
Hunting the Hessian: Randomized Methods

Madeleine Udell

Management Science and Engineering
Stanford University

Joint work with
Zachary Frangella, Pratik Rathore, Shaghayegh Fazliani, Weimu Lei,

Shipu Zhao (Cornell→Amazon), Theo Diamandis (MIT),
Bartolomeo Stellato (Princeton), Lu Lu (Yale), and Joel Tropp (Caltech)

January 12, 2026

Madeleine Udell, Stanford. Hunting the Hessian I. 1

Outline

Preconditioning

Nyström preconditioning

NysADMM

Optimization for deep learning

PINNs

Madeleine Udell, Stanford. Hunting the Hessian I. 2

Gradient methods converge quickly on well-conditioned data

Madeleine Udell, Stanford. Hunting the Hessian I. 3

Gradient methods converge slowly on ill-conditioned data

Madeleine Udell, Stanford. Hunting the Hessian I. 4

Ill-conditioning is common in ML data. . .

0 20 40 60 80 100
k

10−3

10−2

10−1

100

101

102

103

σ
k

e2006

yearpredictionmsd

real-sim

yolanda

ijcnn1

susy

Madeleine Udell, Stanford. Hunting the Hessian I. 5

. . . and it makes optimization slower!

0 20 40 60 80 100
k

10−1

100

101

102

σ
k

e2006 Wall-clock time
0.15

0.16

0.17

0.18

0.19

Ob
je

ct
iv

e
Va

lu
e

L-Katyusha
SAGA
SGD
SketchySGD
SVRG
OSGM (Ours)

Madeleine Udell, Stanford. Hunting the Hessian I. 6

Recap: convergence analysis for gradient descent

minimize f (x)

recall: we say (twice-differentiable) f is µ-strongly convex and L-smooth if

µI ⪯ ∇2f (x) ⪯ LI

recall: if f is µ-strongly convex and L-smooth, gradient descent converges linearly

f (xK+1)− p⋆ ≤ LcK

2 ∥x1 − x⋆∥2,

where c = (κ−1
κ+1)

2, κ = L
µ ≥ 1 is condition number

=⇒ want κ ≈ 1

idea: can we minimize another function with κ ≈ 1 whose solution will tell us the
minimizer of f ?

Madeleine Udell, Stanford. Hunting the Hessian I. 7

Recap: convergence analysis for gradient descent

minimize f (x)

recall: we say (twice-differentiable) f is µ-strongly convex and L-smooth if

µI ⪯ ∇2f (x) ⪯ LI

recall: if f is µ-strongly convex and L-smooth, gradient descent converges linearly

f (xK+1)− p⋆ ≤ LcK

2 ∥x1 − x⋆∥2,

where c = (κ−1
κ+1)

2, κ = L
µ ≥ 1 is condition number =⇒ want κ ≈ 1

idea: can we minimize another function with κ ≈ 1 whose solution will tell us the
minimizer of f ?

Madeleine Udell, Stanford. Hunting the Hessian I. 7

Recap: convergence analysis for gradient descent

minimize f (x)

recall: we say (twice-differentiable) f is µ-strongly convex and L-smooth if

µI ⪯ ∇2f (x) ⪯ LI

recall: if f is µ-strongly convex and L-smooth, gradient descent converges linearly

f (xK+1)− p⋆ ≤ LcK

2 ∥x1 − x⋆∥2,

where c = (κ−1
κ+1)

2, κ = L
µ ≥ 1 is condition number =⇒ want κ ≈ 1

idea: can we minimize another function with κ ≈ 1 whose solution will tell us the
minimizer of f ?

Madeleine Udell, Stanford. Hunting the Hessian I. 7

Preconditioning

for invertible D, the two problems

minimize f (x) and minimize f (Dz)

have solutions related by x⋆ = Dz⋆

▶ gradient of f (Dz) is DT∇f (Dz)

▶ the second derivative (Hessian) of f (Dz) is DT∇2f (Dz)D

a gradient step on f (Dz) with step-size t > 0 is

z+ = z − tDT∇f (Dz)

Dz+ = Dz − tDDT∇f (Dz)

x+ = x − tDDT∇f (x)

this iteration is preconditioned gradient descent (PGD) with preconditioner
P = DDT .

