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Gradient methods converge quickly on well-conditioned data
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Gradient methods converge slowly on ill-conditioned data
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lll-conditioning is common in ML data...
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...and it makes optimization slower!
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Recap: convergence analysis for gradient descent

minimize f(x)
recall: we say (twice-differentiable) f is pu-strongly convex and L-smooth if

pl < V3f(x) < LI

recall: if f is u-strongly convex and L-smooth, gradient descent converges linearly
K
FNH) — pt < LSt — 7,

where ¢ = (n+1) , £ =4 = 1is condition number
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Recap: convergence analysis for gradient descent

minimize f(x)
recall: we say (twice-differentiable) f is pu-strongly convex and L-smooth if

pl < V3f(x) < LI

recall: if f is u-strongly convex and L-smooth, gradient descent converges linearly
K
FNH) — pt < LSt — 7,

/1—1)2 K = L

where ¢ = (m = ﬁ

> 1 is condition number — want Kk ~ 1

idea: can we minimize another function with k ~ 1 whose solution will tell us the
minimizer of 7
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Preconditioning

for invertible D, the two problems
minimize f(x) and minimize f(Dz)

have solutions related by x* = Dz*
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Preconditioning

for invertible D, the two problems
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» gradient of f(Dz) is DT Vf(Dz)
> the second derivative (Hessian) of f(Dz) is DT V2f(Dz)D
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Preconditioning

for invertible D, the two problems

minimize f(x) and minimize f(Dz)

have solutions related by x* = Dz*

» gradient of f(Dz) is DT Vf(Dz)
> the second derivative (Hessian) of f(Dz) is DT V2f(Dz)D

a gradient step on f(Dz) with step-size t > 0 is

zF = z—tD"Vf(Dz)
Dzt = Dz - tDDTVf(Dz)
xt = x—tDD"Vf(x)
this iteration is preconditioned gradient descent (PGD) with preconditioner

P=DDT.
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Outline

Nystrom preconditioning

Madeleine Udell, Stanford. Hunting the Hessian I.



Preconditioning a linear system

Preconditioning a linear system. for any P > 0,

Ax=b <+= P Y2ax=p 12
p-l2Ap=t2; = p=1/2p

where x = P~1/2z,
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Preconditioning a linear system

Preconditioning a linear system. for any P > 0,

Ax=b <+= P Y2ax=p 12
p-l2Ap=t2; = p=1/2p

where x = P~1/2z,

> preconditioning works well when x(P~Y2AP~1/2) < k(A)
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Low rank approximation via eigenvalues

given A € S? (symmetric positive definite), find the best rank-s approximation:

» compute the eigenvalue decomposition >0(p3) flops)
p
A=Y Nuul = UNUT
i=1

with Ay > --- > )\p, A= diag()\l, C. ,)\p), u,-TuJ- = 5’]

> truncate to top s eigenvector/value pairs:
S
A= " Nuu| = UAUT
i=1

where A and Us are truncated versions of A and U.
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Efficient eigs via randomized NLA

given A € Si, find a good rank-s approximation:

» draw random Gaussian matrix Q € RP**
» compute randomized linear sketch Y = AQ.
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Efficient eigs via randomized NLA

given A € Si, find a good rank-s approximation:

» draw random Gaussian matrix 2 € RP*®
» compute randomized linear sketch Y = AQ.
» form Nystrém approximation [Tropp, Yurtsever, Udell, and Cevher (2017)]

Angs = (AQ)(QTAQ)T(AQ)T = Y(QTY)T YT,
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Efficient eigs via randomized NLA

given A € Sﬁ, find a good rank-s approximation:

» draw random Gaussian matrix 2 € RP*®
» compute randomized linear sketch Y = AQ.
» form Nystrém approximation [Tropp, Yurtsever, Udell, and Cevher (2017)]

Angs = (AQ)(QTAQ)T(AQ)T = Y(QTY)T YT,

» in practice, construct apx eigs A= VAVT using tall-skinny QR, small SVD
properties:

» total computation: s matvecs + O(ps?)

