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Gradient methods converge quickly on well-conditioned data
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Gradient methods converge slowly on ill-conditioned data
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Recap: convergence analysis for gradient descent

minimize f (x)

recall: we say (twice-differentiable) f is µ-strongly convex and L-smooth if

µI ⪯ ∇2f (x) ⪯ LI

recall: if f is µ-strongly convex and L-smooth, gradient descent converges linearly

f (xK+1)− p⋆ ≤ LcK

2 ∥x1 − x⋆∥2,

where c = (κ−1
κ+1)

2, κ = L
µ ≥ 1 is condition number

=⇒ want κ ≈ 1

idea: can we minimize another function with κ ≈ 1 whose solution will tell us the
minimizer of f ?
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Preconditioning

for invertible D, the two problems

minimize f (x) and minimize f (Dz)

have solutions related by x⋆ = Dz⋆

▶ gradient of f (Dz) is DT∇f (Dz)

▶ the second derivative (Hessian) of f (Dz) is DT∇2f (Dz)D

a gradient step on f (Dz) with step-size t > 0 is

z+ = z − tDT∇f (Dz)

Dz+ = Dz − tDDT∇f (Dz)

x+ = x − tDDT∇f (x)

this iteration is preconditioned gradient descent (PGD) with preconditioner
P = DDT .
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Optimal preconditioner

Convergence rate for PGD on function f with preconditioner P can be controlled by
the preconditioned condition number:

κP(f ) := sup
x

κ(DT∇2f (x)D) = sup
x

λmax(D
T∇2f (x)D)

λmin(DT∇2f (x)D)

where D = P1/2.

proof: plug the function f ◦ P into the convergence analysis for gradient descent

The optimal preconditioner in set P minimizes the worst-case condition number,

P⋆ = argmin
P∈P, P=DDT

sup
x

κ(DT∇2f (x)D),

and defines the optimal condition number κ⋆ = κ((P⋆)⊤∇2f (x)(P⋆)).
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Gradient methods with online preconditioning

For smooth, strongly convex optimization,

xk+1 = xk − P∇f (xk) =⇒ f (xk+1)− f (x⋆) ≤ (1− 1
κP

)[f (xk)− f (x⋆)]

Can we learn a preconditioner P with κP ≪ κ during gradient descent?

Gradient descent xk+1 = xk − Pk∇x f (x
k)

Preconditioner update Pk+1 = Learn(Pk , x
k)

Yes! By gradient descent on a feedback ℓx(P)

▶ invented 25 years ago [Almeida, Langlois, Amaral, and Plakhov (1999)] and
re-discovered as hypergradient descent [Baydin, Cornish, Rubio, et al. (2018)]

▶ good performance after tuning, but often unstable and almost no theory
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Optimize the convergence rate with online learning

Better P ⇒ smaller condition number κP ⇒ better contraction factor

f (x − P∇f (x))− f (x⋆) ≤ (1− 1
κP

)[f (x)− f (x⋆)]

f (xK+1)−f (x⋆)
f (x1)−f (x⋆)

=
∏K

k=1
f (xk+1)−f (x⋆)
f (xk )−f (x⋆)

=
∏K

k=1 rxk (Pk) ≤ ( 1
K

∑K
k=1 rxk (Pk))

K

▶ Pk+1 = Pk − η∇P rxk (Pk) is online gradient descent

▶
∑K

k=1 rxk (Pk) ≤
∑K

k=1 rxk (P
⋆) + O(

√
K ) guaranteed by online learning

Since rxk (P
⋆) ≤ 1− 1

κ⋆ , combining these relations gives

f (xK+1)−f (x⋆)
f (x1)−f (x⋆)

≤ (1− 1
κ⋆ + O( 1√

K
))K ≈ (1− 1

κ⋆ )
K ,

an online acceleration of gradient descent!
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More than acceleration

f (xK+1)− f (x⋆)

f (x1)− f (x⋆)
≤

(
1− 1

κ⋆
+ O

( 1√
K

))K

Important limits:

▶ Asymptotically, 1√
K

→ 0 =⇒ OSGM converges as fast as the optimal P⋆.

▶ If f is a quadratic, κ⋆ = 1, so

f (xK+1)− f (x⋆)

f (x1)− f (x⋆)
≤

(
O
( 1√

K

))K

and we get superlinear convergence!