Madeleine Udell, Stanford. Hunting the Hessian I. 8

Preconditioning

for invertible D, the two problems

minimize f (x) and minimize f (Dz)

have solutions related by x⋆ = Dz⋆

▶ gradient of f (Dz) is DT∇f (Dz)

▶ the second derivative (Hessian) of f (Dz) is DT∇2f (Dz)D

a gradient step on f (Dz) with step-size t > 0 is

z+ = z − tDT∇f (Dz)

Dz+ = Dz − tDDT∇f (Dz)

x+ = x − tDDT∇f (x)

this iteration is preconditioned gradient descent (PGD) with preconditioner
P = DDT .

Madeleine Udell, Stanford. Hunting the Hessian I. 8

Preconditioning

for invertible D, the two problems

minimize f (x) and minimize f (Dz)

have solutions related by x⋆ = Dz⋆

▶ gradient of f (Dz) is DT∇f (Dz)

▶ the second derivative (Hessian) of f (Dz) is DT∇2f (Dz)D

a gradient step on f (Dz) with step-size t > 0 is

z+ = z − tDT∇f (Dz)

Dz+ = Dz − tDDT∇f (Dz)

x+ = x − tDDT∇f (x)

this iteration is preconditioned gradient descent (PGD) with preconditioner
P = DDT .

Madeleine Udell, Stanford. Hunting the Hessian I. 8

Outline

Preconditioning

Nyström preconditioning

NysADMM

Optimization for deep learning

PINNs

Madeleine Udell, Stanford. Hunting the Hessian I. 9

Preconditioning a linear system

Preconditioning a linear system. for any P ≻ 0,

Ax = b ⇐⇒ P−1/2Ax = P−1/2b

P−1/2AP−1/2z = P−1/2b

where x = P−1/2z .

▶ preconditioning works well when κ(P−1/2AP−1/2) ≪ κ(A)

Madeleine Udell, Stanford. Hunting the Hessian I. 10

Preconditioning a linear system

Preconditioning a linear system. for any P ≻ 0,

Ax = b ⇐⇒ P−1/2Ax = P−1/2b

P−1/2AP−1/2z = P−1/2b

where x = P−1/2z .

▶ preconditioning works well when κ(P−1/2AP−1/2) ≪ κ(A)

Madeleine Udell, Stanford. Hunting the Hessian I. 10

Low rank approximation via eigenvalues

given A ∈ Sp
+ (symmetric positive definite), find the best rank-s approximation:

▶ compute the eigenvalue decomposition ▷O(p3) flops)

A =

p∑
i=1

λiuiu
T
i = UΛUT

with λ1 ≥ · · · ≥ λp, Λ = diag(λ1, . . . , λp), u
T
i uj = δij .

▶ truncate to top s eigenvector/value pairs:

Â =
s∑

i=1

λiuiu
T
i = UsΛsU

T
s

where Λs and Us are truncated versions of Λ and U.

Madeleine Udell, Stanford. Hunting the Hessian I. 11

Efficient eigs via randomized NLA

given A ∈ Sp
+, find a good rank-s approximation:

▶ draw random Gaussian matrix Ω ∈ Rp×s

▶ compute randomized linear sketch Y = AΩ.

▶ form Nyström approximation [Tropp, Yurtsever, Udell, and Cevher (2017)]

Ânys = (AΩ)(ΩTAΩ)†(AΩ)T = Y (ΩTY)†Y T .

▶ in practice, construct apx eigs Â = V Λ̂V T using tall-skinny QR, small SVD

properties:

▶ total computation: s matvecs + O(ps2)
▶ total storage: O(ps)
▶ Ânys is spd, rank(Ânys) ≤ s, and Ânys ⪯ A
▶ requires only matvecs with A, streaming ok.