> total storage: O(ps)

> /A\nys is spd, rank(Anys) <'s, and /A\nys <A

» requires only matvecs with A, streaming ok.
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12



Speed depends on hardware
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CPU: complex, sequential tasks GPU: simple, parallel tasks

» traditional matrix decompositions: hopelessly serial (e.g., Gaussian elimination)

» randNLA: naturally parallel (mostly matvecs)
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An optimal low-rank preconditioner

> suppose |A|s = ViAV, is a best rank-s apx to A € SF.
» the best preconditioner (e.g., for PCG) using this information is

1
P, = — VAV + (I — V,V)
As—s—l

—— before preconditioning
—— after preconditioning
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Nystrom preconditioner

Given a rank-s Nystrom approximation
Aws=VAVT =~  AcSP,

the Nystrém preconditioner for (A+ pl)x = b is

1 ~
Poys = = VIA+u)VT + (1 —wvvT)
As + p
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Nystrom preconditioner

Given a rank-s Nystrom approximation
Aws=VAVT =~  AcSP,

the Nystrém preconditioner for (A+ pl)x = b is

1 ~
Poys = = VIA+u)VT + (1 —wvvT)
As + p

inverse can be applied in O(ps):

Pt =R+ ) VA+ul) VT (1 —wT)
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Nystrom preconditioner is fast!
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Random features regression on YearMSD dataset (463,715 x 15,000). Regularization p = 10~°;
sketch size s = 500.
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Low rank approximation for faster optimization

randNLA allows approximate inverse of pxp matrix A in O(p) time
= can improve conditioning for many optimization problems.
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1. Nystrom PCG to solve Ax = b
» randomized low rank approximation as preconditioner
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Low rank approximation for faster optimization

randNLA allows approximate inverse of pxp matrix A in O(p) time
= can improve conditioning for many optimization problems. e.g.,

1. Nystrom PCG to solve Ax = b
» randomized low rank approximation as preconditioner

2. NysADMM for composite optimization minimize f(Ax) + g(x), e.g.,
> lasso
» regularized logistic regression
» support vector machine

randNLA beats SOTA solver for all these problems!
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Low rank approximation for faster optimization

randNLA allows approximate inverse of pxp matrix A in O(p) time
= can improve conditioning for many optimization problems. e.g.,

1. Nystrom PCG to solve Ax = b
» randomized low rank approximation as preconditioner

2. NysADMM for composite optimization minimize f(Ax) + g(x), e.g.,
> lasso
» regularized logistic regression
» support vector machine

randNLA beats SOTA solver for all these problems!
3. approximate Newton methods for deep learning and stochastic optimization
low rank approximation for Newton system improves
> robustness (vs first-order methods) and
> speed (vs other quasi-Newton methods)
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NysADMM
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Composite optimization

minimize  £(Ax) + r(x)

» A:RP — R" linear
» /:R™ — R smooth
» r:RP — R proxable

Lasso Logistic Regression Support Vector Machines (SVM)
minimize +[|Az - blI3 +7llelly minimize — " (bi(Az); — log(1 + exp((4z);))) + |zl minimize 127 diag(b)Kgiag(b)z — 17z
zeRd 2 zeR? oeRd 2
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Proximal operators

r: RP — R is called proxable if it is easy to compute the proximal operator

. 1
prox,(x) := axgmin r(y) + 5 |x — y|

y

Projection onto a Convex Set C
(r(x) = indicator of C)

x

prox,(x)

1
pro, (x) = argmin [lx - y|2
yec 2

Soft-thresholding Operator
(r(x) = Alxll1)

(proxy.y, (),

proxy., (x) = sign(x) - max(0, |x| — 2)

Madeleine Udell, Stanford. Hunting the Hessian I.
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Alternating Directions Method of Multipliers

Algorithm ADMM

1 Input: loss function £ o A, regularization r, stepsize p,
> initial 29, 19 =0
s for k=0,1,...do
4 X1 = argmin, {{(Ax) + §||x — z* + u¥||3}
5 2K = argmin, {r(z) + §||x*T! — z + u¥|3}
Ukl = gk ekt kAT
return x, (nearly) minimizing ¢(Ax) + r(x)

