > 0 is

zF = z—tD"Vf(Dz)
Dzt = Dz - tDDTVf(Dz)
xt = x—tDD"Vf(x)
this iteration is preconditioned gradient descent (PGD) with preconditioner

P=DDT.
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Optimal preconditioner

Convergence rate for PGD on function f with preconditioner P can be controlled by
the preconditioned condition number:

T2 (x
kp(f) := Sl)J(p k(DTV?f(x)D) = sgp i\:?:((gT§2;((x))g))

where D = P1/2,
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Optimal preconditioner

Convergence rate for PGD on function f with preconditioner P can be controlled by
the preconditioned condition number:

T2 (x
kp(f) := Sl)J(p k(DTV?f(x)D) = sgp i\:?:((gT§2;((x))g))

where D = P1/2,

proof: plug the function f o P into the convergence analysis for gradient descent
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Optimal preconditioner

Convergence rate for PGD on function f with preconditioner P can be controlled by
the preconditioned condition number:

Ty72 X
rp(f) i= sup (DT VF(x)D) = sup i:?:((gT;?((X))g))

X

where D = P1/2,
proof: plug the function f o P into the convergence analysis for gradient descent

The optimal preconditioner in set P minimizes the worst-case condition number,

P* =  argmin supk(DTV2f(x)D),
PeP, P=DDT x

and defines the optimal condition number x* = k((P*) T V2f(x)(P*)).
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Outline

Online Scaled Gradient Method
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Gradient methods with online preconditioning
For smooth, strongly convex optimization,

xktl = xk — PVf(xk) = f(xk‘H) —f(x*)<(1- é)[f(xk) — f(x")]
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Gradient methods with online preconditioning
For smooth, strongly convex optimization,
k k k k k
XKL= 5k _ PVF(xK) = F(x*) - F(x*) < (1 - é)[f(x ) — F(x¥)]
Can we learn a preconditioner P with kp < k during gradient descent?

Gradient descent x*T1 = xk — PkVXf(xk)

Preconditioner update Py 1 = Learn(Py, x¥)
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Gradient methods with online preconditioning
For smooth, strongly convex optimization,
XKL = xk — pVF(xF) = (XN - f(x*) < (1 - é)[f(xk) — f(x")]
Can we learn a preconditioner P with kp < k during gradient descent?

Gradient descent x**1 = xk — P,V f(x¥)
Preconditioner update Pyi1 = Py — nVpl(Px)
Yes! By gradient descent on a feedback /(P)

> invented 25 years ago [Almeida, Langlois, Amaral, and Plakhov (1999)] and
re-discovered as hypergradient descent [Baydin, Cornish, Rubio, et al. (2018)]

» good performance after tuning, but often unstable and almost no theory
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Optimize the convergence rate with online learning

Better P = smaller condition number xp = better contraction factor

fx = PVF(x)) = f(x") < (1 = D)[f(x) = F(x")]
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Optimize the convergence rate with online learning

Better P <= smaller condition number xp < better contraction factor

((P) = 1 (P) i= (e FRibaT0c)
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Optimize the convergence rate with online learning

Better P <= smaller condition number xp < better contraction factor

((P) = 1 (P) i= (e FRibaT0c)

XK+1 * k+1
s =TT, ) = TTH ra(Pe) < (RS0 re (P
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Optimize the convergence rate with online learning

Better P <= smaller condition number xp < better contraction factor

((P) = 1 (P) i= (e FRibaT0c)

XK+1 * k+1
et = T, S5 = T n(Pa) < (R0 r(P))X

» Pri1 = Px —nVpru«(Pk) is online gradient descent
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Optimize the convergence rate with online learning

Better P <= smaller condition number xp < better contraction factor

((P) = r(P) 1= (U

k+1) f

XK+1 *
s =TT, ) = TTH ra(Pe) < (RS0 re (P

» Pri1 = Px —nVpru«(Pk) is online gradient descent
> Eszl rek(Py) < Z,’le r(P*) + O(VK) guaranteed by online learning
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Optimize the convergence rate with online learning