Madeleine Udell, Stanford. Hunting the Hessian I. 12

Efficient eigs via randomized NLA

given A ∈ Sp
+, find a good rank-s approximation:

▶ draw random Gaussian matrix Ω ∈ Rp×s

▶ compute randomized linear sketch Y = AΩ.
▶ form Nyström approximation [Tropp, Yurtsever, Udell, and Cevher (2017)]

Ânys = (AΩ)(ΩTAΩ)†(AΩ)T = Y (ΩTY)†Y T .

▶ in practice, construct apx eigs Â = V Λ̂V T using tall-skinny QR, small SVD

properties:

▶ total computation: s matvecs + O(ps2)
▶ total storage: O(ps)
▶ Ânys is spd, rank(Ânys) ≤ s, and Ânys ⪯ A
▶ requires only matvecs with A, streaming ok.

Madeleine Udell, Stanford. Hunting the Hessian I. 12

Efficient eigs via randomized NLA

given A ∈ Sp
+, find a good rank-s approximation:

▶ draw random Gaussian matrix Ω ∈ Rp×s

▶ compute randomized linear sketch Y = AΩ.
▶ form Nyström approximation [Tropp, Yurtsever, Udell, and Cevher (2017)]

Ânys = (AΩ)(ΩTAΩ)†(AΩ)T = Y (ΩTY)†Y T .

▶ in practice, construct apx eigs Â = V Λ̂V T using tall-skinny QR, small SVD

properties:

▶ total computation: s matvecs + O(ps2)
▶ total storage: O(ps)
▶ Ânys is spd, rank(Ânys) ≤ s, and Ânys ⪯ A
▶ requires only matvecs with A, streaming ok.

Madeleine Udell, Stanford. Hunting the Hessian I. 12

Efficient eigs via randomized NLA

given A ∈ Sp
+, find a good rank-s approximation:

▶ draw random Gaussian matrix Ω ∈ Rp×s

▶ compute randomized linear sketch Y = AΩ.
▶ form Nyström approximation [Tropp, Yurtsever, Udell, and Cevher (2017)]

Ânys = (AΩ)(ΩTAΩ)†(AΩ)T = Y (ΩTY)†Y T .

▶ in practice, construct apx eigs Â = V Λ̂V T using tall-skinny QR, small SVD

properties:

▶ total computation: s matvecs + O(ps2)
▶ total storage: O(ps)
▶ Ânys is spd, rank(Ânys) ≤ s, and Ânys ⪯ A
▶ requires only matvecs with A, streaming ok.

Madeleine Udell, Stanford. Hunting the Hessian I. 12

Speed depends on hardware

CPU: complex, sequential tasks GPU: simple, parallel tasks

▶ traditional matrix decompositions: hopelessly serial (e.g., Gaussian elimination)

▶ randNLA: naturally parallel (mostly matvecs)

Madeleine Udell, Stanford. Hunting the Hessian I. 13

An optimal low-rank preconditioner

▶ suppose ⌊A⌋s = VsΛsV
T
s is a best rank-s apx to A ∈ Sp

+.
▶ the best preconditioner (e.g., for PCG) using this information is

P⋆ =
1

λs+1
Vs(Λs)V

T
s + (I − VsV

T
s)

i

i

before preconditioning
after preconditioning

Madeleine Udell, Stanford. Hunting the Hessian I. 14

Nyström preconditioner

Given a rank-s Nyström approximation

Ânys = V Λ̂V T ≈ A ∈ Sp
+,

the Nyström preconditioner for (A+ µI)x = b is

Pnys =
1

λ̂s + µ
V (Λ̂ + µI)V T + (I − VV T)

inverse can be applied in O(ps):

P−1 = (λ̂s + µ)V (Λ̂ + µI)−1V T + (I − VV T)

Madeleine Udell, Stanford. Hunting the Hessian I. 15

Nyström preconditioner

Given a rank-s Nyström approximation

Ânys = V Λ̂V T ≈ A ∈ Sp
+,

the Nyström preconditioner for (A+ µI)x = b is

Pnys =
1

λ̂s + µ
V (Λ̂ + µI)V T + (I − VV T)

inverse can be applied in O(ps):

P−1 = (λ̂s + µ)V (Λ̂ + µI)−1V T + (I − VV T)

Madeleine Udell, Stanford. Hunting the Hessian I. 15

Nyström preconditioner is fast!