Online Scaled Gradient Method: a new acceleration scheme for first-order
methods
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OSGM framework

Two agents: stepsize scheduler, landscape

Procedure: at each iteration k , two agents interact as follows:

1. Scheduler makes decision Pk and suggests xk+1/2 = xk − Pk∇f (xk).

2. Landscape steps to xk+1 = M(xk , xk+1/2) and provides feedback ℓxk (Pk) to S.
3. Scheduler updates the stepsize using online learning Pk+1 = A(Pk , {ℓj}j≤k).

Algorithm:

(PGD) xk+1/2 = xk − Pk∇f (xk)

(Landscape action) xk+1 = M(xk , xk+1/2)

(Stepsize learning) Pk+1 = A(Pk , {ℓj}j≤k)

Madeleine Udell, Stanford. Online Scaled Gradient Method. 10



More generally

OSGM converts a measure of convergence into an improved algorithm by adaptively
learning hyperparameters of the algorithm, such as a stepsize or gradient scaling.

Choices:

▶ algorithm to update iterates x ▷ e.g., PGD

▶ algorithm to update stepsize P ▷ e.g., online GD

▶ domain for stepsize ▷ e.g., scalar, diagonal, positive definite, general

▶ convergence measure ℓxk (P
⋆) ▷ e.g., ratio feedback rx(P)

▶ checks to ensure stability ▷ e.g., monotonicity, linesearch
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Preview of results

With appropriate choices, OSGM guarantees

▶ Competitive convergence: OSGM converges asymptotically at least as fast as
the best fixed stepsize P⋆, and always at least as fast as the initial stepsize P1.

▶ Local convergence: OSGM converges superlinearly.

▶ Trajectory-dependent convergence: OSGM converges nearly as fast as any
sequence of stepsizes, even one adapted to the iterate sequence x1, . . . , xK , up
to a term depending on the distance between subsequent stepsizes.

▶ Good practical performance: OSGM beats other adaptive first order
methods, and even quasi-Newton methods like (L-)BFGS.

Madeleine Udell, Stanford. Online Scaled Gradient Method. 12



Feedback

Ratio feedback. Contraction factor of suboptimality.

rx(P) :=
f (x − P∇f (x))− f (x⋆)

f (x)− f (x⋆)
, ∇rx(P) :=

∇f (x − P∇f (x))∇f (x)T

f (x)− f (x⋆)
.

Hypergradient feedback. Function value progress relative to size of gradient.

hx(P) :=
f (x − P∇f (x))− f (x)

∥∇f (x)∥2
, ∇hx(P) :=

∇f (x − P∇f (x))∇f (x)T

∥∇f (x)∥2
.

▶ Motivated by the descent lemma: f
(
x − 1

L∇f (x)
)
− f (x) ≤ − 1

2L∥∇f (x)∥2.
▶ No need to know optimal value f (x⋆)

gradient scaling P in OSGM need not be positive definite or even symmetric!
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Hypergradient Reduction

Hypergradient feedback controls convergence if the iterations are monotone.

Theorem Suppose f (x) is convex and hk := f (xk+1)−f (xk )
∥∇f (xk )∥2 and the iterates {xk} are non-

increasing in f : f (xk+1) ≤ f (xk) ≤ · · · . Then, for any K ≥ 1, the iterates {xk} and the
stepsizes {Pk} generated by OSGM-H satisfy

f (xK+1)− f (x⋆) ≤ min
{

∆2∑K
k=1 −hk

, f (x1)− f (x⋆)
}
,

where diameter ∆ := maxx : f (x)≤f (x1) minx⋆∈X⋆ ∥x − x⋆∥.