Better P <= smaller condition number xp < better contraction factor

((P) = (P) = Rl

k+1) f

XK+1 *
s =TT, ) = TTH ra(Pe) < (RS0 re (P

» Pri1 = Px —nVpru«(Pk) is online gradient descent
> Eszl rek(Py) < Z,’le r(P*) + O(VK) guaranteed by online learning

Since r,«(P*) < 1— -1, combining these relations gives

XK+1_ x*
ey, < (L= % + O(J) =~ (1 1),

3

an online acceleration of gradient descent!
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More than acceleration

KLY (e
f(f(xl) : f(if*) ) < (1- % * O(\}R»K

Important limits:

» Asymptotically, # — 0 = OSGM converges as fast as the optimal P*.
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More than acceleration

KAL) f(x*
s = (o))"

1-—+0
) — F(x*) o
Important limits:
» Asymptotically, # — 0 = OSGM converges as fast as the optimal P*.

» If f is a quadratic, k* =1, so

F(xKH) — F(x*)
f(xt) — f(x*)

IA
—~
o
—
2l
~—
X

and we get superlinear convergence!
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More than acceleration

KAL) f(x*
s = (o))"

1 —
o) — F(x) o O
Important limits:

» Asymptotically, # — 0 = OSGM converges as fast as the optimal P*.

» If f is a quadratic, k* =1, so

(KAL) F(sr
f(f(xl) . f(fx(*)) = (O(i))K

and we get superlinear convergence!

Online Scaled Gradient Method: a new acceleration scheme for first-order
methods
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Outline

Online decision-making in a collaborative environment
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OSGM framework

Two agents: stepsize scheduler, landscape

Procedure: at each iteration k, two agents interact as follows:

1. Scheduler makes decision Py and suggests x71/2 = xk — P, Vf(xk).

2. Landscape steps to xk*1 = M(x¥, x**1/2) and provides feedback £ «(Py) to S.

3. Scheduler updates the stepsize using online learning P11 = A(Px, {{;}j<k).
Algorithm:
(PGD)  x /2 =xk — P VF(xK)
(Landscape action)  x¥T1 = M(xK, x<+1/2)

(Stepsize Iearning) Piy1 = .A(Pk, {ej}jgk)

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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More generally

OSGM converts a measure of convergence into an improved algorithm by adaptively
learning hyperparameters of the algorithm, such as a stepsize or gradient scaling.

Choices:
» algorithm to update iterates x > e.g., PGD
» algorithm to update stepsize P > e.g., online GD
» domain for stepsize > e.g., scalar, diagonal, positive definite, general
» convergence measure £,«(P*) > e.g., ratio feedback r(P)
» checks to ensure stability > e.g., monotonicity, linesearch

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Preview of results

With appropriate choices, OSGM guarantees
» Competitive convergence: OSGM converges asymptotically at least as fast as
the best fixed stepsize P*, and always at least as fast as the initial stepsize P;.
» Local convergence: OSGM converges superlinearly.

» Trajectory-dependent convergence: OSGM converges nearly as fast as any
sequence of stepsizes, even one adapted to the iterate sequence x!,. .. ,XK, up

to a term depending on the distance between subsequent stepsizes.

» Good practical performance: OSGM beats other adaptive first order
methods, and even quasi-Newton methods like (L-)BFGS.

Madeleine Udell, Stanford. Online Scaled Gradient Method. 12



Feedback

Ratio feedback. Contraction factor of suboptimality.

r(P) = f(x — PVf(x)) — f(x*)

Vr(P):=

Vf(x — PVF(x))VF(x)T

F(x) — F(x*) ’ fF(x) — F(x*)

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Feedback

Ratio feedback. Contraction factor of suboptimality.

f(x — PVf(x)) — f(x*)

Vf(x — PVf(x))VFf(x)"
f(x) — f(x*) ’ '

f(x) — f(x*)

r(P) = Vr(P):=

Hypergradient feedback. Function value progress relative to size of gradient.

f(x — PVf(x)) — f(x)

i Vf(x — PVFf(x))VF(x)T
IVE() ’ '

hP) = NGO

Vhy(P) :=
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Feedback

Ratio feedback. Contraction factor of suboptimality.

f(x — PVf(x)) — f(x*)