Madeleine Udell, Stanford. Hunting the Hessian I.
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Alternating Directions Method of Multipliers

Algorithm ADMM

1

Input: loss function £ o A, regularization r, stepsize p,
initial 2%, W9 =0
for k=0,1,... do
X1 = argmin, {{(Ax) + §||x — z* + u¥||3}
2K = argmin, {r(z) + §||x*T! — z + u¥|3}
Ukl = gk ekt kAT
return x, (nearly) minimizing ¢(Ax) + r(x)

problem: x-min involves the (large) data: not easy to solve!
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Alternating Directions Method of Multipliers

Algorithm ADMM

1 Input: loss function £ o A, regularization r, stepsize p,
> initial 29, 19 =0
s for k=0,1,...do
4 X1 = argmin, {{(Ax) + §||x — z* + u¥||3}
5 2K = argmin, {r(z) + §||x*T! — z + u¥|3}
Ukl = gk ekt kAT
return x, (nearly) minimizing ¢(Ax) + r(x)

problem: x-min involves the (large) data: not easy to solve!
solution: NysADMM [Zhao, Frangella, and Udell (2022)]
» approximate x-min with linear system

» solve (to moderate tolerance) with Nystrom PCG
Madeleine Udell, Stanford. Hunting the Hessian I.

21



Quadratic approximation

if ¢ is twice diffable, approximate obj near prev iterate x*
1
0(Ax) =~ L(AXK) + (x — x*)TATVL(AXR) + E(X — xK)TAT Hy(AXK)A(x — x¥)

where Hy is the Hessian of /.

Madeleine Udell, Stanford. Hunting the Hessian I.

22



Quadratic approximation

if ¢ is twice diffable, approximate obj near prev iterate x*
1
0(Ax) =~ L(AXK) + (x — x*)TATVL(AXR) + E(X — xK)TAT Hy(AXK)A(x — x¥)
where Hy is the Hessian of /.
with this approximation, x-min becomes linear system: find x so
(ATHy(AXM)A + phx = r*

where rk = pzk — puk + AT Hy(Ax¥)Axk — ATV U(AxK)

Madeleine Udell, Stanford. Hunting the Hessian I.
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NysADMM algorithm

Algorithm NysADMM

1 input loss function £o A, regularization r, stepsize p, positive summable sequence
{ak}iozo, initial 2%, v =0

> for k=0,1,... do

3 compute rk = pzk — puk + AT Hy(AxK) Axk — ATV ((Axk)

4 use Nystrdm PCG to find ek-apx solution x¥*1 to

(AT Hy(AX¥)A + phxk+1 = ¥

5 KL = argmin, {r(z) + §||x**! — z + u¥|3}
UKL — gk okt ke

~

return x, (nearly) minimizing ¢(Ax) + r(x)

Madeleine Udell, Stanford. Hunting the Hessian I. 23



The competition

lasso:

» SSNAL, a Newton augmented Lagrangian method
[X. Li, Sun, and Toh (2018)]
» mflPM, a matrix-free interior point method
[Fountoulakis, Gondzio, and Zhlobich (2014)]
» glmnet, a coordinate-descent method
[Friedman, Hastie, and Tibshirani (2010)]
logistic regression:

» SAGA, a stochastic average gradient method
[Defazio, Bach, and Lacoste-Julien (2014)]

SVM:

» LIBSVM, a sequential minimal optimization (pairwise coordinate descent)
method [Chang and Lin (2011)]

Madeleine Udell, Stanford. Hunting the Hessian I.
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Numerical experiments: settings

» pick datasets with n > 10,000 or d > 10,000 from LIBSVM, UCI, and
OpenML.

use random feature map to generate more features

v

» use same stopping criterion and parameter settings as the standard solver for
each problem class

» constant sketch size s = 30

Madeleine Udell, Stanford. Hunting the Hessian I. 25



stl10 dataset. stop iteration when

||x — prox

od |}

Lasso results
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Lasso results

Task Time for e = 1071 (s)
NysADMM | mfIPM | SSNAL | glmnet

STL-10 165 573 467 278
CIFAR-10-rf 251 655 692 391
smallNorb-rf 219 552 515 293
E2006.train 313 875 903 554
sector 235 678 608 396
realsim-rf 193 - 765 292
revl-rf 226 563 595 273
cod-rna-rf 208 976 865 324
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(1-regularized logistic regression results

Table: Results for £;1-regularized logistic regression experiment.