More negative
∑K

k=1 hk =⇒ faster convergence!

how to guarantee monotonicity?
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Monotone landscape

Monotone landscape accepts proposal from scheduler if objective value decreases:

xk+1 = argmin{f (x) | x ∈ {xk+1/2, xk}}

Hypergradient OSGM (OSGM-H). Monotone landscape justifies

▶ Hypergradient reduction: f (xK+1)− f (x⋆) ≤ min
{

∆2∑K
k=1 −hk

, f (x1)− f (x⋆)
}

▶
∑K

k=1 hk =
∑K

k=1
f (xk+1)−f (xk )
∥∇f (xk )∥2 ≤

∑K
k=1

f (xk−Pk∇f (xk ))−f (xk )
∥∇f (xk )∥2 =

∑K
k=1 hxk (Pk)

So, smaller feedback hxk (Pk) ⇒ better progress hk ⇒ faster convergence!
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Convergence of OSGM-H

f (xK+1)− f (x⋆) ≤ min

{
∆2∑K

k=1 −hk
, f (x1)− f (x⋆)

}
(reduction)

≤ min

{
∆2∑K

k=1 −hxk (Pk)
, f (x1)− f (x⋆)

}
(monotone)

≤ min

 ∆2

K
(

1
K

∑K
k=1 −hxk (P̂)−O( 1√

K
)
) , f (x1)− f (x⋆)

 (regret guarantee)

≤ min

 ∆2

K
(

1
2L −O( 1√

K
)
) , f (x1)− f (x⋆)

 (
descent lemma hx

(
1
L I
)
≤ − 1

2L

)

▶ The hypergradient descent method (HDM) is OSGM-H (without monotonicity).
▶ Our work provides first convergence guarantee for (a simple variant of) HDM.
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The importance of monotonicity
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(a) Two-phase behavior
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(b) Addressing instability

Figure: The behavior of different HDM variants on a toy quadratic optimization problem.
Figure 1a: two-phase convergence behavior of vanilla HDM. Figure 1b: effect of monotone
landscape and our best variant.
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Regret guarantees vs any fixed stepsize

OSGM satisfies

1

K

K∑
k=1

ℓxk (Pk) ≤
1

K

K∑
k=1

ℓxk (P̂) +O
( 1√

K

)
for any P̂ ∈ P.

=⇒ convergence rate of OSGM is (asymptotically) no worse than that of
any fixed stepsize P̂ ∈ P, including

▶ global optimal stepsize P⋆

▶ classical constant stepsize 1
L I

▶ stepsize that minimizes the average feedback over trajectory

argmin
P∈P

1

K

K∑
k=1

ℓxk (P)
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Regret guarantee ⇒ Superlinear convergence

1

K

K∑
k=1

ℓxk (Pk) ≤
1

K

K∑
k=1

ℓxk (P̂) +O
( 1√

K

)
for any P̂ ∈ P.

The fixed stepsize P̂ = [∇2f (x⋆)]−1 achieves local quadratic convergence, hence as
a consequence of the regret guarantee, OSGM achieves

Superlinear convergence. For example, for OSGM-R on a quadratic,

f (xK+1)− f (x⋆) ≤ [f (x1)− f (x⋆)]( 1
K

∑K
k=1 rxk ([∇2f (x⋆)]−1)︸ ︷︷ ︸

=0

+O( 1√
K
))K

≤ [f (x1)− f (x⋆)]( C ′
√
K
)K .
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Is a good fixed stepsize enough?

Even the optimal stepsize might not work well:

f (x1, x2) =

{
1
2(0.5x

2
1 + x22 ), x1 ≥ 0

1
2(1.5x

2
1 + x22 ), x1 < 0

[∇2f (x)]−1 =

{
diag(0.5, 1), x1 ≥ 0

diag(1.5, 1), x1 < 0

Madeleine Udell, Stanford. Online Scaled Gradient Method. 20



Trajectory-optimal stepsize

Hessian inverse preconditioner

P(x) =

{
diag(0.5, 1)−1 = 0 x1 ≥ 0

diag(1.5, 1)−1 = 0 x1 < 0

achieves zero ratio feedback rx(P(x)) = 0 for all x .

If trajectory {xk} of PGD stays in the same half-plane as the initial point x1, best
preconditioner for the trajectory achieves ratio feedback 0:

min
P

K∑
k=1

rxk (P) = 0.

OSGM adapts stepsize to region traversed by the algorithm!

1
K

∑K
k=1 rxk (Pk) ≤ 1

K

∑K
k=1 rxk (P̂) +O

(
1√
K

)
= 0 +O

(
1√
K

)
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Dynamic regret

What if the trajectory {xk} traverses different regions?
OSGM satisfies a dynamic regret bound wrt. a sequence of competitors {P̂k}:

1
K

∑K
k=1 ℓxk (Pk) ≤ 1

K

∑K
k=1 ℓxk (P̂k) +O

(
1+PL({P̂k})√

K

)
,

where PL({P̂k}) :=
∑K

k=1 ∥P̂k − P̂k+1∥2F is the path-length.