Vf(x — PVf(x))VFf(x)"
f(x) — f(x*) ’ '

f(x) — f(x*)

r(P) = Vr(P):=

Hypergradient feedback. Function value progress relative to size of gradient.

f(x — PVf(x)) — f(x)

i Vf(x — PVFf(x))VF(x)T
IVE() ’ '

hP) = NGO

Vhy(P) :=

> Motivated by the descent lemma: f (x — 1 Vf(x)) — f(x) < =2 ||VF(x)|%
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Feedback

Ratio feedback. Contraction factor of suboptimality.

f(x — PVf(x)) — f(x*)

Vf(x — PVf(x))VFf(x)"
f(x) — f(x*) ’ '

P = ) — ()

Vr(P):=

Hypergradient feedback. Function value progress relative to size of gradient.

f(x — PVf(x)) — f(x)
V£ (x)]? ’

Vf(x — PVFf(x))VF(x)T

hP) = NGO

Vhy(P) :=

> Motivated by the descent lemma: f (x — 1 Vf(x)) — f(x) < =2 ||VF(x)|%

» No need to know optimal value f(x*)

gradient scaling P in OSGM need not be positive definite or even symmetric!
Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Hypergradient Reduction

Hypergradient feedback controls convergence if the iterations are monotone.

Theorem Suppose f(x) is convex and hy = % and the iterates {x*} are non-
increasing in f: f(x*T1) < f(x¥) < ---. Then, for any K > 1, the iterates {x*} and the

stepsizes { Py} generated by 0SGM-H satisfy
FORH) = F(x7) < min { A (3 = F(x) ],
k=1

where diameter A 1= max,. f(x)<f(x1) MiNxex+ [|x — x*||.

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Hypergradient Reduction

Hypergradient feedback controls convergence if the iterations are monotone.

Theorem Suppose f(x) is convex and hy = % and the iterates {x*} are non-
increasing in f: f(x*T1) < f(x¥) < ---. Then, for any K > 1, the iterates {x*} and the

stepsizes { Py} generated by 0SGM-H satisfy
FORH) = F(x7) < min { A (3 = F(x) ],
k=1

where diameter A 1= max,. f(x)<f(x1) MiNxex+ [|x — x*||.

More negative Zle hy = faster convergence!
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Hypergradient Reduction

Hypergradient feedback controls convergence if the iterations are monotone.

Theorem Suppose f(x) is convex and hy = % and the iterates {x*} are non-
increasing in f: f(x*T1) < f(x¥) < ---. Then, for any K > 1, the iterates {x*} and the

stepsizes { Py} generated by 0SGM-H satisfy
FORH) = F(x7) < min { A (3 = F(x) ],
k=1

where diameter A 1= max,. f(x)<f(x1) MiNxex+ [|x — x*||.

More negative Zle hy = faster convergence!

how to guarantee monotonicity?

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Monotone landscape

Monotone landscape accepts proposal from scheduler if objective value decreases:

XK1 = argmin{f(x) | x € {x*T1/2 xk}}
Hypergradient OSGM (0SGM-H). Monotone landscape justifies

» Hypergradient reduction: f(xK*1) — f(x*) < min {KA72’ f(xt) — f(x*)}
2 k=1 —hk

f Xk+1

f(x (x k_P,Vf(x f(x
> S =Y 1W St ” IIka(ik)ll2 - = i b (P)

So, smaller feedback h,«(Px) = better progress h, = faster convergence!

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Convergence of 0SGM-H

AZ
f(xKH) = £(x*) < min {Ka f(x') — f(X*)} (reduction)
k=1«
A2
min{ ———— f(x}) — f(x* monotone
< {Zfl_hxm) () — ( )} (monotone)
< min { P A - L) — f(x*)} (regret guarantee)
K (kS —he(P) - 0()
< min { N . f(x*)} (descent lemma hy (1) < ~3)
K (% -0(F)

» The hypergradient descent method (HDM) is OSGM-H (without monotonicity).
» Our work provides first convergence guarantee for (a simple variant of) HDM.
Madeleine Udell, Stanford. Online Scaled Gradient Method. 16



The importance of monotonicity

10%° : 10%°
. ==Vanilla HDM
>
[
3
[
> 0 o
Z 10 : 10
% Divergence : Convergence'
v H
3
. .