Task

NysADMM time (s)

SAGA (sklearn) time (s)

STL-10
CIFAR-10-rf
p53-rf
connect-4-rf
smallnorb-rf
rcvl-rf
con-rna-rf

3012
7884
528
866
1808
1237
7528

6083
21256
2116
4781
6381
3988
21513

Madeleine Udell, Stanford. Hunting the Hessian I.
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Support vector machine results

NysADMM is > 5x faster, although code is pure python!

Table: Results of SVM experiment.

Task

NysADMM time (s)

LIBSVM time (s)

STL-10
CIFAR-10
p53-rf
connect-4-rf
realsim-rf
rcvl-rf
cod-rna-rf

208
1636
291
7073
17045
564
4942

11573
8563
919
42762
52397
32848
36791

Madeleine Udell, Stanford. Hunting the Hessian I.
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Optimization for deep learning

Madeleine Udell, Stanford. Hunting the Hessian I.
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Optimization landscape

best methods for optimization depend on the landscape

» local minima?
» saddle points?
» ill-conditioning?

what landscapes should we expect in modern problems (eg, deep learning)?

Madeleine Udell, Stanford. Hunting the Hessian I.
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Architectural choices govern optimization landscape

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

Source: H. Li, Xu, Taylor, et al., 2018
Madeleine Udell, Stanford. Hunting the Hessian I.
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Saddle points vs local minima in deep learning

» index of critical point is

# negative Hessian eigenvalues = directions of negative curvature

» observation: all local minima are (nearly) global minima
» but there are plenty of saddles! or just degenerate local minima?

P> “negative” eigenvalues are all nearly 0

MNIST CIFAR-10
;\330 10? Error 0.32% f |3 Enor4354%
vt 10 ¢ Error 23.49% i i Error 48.08%
< 20 10° * Error 28.23% I E Error 61.49%
s 107 ] 102, 4% 4 i
g 10 <107)¢ <1051 s
® 107 | 5| R © 107!
= O 10 =40 105

0.00 0.12 0.25 0.0 05 1.0 1.5 2.0 0.05 0.10 0.15 0.20 0.0 0.5 1.0 1.5 2.0
Index of critical point o Eigenvalue A Index of critical point o Eigenvalue A

Source: MLP experiments from Dauphin, Pascanu, Gulcehre, et al.,

Liang, et al., 2020.
Madeleine Udell, Stanford. Hunting the Hessian I.
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Landscape-aware optimization

agenda:

1. local minima. ignore them: they are rarely a problem in modern architectures
» or try random restarts / judicious initialization ...

Madeleine Udell, Stanford. Hunting the Hessian I.
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Landscape-aware optimization

agenda:

1. local minima. ignore them: they are rarely a problem in modern architectures
» or try random restarts / judicious initialization ...
2. saddles.

> seek and follow directions of negative curvature? [Royer, O'Neill, and Wright
(2020)]

» nah, ignore them: associated eigenvalues are small [Alain, Roux, and Manzagol
(2019) and Rathore, Lei, Frangella, et al. (2024)]
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Landscape-aware optimization

agenda:

1. local minima. ignore them: they are rarely a problem in modern architectures
» or try random restarts / judicious initialization ...
2. saddles.

> seek and follow directions of negative curvature? [Royer, O'Neill, and Wright
(2020)]

» nah, ignore them: associated eigenvalues are small [Alain, Roux, and Manzagol
(2019) and Rathore, Lei, Frangella, et al. (2024)]

3. ill-conditioning. precondition!

but how to query and use the p x p Hessian of f : RP — R?