Example.
Take P̂k = [∇2f (xk)]−1.

▶ 1
K

∑K
k=1 rxk (P̂k) = 0.

▶ PL({P̂k}) ∝ number of times {xk} switches from one
region to another.

▶ OSGM chooses P̂k that adapts to each local region at the price of extra regret.

Madeleine Udell, Stanford. Online Scaled Gradient Method. 22



Outline

Preconditioned gradient descent

Online Scaled Gradient Method

Online decision-making in a collaborative environment

Trajectory-based guarantees

Numerical experiments

From OSGM to Quasi-Newton

Madeleine Udell, Stanford. Online Scaled Gradient Method. 22



Practical OSGM

Ingredients for the best practical version of OSGM:

1. Iterate update: heavy-ball GD. Parameters include stepsize Pk and
momentum parameter βk :

xk+1/2 = xk − Pk∇f (xk) + βk(x
k − xk−1)

2. Stepsize update: AdaGrad. Learn (Pk , βk) jointly by AdaGrad:

(Pk+1, βk+1) = AdaGrad((Pk , βk), {hx j ,x j−1}j≤k)

3. Feedback: hypergradient. Define hypergradient feedback wrt potential
function φ(x , x−) = f (x) + ω

2 ∥x − x−∥2 to measure the quality of parameters
(Pk , βk) at point x

k .

4. Landscape: monotone. Use monotone landscape to ensure convergence.

5. Domain: diagonal. Learn diagonal preconditioner for scalability.

Source: Still works provably, see [Chu, Gao, Ye, and Udell (2025)].
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Projected hypergradient can be easy to compute

∇hx(P) =
∇f

(
x − P∇f (x)

)
∇f (x)T

∥∇f (x)∥2

P =


α . . .

α




Projected hypergradient:
∇f

(
x − P∇f (x)

)
· ∇f (x)

∥∇f (x)∥2

P =


d1 . . .

dn




Projected hypergradient:
∇f

(
x − P∇f (x)

)
⊙∇f (x)

∥∇f (x)∥2

P = {P ⪰ 0}

Projected hypergradient:
Proj⪰0

(
P − η∇hx(P)

)

(don’t do this!)
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Practical OSGM on LIBSVM
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HDM-Best

On deterministic convex problems

▶ comparable performance to L-BFGS-M5/M10

▶ same memory as L-BFGS-1 and cheaper iterations

Algorithm SVM Log. Reg

GD 5 2
GD-HB 9 7
AGD-CVX 8 3
AGD-SCVX 7 6

Adam 26 11
AdaGrad 9 8
L-BFGS-M1 13 11
L-BFGS-M3 20 14
L-BFGS-M5 26 16
L-BFGS-M10 31 18

BFGS 32 26
OSGM 32 21

# solved instances in LIBSVM
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Practical OSGM on nonconvex CUTEst problems
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On deterministic nonconvex problems

▶ Performance compares well with other first-order adaptive methods

▶ Sometimes outperforms BFGS!
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Which is better? Spectral or diagonal preconditioning?

Both! OSGM + sketch-based preconditioners improve stochastic optimization:
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Figure: First row: logistic regression. Second row: ridge regression.

Madeleine Udell, Stanford. Online Scaled Gradient Method. 27



OSGM for ADMM

Use OSGM to learn a diagonal preconditioner for the dual problem in ADMM:
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Where are we now?

OSGM represents

▶ a new framework for stepsize adaptation of first-order methods

▶ a new framework to learn a good stepsize (locally, [∇f (x⋆)]−1)

▶ a new way to achieve non-asymptotic superlinear convergence

There is an existing framework that achieves similar goals:

Quasi-Newton methods (1959 ∼): DFP, BFGS, Broyden . . .

OSGM and QN achieve similar guarantees. Why?
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Online Hessian learning

Our goal: find a good stepsize P⋆. For a (locally) quadratic function,

f (x) ∼ f (x⋆) + 1
2⟨x − x⋆,∇2f (x⋆)(x − x⋆)⟩+O(∥x − x⋆∥3).

Optimal stepsize: P⋆ = [∇2f (x⋆)]−1.