1030 : 10°%°

0 200 400 600
Iteration

(a) Two-phase behavior

==Vanilla HDM
==HDM + Null step
HDM-Best (Ours)

]

200 400 600

Iteration

(b) Addressing instability

Figure: The behavior of different HDM variants on a toy quadratic optimization problem.
Figure 1a: two-phase convergence behavior of vanilla HDM. Figure 1b: effect of monotone

landscape and our best variant.
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Outline

Trajectory-based guarantees
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Regret guarantees vs any fixed stepsize

OSGM satisfies

1 & 1 & . 1 .
RZek(Pk)gRZexk(P)+o<7> for any P € P.

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Regret guarantees vs any fixed stepsize

OSGM satisfies

K K
1 1 ~ 1 .
—EZXPg—EKXP—i-O— for any P € P.
K & «(Pi) K & «(P) <,/K> rany

= convergence rate of OSGM is (asymptotically) no worse than that of
any fixed stepsize P € P,
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Regret guarantees vs any fixed stepsize

OSGM satisfies

K K
1 1 ~ 1 .
—EKXPg—EEXP—i-O— for any P € P.
K & «(Pi) K & «(P) <,/K> rany

= convergence rate of OSGM is (asymptotically) no worse than that of
any fixed stepsize P € P, including

» global optimal stepsize P*
» classical constant stepsize %/

» stepsize that minimizes the average feedback over trajectory

K
1
argmin — » £« (P
pep K kz_:l (P)

Madeleine Udell, Stanford. Online Scaled Gradient Method. 18



Regret guarantee = Superlinear convergence

K K
%ngk(Pk) < %fok(/s) +O(\/1R> for any P € P.

The fixed stepsize P = [V2f(x*)]~! achieves local quadratic convergence, hence as
a consequence of the regret guarantee, OSGM achieves

Superlinear convergence. For example, for 0SGM-R on a quadratic,

FOH) = F(x") < TFOD) = FOON (e T e (V2 ) +O( )

Madeleine Udell, Stanford. Online Scaled Gradient Method. 19



Is a good fixed stepsize enough?

Even the optimal stepsize might not work well:

2052 +x3), x>0
(152 +x3), x <0

f(x1,x) = {

diag(0.5,1), x1 >0

(VG = {diag(l.S, 1), x1<0

Madeleine Udell, Stanford. Online Scaled Gradient Method. 20



Trajectory-optimal stepsize

Hessian inverse preconditioner

P(x) = d%ag(O.S, Ht=0 x>0
diag(1.5,1)™1 =0 x <0

achieves zero ratio feedback r (P(x)) = 0 for all x.

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Trajectory-optimal stepsize

Hessian inverse preconditioner

Pl) — {diag(O.S, 1)1=0 x>0 .

w & o

f(r,
~

diag(1.5,1)™1 =0 x <0

vo -

achieves zero ratio feedback r (P(x)) = 0 for all x. T

z

If trajectory {x¥} of PGD stays in the same half-plane as the initial point x!, best
preconditioner for the trajectory achieves ratio feedback 0:

K
mFi’n ; r«(P) = 0.

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Trajectory-optimal stepsize

Hessian inverse preconditioner

P(x) = d%ag(O.S, Ht=0 x>0
diag(1.5,1)™1 =0 x <0

achieves zero ratio feedback r (P(x)) = 0 for all x. S R

If trajectory {x¥} of PGD stays in the same half-plane as the initial point x!, best
preconditioner for the trajectory achieves ratio feedback 0:

K
mFi7n Z r(P)=0
k=1
OSGM adapts stepsize to region traversed by the algorithm!
K K 5
% > k=1 Ik (Pi) < % > k=1 e (P) + O(#) =0+ O(%)

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Dynamic regret

What if the trajectory {x*} traverses different regions?
OSGM satisfies a dynamic regret bound wrt. a sequence of competitors { Py }:

5 SE (PO < & S (B + 0 (HELLED)),

where PL({P,}) := Zszl | P — Pry1||% is the path-length.
Example. A
Take Py = [V2f(x})] L.