Madeleine Udell, Stanford. Hunting the Hessian I. 34



PINNs
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Physics-Informed Neural Networks (PINNs)

goal: solve PDE to find solution u: Q2 — R

D(u)(z) =1f(z), z€Q
B(u)(z) = g(2), z€0Q,
where D is a differential operator, f is a forcing

function, B is initial condition/boundary condition
operator, and g is boundary function.

Madeleine Udell, Stanford. Hunting the Hessian I.
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Physics-Informed Neural Networks (PINNs)

goal: solve PDE to find solution u: Q2 — R

D(u)(z) =1f(z), z€Q
B(u)(z) = g(2), z€0Q,
where D is a differential operator, f is a forcing

function, B is initial condition/boundary condition
operator, and g is boundary function.

PINNSs train a neural network uy(z) to approximate the PDE solution by minimizing
a loss function that includes both data and physics-based terms

;M . N L Ny . | o
M;H (up(zi)) — () +NB;H (ug(zi)) — &(zi)||

Madeleine Udell, Stanford. Hunting the Hessian I. 36



PINNs suffer from under-optimization

» After training, gradient norm is typically on the order 1072 or 1073
» L-BFGS stops early because PyTorch detects instability in the preconditioner
» Our proposal: fine-tune with NysNewton-CG (NNCG), i.e

use Newton's method and solve linear system with NystromPCG

Wave, 8 =

5
10°4
0 W

0 10000 20000 30000 40000
Tterations

—— Adam L-BFGS NNCG

Figure: Even after running L-BFGS, the loss can be improved.

Madeleme Udell Stanford Huntmg the Hesszan I 37
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We can access V?f(w) with automatic differentiation!

automatic differentiation (AD) on f : RP — R can compute gradients Vf(w) and
Hessian-vector products (hvp) (V2f(w))v in O(p) time!

1. compute gradient with automatic differentiation (AD) g(w) = Vf(w)

2. define Hessian vector product with vector v
(V2 (w))v = V(g(w) - v)

and compute using AD on g(w) - v (Pearlmutter’s trick)
3. cost: two passes of AD a2 4x cost of function evaluation (usually, O(p))

Madeleine Udell, Stanford. Hunting the Hessian I.

38



Newton-CG: a matvec-only nearly-second-order optimizer

Newton-CG: repeat

» approximate f locally as a quadratic with A = V2f(xo)
1
f(x) =~ f(xo) + Vf(xo)T(x —Xxp) + E(X — Xo)TA(X — X0)-

> (optionally) find a good preconditioner for A
> solve linear system Ax = Axg — Vf(xp) with PCG.

algorithm only uses gradient evaluations and matrix-vector products with A
= compatible with AD

Source: [Rathore, Lei, Frangella, et al. (2024)]

Madeleine Udell, Stanford. Hunting the Hessian I.
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Preconditioners can improve conditioning

plot spectral density of PINN Hessian for different PDEs

» blue: original function
» orange: after preconditioning

Convection, 3 = 40 Reaction, p =5 Wave, =5
v
10 10?
—1
v 10 L 107
£ 10t E 10
10774 10-7
E 10710 - 10710 -
0 10° 10! 102 10° 10 —10* —10° 0 10" 10t 10?2 10° 0 10° 10t 10 100 100 10°
Eigenvalue Eigenvalue Eigenvalue

—— Hessian ~=== Preconditioned Hessian

Figure: The total loss is ill-conditioned for all three PDEs. [Rathore, Lei, Frangella, et al.
(2024)]

Source: Approximate spectral density with kernel smoothing + stochastic trace estimation + Gaussian
MadeleipneabidellStanfardzdduntingtheHdassian ISaad (2017) and Yao, Gholami, Keutzer, and Mahoney (2020)] 40