Can we learn P⋆ without access to second-order information?

Let’s take an ML approach. Stepsize P⋆ locally brings any point x to x⋆ in one step:

x − P⋆∇f (x) = x⋆, for all x

For each x near x⋆, (x − x⋆,∇f (x)) provides information about P⋆ in a 1D subspace.
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Online Hessian learning

P⋆∇f (x) = x − x⋆

With a dataset {(xk − x⋆,∇f (xk))}, we can estimate P⋆:

▶ linear regression problem ✓
▶ well-defined loss function ✓

ℓ(P) :=
1

2
∥P∇f (x)− (x − x⋆)∥2 or ℓ(P) := I{P∇f (x) = x − x⋆}

▶ scalable online update ✓ (e.g. recursive least squares)

Pk+1 = argminP∈P{ℓk(P) + dist(P,Pk)}
▶ Uhoh: part of the data, x⋆, is unknown!

=⇒ eliminate x⋆ to learn P⋆
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Quasi-Newton methods

This relation is useless unless we know x⋆:

P∇f (x) = x − x⋆.

This relation is useless unless we know x⋆:

P∇f (y) = y − x⋆.

Subtract them to eliminate x⋆:

P[∇f (x)−∇f (y)] = (x − x⋆)− (y − x⋆) = x − y

▶ We’ve derived the secant equation, the workhorse of quasi-Newton methods.
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Quasi-Newton methods

▶ A computable relation ✓

P[∇f (x)−∇f (y)] = x − y

▶ linear regression + well-defined loss function ✓

▶ scalable online update ✓

Pk+1 = arg min
P∈P

{ℓk(P) + dist(P,Pk)}
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Variants of Quasi-Newton methods

Pk+1 = arg min
P∈P

{ℓk(P) + dist(P,Pk)}

Broyden’s method

P = Rn×n, dist(P,Q) = 1
2
∥P − Q∥2F , ℓk(P) = I{P[∇f (xk+1)−∇f (xk)] = xk+1 − xk}.

Powell-symmetric-Broyden

P = Sn, dist(P,Q) = 1
2
∥P − Q∥2F , ℓk(P) = I{P[∇f (xk+1)−∇f (xk)] = xk+1 − xk}.

DFP & BFGS

P = Sn
+, dist(P,Q) = log det div., ℓk(P) = I{P[∇f (xk+1)−∇f (xk)] = xk+1 − xk}.

Penalized DFP & BFGS

P = Sn
+, dist(P,Q) = log det div., ℓk(P) =

1
2
∥P[∇f (xk+1)−∇f (xk)]− (xk+1 − xk)∥2.
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OSGM

Let’s take a step back.

Again, this relation is useless unless we know x⋆:

P∇f (x) = x − x⋆

▶ The least-square loss cannot be computed in the Euclidean norm due to x⋆.

▶ What if we use another norm? In the Hessian norm, locally

ℓ(P) = 1
2∥P∇f (x)− (x − x⋆)∥2∇2f (x⋆) = f (x − P∇f (x))− f (x⋆)

▶ Compare to OSGM feedback functions, which scale and translate this loss:

rx(P) =
ℓ(P)

f (x)− f (x⋆)
, hx(P) =

ℓ(P) + f (x⋆)− f (x)

∥∇f (x)∥2
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Variants of OSGM

Pk+1 = arg min
P∈P

{ℓk(P) + dist(P,Pk)}

OSGM-R

P = Rn×n, dist(P,Q) = 1
2∥P − Q∥2F , ℓk(P) =

f (xk−P∇f (xk ))−f ⋆

f (xk )−f ⋆
.

OSGM-H

P = Rn×n, dist(P,Q) = 1
2∥P − Q∥2F , ℓk(P) =

f (xk−P∇f (xk ))−f ⋆

∥∇f (xk )∥2 + f ⋆−f (xk )
∥∇f (xk )∥2 .
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OSGM vs. Quasi-Newton

▶ Same idea: learn the Hessian from P∇f (x)− (x − x⋆)

▶ Different ways of removing x⋆

▶ Similar convergence guarantees

Why not both?