> % Zf:l rxk(p\k) =0.

Dl » PL({Px})  number of times {x¥} switches from one
” region to another.

» 0SGM chooses Py that adapts to each local region at the price of extra regret.
Madeleine Udell, Stanford. Online Scaled Gradient Method. 22



Outline

Numerical experiments

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Practical OSGM

Ingredients for the best practical version of OSGM:

1.

4.
5.

Iterate update: heavy-ball GD. Parameters include stepsize P, and
momentum parameter S:

Xk+1/2 — Xk _ Pka(Xk) + Bk(Xk B Xk—l)
Stepsize update: AdaGrad. Learn (Py, k) jointly by AdaGrad:

(Pi+1, Br+1) = AdaGrad((Px, Bk), {hui w1 }j<k)

Feedback: hypergradient. Define hypergradient feedback wrt potential
function ¢(x,x7) = f(x) 4+ %|[x — x || to measure the quality of parameters
(Py, Bx) at point xX.

Landscape: monotone. Use monotone landscape to ensure convergence.
Domain: diagonal. Learn diagonal preconditioner for scalability.

Source: Still works provably, see [Chu, Gao, Ye, and Udell (2025)].
Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Projected hypergradient can be easy to compute

Vf(x — PVf(x)) Vf(x)"

Vhe(P) = NGO

a d1
« dn

Projected hypergradient: Projected hypergradient: Projected hypergradient:

Vf(x — PVf(x)) - Vf(x)  Vf(x — PVf(x)) ® Vf(x) Proj.o( P — nVhy(P))
IVE()]? IVE)]?

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Projected hypergradient can be easy to compute

Vf(x — PVf(x)) Vf(x)"

Vhe(P) = NGO

a d1
« dn

Projected hypergradient: Projected hypergradient: Projected hypergradient:

Vf(x — PVf(x)) - Vf(x)  Vf(x = PVf(x)) @ Vf(x) Proj_o(P —nVhy(P))
V()2 |V F(x)]? (don't do this!)

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Practical OSGM on LIBSVM

Algorithm ~ SVM  Log. Reg

o a%a svmguide3 GD 5 2
GD-HB 9 7
. == AGD-CVX 8 3
107 \ . 107
o - AGD-SCVX 7 6
- " Adam 26 11
L ] W w0 e L W w 0w W w AdaGrad 9 8
GD AGD-CVX Adam == BFGS = L-BFGS-M3  e=m= [-BFGS-M10 L-BFGS-M1 13 11
== GD-HB == AGD-SCVX === AdaGrad L-BFGS-M1 o=/ | -BFGS-M5 eie=e HDM-Best L-BFGS-MS 20 14
On deterministic convex problems L-BFGS-M5 26 16
L-BFGS-M10 31 18
» comparable performance to L-BFGS-M5/M10 BFGS 3 2%
» same memory as L-BFGS-1 and cheaper iterations 0SGM 32 21

# solved instances in LIBSVM

Madeleine Udell, Stanford. Online Scaled Gradient Method.



Practical OSGM on nonconvex CUTEst problems

BA-L1SPLS BIGGS6 BOXBODLS - CHNROSNB
10° 10 o'
Ew ' o =
z . 0 107
£ 10 o .
g 10
O -
1o 10 10
g 0 a0 w0 so o0 0 o w0 a0 e0 w0 fo0 O o 0 00 e w0 o0 0 o 200 400 600 800 1000
Iteration Iteration Iteration Iteration
GD AGD-CVX Adam == BFGS == L-BFGS-M3  emm= [-BFGS-M10
L-BFGS-M1  e=m= |-BFGS-M5 === HDM-Best

== GD-HB == AGD-SCVX ={= AdaGrad

On deterministic nonconvex problems

» Performance compares well with other first-order adaptive methods

» Sometimes outperforms BFGS!

Madeleine Udell, Stanford. Online Scaled Gradient Method. 26



Which is better? Spectral or diagonal preconditioning?