Preconditioned optimizers

Convection, § = 40

Adam +
10
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00 0000
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00 000
10 [N
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0125
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N 075 N
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Architectural choices can improve conditioning

plot spectral density of PINN Hessian for wave PDEs

» blue: standard MLP architecture

» orange: with SAFE-NET architecture (single layer with fourier features)

= PINN

102 |
—— SAFE-NET
> 107t
2
g 107
1077 ‘
10710 1 1 T T
0 10° 10t 102 10° 104
Eigenvalue

(a) Early into Training

— T T "
0 100 101 102 10° 10* 10° 106
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(b) End of Training

Figure: Spectral density for the wave PDE using SAFE-NET and PINN at the early stages of

training and at the end of training.
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Well-conditioned architectures improve fits

1 Loss Components (SAFE-NET) 1 Loss Components (PINN)
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rlaopt: Randomized Linear Algebra for Scalable Optimization

problems:
» solve linear systems Ax = b faster
» composite optimization: minimize f(Ax) + g(x)

> stochastic optimization: minimize Y 7_; fi(x)
algorithms:

» Nystrom PCG for solving linear systems

» Nystrom ADMM for composite optimization

» PROMISE: low-rank stochastic optimization

» SAPPHIRE: stochastic proximal gradient method

Madeleine Udell, Stanford. Hunting the Hessian I.
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rlaopt delivers 20x speedups solving dense linear system

PCG Solver: GPU vs CPU Performance Comparison

2768 85

10° 4

1024

Solve Time (seconds)

acsincome yearpredictionmsd

€2006 realsim
(1664500 x 3000) (16087 x 150360) (72309 x 20958) (463715 x 4637)
Dataset (samples x features)

ridge regression solved with PCG + Nystrom preconditioner
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rlaopt delivers 25x speedups solving elastic net

ADMM Solver: GPU vs CPU Performance Comparison

Solve Time (seconds)
=)

2

acsincome yearpredictionmsd

€2006 realsim
(1664500 x 3000) (16087 x 150360) (72309 x 20958) (463715 x 4637)
Dataset (samples x features)

elastic net with a box constraint solved with NysADMM
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rlaopt delivers 8 x speedups solving logistic regression

Preconditioned SVRG: GPU vs. CPU Comparison

60 4 59.37 N CPU

Solve Time (seconds)

ledgar revl realsim scotus
(70000 x 19986) (20242 x 47236) (72309 x 20958) (6000 x 126397)

Dataset (Samples x Features)
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Conclusion

does your optimization suffer from ill-conditioning?
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Conclusion

does your optimization suffer from ill-conditioning?

preconditioners can help!

» spectral preconditioning is feasible at large scale

» randomized Nystrom approximation
» autodiff from Hessian-vector products

» randomized preconditioners can speed up
> composite optimization (e.g.NysADMM)
> deep learning (e.g.NysNewton-CG)
> stochastic optimization (e.g.SketchySGD, PROMISE, SAPPHIRE)

» (tomorrow) online scaled gradient method

» provably competes with the best offline methods
» flexible framework can improve many optimization algorithms
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Where can | learn more?

randomized Nystrom approximation to a psd matrix:
https://arxiv.org/abs/1706.05736 NeurlPS 2017

Nystrom PCG to solve Ax = b: https://arxiv.org/abs/2110.02820 SIMAX 2023
NysADMM for composite optimization minimize ¢(x) + r(x):

> algorithm (NysADMM): https://arxiv.org/abs/2202.11599

> convergence (GeNI-ADMM): https://arxiv.org/abs/2302.03863

> solver (GeNIOS): https://github.com/tjdiamandis/GeNIOS jl
almost-second-order stochastic optimization:

> SketchySGD (improves SGD): https://arxiv.org/abs/2211.08597 SIMODS 2024

» PROMISE (improves SVRG etc.): https://arxiv.org/abs/2309.02014 JMLR 2024

> NNCG for PINNs: https://arxiv.org/abs/2402.01868 ICML 2024

> SAFE-NET for PINNSs: http://arxiv.org/abs/2502.07209

PyTorch implementation of all these methods: rlaopt
https:www.github.com /udellgroup/rlaopt
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