▶ OSGM + QN can be combined to get the best of both worlds.
e.g., designing ℓk(P) to combine both online feedback and secant equation
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OSGM + Quasi-Newton

We can learn via both the secant equation and hypergradient feedback:

ℓk(P) = hx(P) +
ω
2 ∥x − y − P(∇f (x)−∇f (y))∥2

This instantiation of the algorithm updates P by a rank-4 matrix every iteration,

Pk+1 = (I − sk (yk )⊤

⟨yk ,sk ⟩ )Pk(I − yk (sk )⊤

⟨sk ,yk ⟩ ) +
sk (sk )⊤

⟨yk ,sk ⟩︸ ︷︷ ︸
BFGS

+ αk(Pku
k − vk)(Pku

k − vk)⊤ + βkv
k(vk)⊤︸ ︷︷ ︸

OSGM

,

with sk = xk+1 − xk , yk = ∇f (xk+1)−∇f (xk), uk = ∇f (xk+1)
∥∇f (xk )∥ , v

k = ∇f (xk )
∥∇f (xk )∥
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OSGM + BFGS

50 100 150 200
10-5

100

a2a

AGD
BFGS
OSGM
OSGM + BFGS

50 100 150 200
10-6

10-4

10-2

100

102
w2a

AGD
BFGS
OSGM
OSGM + BFGS

50 100 150 200
10-5

100

a3a

AGD
BFGS
OSGM
OSGM + BFGS
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Conclusion

▶ OSGM is a new framework for adapting hyperparameters in first-order methods.

▶ OSGM achieves competitive convergence rates, superlinear convergence, and
trajectory-dependent convergence.

▶ OSGM is practical and outperforms existing adaptive first-order methods on
real-world problems.

Where can I learn more?

▶ Wenzhi Gao, Ya-Chi Chu, Yinyu Ye, and Madeleine Udell. “Gradient Methods with Online Scaling.”
Conference on Learning Theory (COLT) 2025.

▶ Ya-Chi Chu, Wenzhi Gao, Yinyu Ye, and Madeleine Udell. “Provable and Practical Online Learning
Rate Adaptation with Hypergradient Descent.” International Conference on Machine Learning (ICML)
2025. arXiv:2502.11229 (2025).

▶ Wenzhi Gao, Ya-Chi Chu, Yinyu Ye, and Madeleine Udell. “Gradient Methods with Online Scaling
Part I. Theoretical Foundations.” arXiv: 2025.

▶ Ya-Chi Chu, Wenzhi Gao, Yinyu Ye, and Madeleine Udell. “Gradient Methods with Online Scaling
Part II. Practical Aspects Foundations.” arXiv: 2025.
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Online gradient descent

Analysis of online gradient descent: Pk+1 = Pk − η∇rxk (Pk): for any P̂ ∈ P,

∥Pk+1 − P̂∥2F = ∥Pk − η∇rxk (Pk)− P̂∥2F
= ∥Pk − P̂∥2F − 2η⟨∇rxk (Pk),Pk − P̂⟩+ η2∥∇rxk (Pk)∥2F

(Expand)

≤ ∥Pk − P̂∥2F − 2η[rxk (Pk)− rxk (P̂)] + η2∥∇rxk (Pk)∥2F
(Convexity)

≤ ∥Pk − P̂∥2F − 2η[rxk (Pk)− rxk (P̂)] + η2G 2 (Bounded gradient)

Re-arranging:

1
2η [∥Pk+1 − P̂∥2F − ∥Pk − P̂∥2F ] ≤ −[rxk (Pk)− rxk (P̂)] +

η
2G

2
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Online gradient descent

1
2η [∥Pk+1 − P̂∥2F − ∥Pk − P̂∥2F ]︸ ︷︷ ︸

What we learn

≤ −[rxk (Pk)− rxk (P̂)︸ ︷︷ ︸
What we regret

] + η
2G

2

▶ If Pk underperforms P̂, rxk (Pk) > rxk (P̂) ⇒ Pk+1 gets closer to P̂ up to error η
2G

2

We learn something whenever we regret a lot

▶ If there is not too much to learn (∥P1 − P̂∥2F < ∞), then there’s not too much regret

∑K
k=1 rxk (Pk)− rxk (P̂)︸ ︷︷ ︸

Regret

≤ 1
2η∥P1 − P̂∥2F︸ ︷︷ ︸
What we can learn

+ η
2KG

2︸ ︷︷ ︸
Error

= O( 1η + ηK )
η= 1√

K
= O(

√
K )
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