Both! OSGM + sketch-based preconditioners improve stochastic optimization:

ijjcnnl rcvl
= 1071

1071 4 10-4

10°% 1077

10-° 10-10
L 1073 10-13
£
©
£
= ; )
g 100 guillermo 100 ailerons 100 superconduct
Q 100
3 103
v 1073

107° 10

10-9 10~

10-12 10-12

50 100 150 200 50 100 150 2 50 100 150 200 50 100 150
Full data passes Full data passes Full data passes Full data passes
fffff SVRG L-Katyusha ~ SketchySAGA —+— OSGM-SVRG
————— SAGA +- SketchySVRG SketchyKatyusha —+— OSGM-SketchySVRG

Figure: First row: logistic regression. Second row: ridge regression.
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OSGM for ADMM
Use OSGM to learn a diagonal preconditioner for the dual problem in ADMM:

>

3 :?

0 102t |

© |

qq;) \

£ 100 L \\

+

>

% 10—2 L

£

S ol —— ADMM

S OSGM-ADMM

a . . . . . .
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Outline

From OSGM to Quasi-Newton

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Where are we now?

OSGM represents

» a new framework for stepsize adaptation of first-order methods
» a new framework to learn a good stepsize (locally, [V£(x*)]~1)

» a new way to achieve non-asymptotic superlinear convergence

Madeleine Udell, Stanford. Online Scaled Gradient Method. 29
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Where are we now?

OSGM represents

» a new framework for stepsize adaptation of first-order methods
» a new framework to learn a good stepsize (locally, [V£(x*)]~1)

» a new way to achieve non-asymptotic superlinear convergence

There is an existing framework that achieves similar goals:

Quasi-Newton methods (1959 ~): DFP, BFGS, Broyden ...

OSGM and QN achieve similar guarantees. Why?

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Online Hessian learning

Our goal: find a good stepsize P*. For a (locally) quadratic function,

F(x) ~ F(x*) + 3(x = x*, V(") (x = x7) + O(llx = x*||°).

Optimal stepsize: P* = [V2f(x*)]7L.

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Online Hessian learning

Our goal: find a good stepsize P*. For a (locally) quadratic function,
F(x) ~ F(x) + 3(x = x*, V2F(x") (x = x*)) + O(|x = x*[]%).
Optimal stepsize: P* = [V2f(x*)]7L.

Can we learn P* without access to second-order information?
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F(x) ~ F(x) + 3(x = x*, V2F(x") (x = x*)) + O(|x = x*[]%).
Optimal stepsize: P* = [V2f(x*)]7L.
Can we learn P* without access to second-order information?

Let's take an ML approach.
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Online Hessian learning

Our goal: find a good stepsize P*. For a (locally) quadratic function,
F(x) ~ F(x) + 3(x = x*, V2F(x") (x = x*)) + O(|x = x*[]%).
Optimal stepsize: P* = [V2f(x*)]7L.
Can we learn P* without access to second-order information?

Let's take an ML approach. Stepsize P* locally brings any point x to x* in one step:

x — P*Vf(x) = x*, for all x
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Online Hessian learning

Our goal: find a good stepsize P*. For a (locally) quadratic function,
F(x) ~ F(x) + 3(x = x*, V2F(x") (x = x*)) + O(|x = x*[]%).
Optimal stepsize: P* = [V2f(x*)]7L.
Can we learn P* without access to second-order information?

Let's take an ML approach. Stepsize P* locally brings any point x to x* in one step:
P*Vf(x) = x — x*, for all x

For each x near x*, (x — x*, Vf(x)) provides information about P* in a 1D subspace.

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Online Hessian learning

P*Vf(x) =x—x*

With a dataset {(xK — x*, Vf(x¥))}, we can estimate P*:

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Online Hessian learning

P*Vf(x) =x—x*
With a dataset {(xK — x*, Vf(x¥))}, we can estimate P*:

» linear regression problem v’
» well-defined loss function v

oP) = %HPVf(x) (=P o U(P) = {PVF(x) = x— x*}

> scalable online update v' (e.g. recursive least squares)
Pii+1 = arg minpep{lk(P) + dist(P, Pk)}
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Online Hessian learning

P*Vf(x) =x—x*
With a dataset {(xK — x*, Vf(x¥))}, we can estimate P*:

» linear regression problem v’
» well-defined loss function v

oP) = %HPVf(x) (=P o U(P) = {PVF(x) = x— x*}

> scalable online update v' (e.g. recursive least squares)
Pi+1 = argminpep{lk(P) + dist(P, Px)}
» Uhoh: part of the data, x*, is unknown!

= eliminate x* to learn P*

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Quasi-Newton methods

This relation is useless unless we know x*:

PVf(x) =x— x*.

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Quasi-Newton methods

This relation is useless unless we know x*:
PVf(x) =x —x*.
This relation is useless unless we know x*:

PVf(y)=y— x*.
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Quasi-Newton methods

This relation is useless unless we know x*:
PVf(x) =x —x*.
This relation is useless unless we know x*:
PVf(y)=y— x*.
Subtract them to eliminate x*:
PIVE(x) = VI(y)l = (x =x) = (y =x") = x—y
» We've derived the secant equation, the workhorse of quasi-Newton methods.

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Quasi-Newton methods

» A computable relation v/
PIVF(x) = Vi(y)| =x—y

» linear regression + well-defined loss function v/

» scalable online update v/

Pii1 = arg ,l;neig{ﬁk(P) + dist(P, Px)}

Madeleine Udell, Stanford. Online Scaled Gradient Method. 33



Variants of Quasi-Newton methods

Piyr = arg min {£(P) + dist(P, Py)}

Broyden’s method

P =R"™" dist(P,Q) = }||P - Q|[f, €(P)=TI{P[VF(x) - VF(x")]=x""—x"}.

Powell-symmetric-Broyden

P=5", dist(P,Q) = :IP - Q|IF, (P)=I{P[VF(x") - VF(x")] = x*" —x"}.
DFP & BFGS

P =81, dist(P, Q) = logdet div., £(P)=T{P[VF(x"") — VF(x")] = x*" — x*}.

Penalized DFP & BFGS

P =S, dist(P, Q) = logdet div., £(P)= 3|P[VF(x""") = VF(x")] - (x*"" —x")|°.

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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OSGM

Let's take a step back.

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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OSGM
Let's take a step back. Again, this relation is useless unless we know x*:

PVf(x)=x—x*
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OSGM
Let's take a step back. Again, this relation is useless unless we know x*:
U(P) = 3[IPVF(x) = (x = x*)II

» The least-square loss cannot be computed in the Euclidean norm due to x*.
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OSGM
Let's take a step back. Again, this relation is useless unless we know x*:
U(P) = 3[IPVF(x) = (x = x*)II

» The least-square loss cannot be computed in the Euclidean norm due to x*.

» What if we use another norm? In the Hessian norm, locally

U(P) = FIPVF(x) = (x = x)Rep(xey = F(x = PVF(x)) = f(x")
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OSGM
Let's take a step back. Again, this relation is useless unless we know x*:

U(P) = 3IIPVF(x) — (x —x)|?

» The least-square loss cannot be computed in the Euclidean norm due to x*.

» What if we use another norm? In the Hessian norm, locally

U(P) = FIPVF(x) = (x = x)Rep(xey = F(x = PVF(x)) = f(x")

» Compare to OSGM feedback functions, which scale and translate this loss:

UP) + F(x*) — F(x)
IVF(x)]?

P = s ey e(P) =

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Variants of OSGM

Pit1 = arg Pmeig{gk(P) +dist(P, Pi)}

0SGM-R

) Xk— Xk _f*
P=R™" dist(P,Q) = L|P-Q|? (P)= ( f'(’XVk;(_f)) Fr

0SGM-H

P = Ran’ dISt(P, Q) — %HP . QH%; Ek(P) _ f(Xk—PVf(Xk))—f* + f*—f(xk)

VECA)I? IVFOR)I2

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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OSGM vs. Quasi-Newton

» Same idea: learn the Hessian from PVf(x) — (x — x*)
» Different ways of removing x*

» Similar convergence guarantees

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Why not both?
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OSGM vs. Quasi-Newton

» Same idea: learn the Hessian from PVf(x) — (x — x*)
» Different ways of removing x*

» Similar convergence guarantees
Why not both?

» OSGM + QN can be combined to get the best of both worlds.
e.g., designing /x(P) to combine both online feedback and secant equation

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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OSGM + Quasi-Newton

We can learn via both the secant equation and hypergradient feedback:

U(P) = h(P) + §llx —y — P(VF(x) = VF(y))|?

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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OSGM + Quasi-Newton

We can learn via both the secant equation and hypergradient feedback:
U(P) = ho(P) + %llx =y = P(VF(x) = VI(y))I

This instantiation of the algorithm updates P by a rank-4 matrix every iteration,

k(,k\T k(ck\T k(ck\T
Pur = (1 = gy )Pl = k) + T

BFGS
+ ap(PruX — v (Pruk — vi) T + Brvk (v T,

0SGM

_ VF(xkt1 VF(xK
with sk = xk1 — xk| yk = VF(xk*1) — VF(xK), uk = ||vr(f<xk>|)|' Vi = ungk%u

Madeleine Udell, Stanford. Online Scaled Gradient Method. 38



OSGM + BFGS
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Regularized logistic regression (AGD: Accelerated Gradient Descent). Y-axis: ||V f(x¥)||
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Regularized SVM problems. Y-axis: ||V f(x¥)||

Madeleine Udell, Stanford. Online Scaled Gradient Method.



Conclusion

» OSGM is a new framework for adapting hyperparameters in first-order methods.

» OSGM achieves competitive convergence rates, superlinear convergence, and
trajectory-dependent convergence.

» OSGM is practical and outperforms existing adaptive first-order methods on
real-world problems.

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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Conclusion

» OSGM is a new framework for adapting hyperparameters in first-order methods.

» OSGM achieves competitive convergence rates, superlinear convergence, and
trajectory-dependent convergence.

» OSGM is practical and outperforms existing adaptive first-order methods on
real-world problems.

Where can | learn more?
» Wenzhi Gao, Ya-Chi Chu, Yinyu Ye, and Madeleine Udell. “Gradient Methods with Online Scaling.”

Conference on Learning Theory (COLT) 2025.

» Ya-Chi Chu, Wenzhi Gao, Yinyu Ye, and Madeleine Udell. “Provable and Practical Online Learning
Rate Adaptation with Hypergradient Descent.” International Conference on Machine Learning (ICML)
2025. arXiv:2502.11229 (2025).

» Wenzhi Gao, Ya-Chi Chu, Yinyu Ye, and Madeleine Udell. “Gradient Methods with Online Scaling
Part I. Theoretical Foundations.” arXiv: 2025.

» Ya-Chi Chu, Wenzhi Gao, Yinyu Ye, and Madeleine Udell. “Gradient Methods with Online Scaling
Part 1l. Practical Aspects Foundations.” arXiv: 2025.
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Online gradient descent

Analysis of online gradient descent: Pyi1 = Px — nVr«(Pk): for any Pep,

1Psr = PlIE = |Px — nVru(Pi) — PlI

= [|Pi = PlIE — 20{Vra(Pk), Pic — P) + 11|V e (Pi) I
(Expand)

< 1P = PlIE = 20l (Pi) — re(P)] + n? |V (Pe) |7
(Convexity)

< ||Px — P||% = 2n[rek(Px) — rew(P)] + G2 (Bounded gradient)
Re-arranging:

ﬁ[HPk{—l - /SH%: —||Px — I-C’H%_—] < —[rew(Py) — er(/f’)] + ng

Madeleine Udell, Stanford. Online Scaled Gradient Method.



Online gradient descent

n 2
5G

What we regret

2illlPiss — PIIE = 1P — PIIF] < —[re(Pe) — r(P)] +

-~
What we learn

> If P underperforms P, ru(Pi) > ru(P) = Pii1 gets closer to P up to error 162

We learn something whenever we regret a lot
> If there is not too much to learn (||Py — P||% < 00), then there’s not too much regret
’}7:

=2 O(VK)

S

SRy ha(PO) — re(P) < A [IPL— PIIE + 2KG? = O(L + 1K)
—_—
Error

Regret What we can learn

Madeleine Udell, Stanford. Online Scaled Gradient Method.
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