0 200 400 600 800 1000

Time(s)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

R
es

id
u

al

Nyström PCG

CG

Jacobi PCG

QR

Random features regression on YearMSD dataset (463, 715× 15, 000). Regularization µ = 10−5;
sketch size s = 500.

Madeleine Udell, Stanford. Hunting the Hessian I. 16

Low rank approximation for faster optimization

randNLA allows approximate inverse of p×p matrix A in O(p) time
=⇒ can improve conditioning for many optimization problems.

e.g.,

1. Nyström PCG to solve Ax = b
▶ randomized low rank approximation as preconditioner

2. NysADMM for composite optimization minimize f (Ax) + g(x), e.g.,
▶ lasso
▶ regularized logistic regression
▶ support vector machine

randNLA beats SOTA solver for all these problems!

3. approximate Newton methods for deep learning and stochastic optimization
low rank approximation for Newton system improves
▶ robustness (vs first-order methods) and
▶ speed (vs other quasi-Newton methods)

Madeleine Udell, Stanford. Hunting the Hessian I. 17

Low rank approximation for faster optimization

randNLA allows approximate inverse of p×p matrix A in O(p) time
=⇒ can improve conditioning for many optimization problems. e.g.,

1. Nyström PCG to solve Ax = b
▶ randomized low rank approximation as preconditioner

2. NysADMM for composite optimization minimize f (Ax) + g(x), e.g.,
▶ lasso
▶ regularized logistic regression
▶ support vector machine

randNLA beats SOTA solver for all these problems!

3. approximate Newton methods for deep learning and stochastic optimization
low rank approximation for Newton system improves
▶ robustness (vs first-order methods) and
▶ speed (vs other quasi-Newton methods)

Madeleine Udell, Stanford. Hunting the Hessian I. 17

Low rank approximation for faster optimization

randNLA allows approximate inverse of p×p matrix A in O(p) time
=⇒ can improve conditioning for many optimization problems. e.g.,

1. Nyström PCG to solve Ax = b
▶ randomized low rank approximation as preconditioner

2. NysADMM for composite optimization minimize f (Ax) + g(x), e.g.,
▶ lasso
▶ regularized logistic regression
▶ support vector machine

randNLA beats SOTA solver for all these problems!

3. approximate Newton methods for deep learning and stochastic optimization
low rank approximation for Newton system improves
▶ robustness (vs first-order methods) and
▶ speed (vs other quasi-Newton methods)

Madeleine Udell, Stanford. Hunting the Hessian I. 17

Low rank approximation for faster optimization

randNLA allows approximate inverse of p×p matrix A in O(p) time
=⇒ can improve conditioning for many optimization problems. e.g.,

1. Nyström PCG to solve Ax = b
▶ randomized low rank approximation as preconditioner

2. NysADMM for composite optimization minimize f (Ax) + g(x), e.g.,
▶ lasso
▶ regularized logistic regression
▶ support vector machine

randNLA beats SOTA solver for all these problems!

3. approximate Newton methods for deep learning and stochastic optimization
low rank approximation for Newton system improves
▶ robustness (vs first-order methods) and
▶ speed (vs other quasi-Newton methods)

Madeleine Udell, Stanford. Hunting the Hessian I. 17

Low rank approximation for faster optimization

randNLA allows approximate inverse of p×p matrix A in O(p) time
=⇒ can improve conditioning for many optimization problems. e.g.,

1. Nyström PCG to solve Ax = b
▶ randomized low rank approximation as preconditioner

2. NysADMM for composite optimization minimize f (Ax) + g(x), e.g.,
▶ lasso
▶ regularized logistic regression
▶ support vector machine

randNLA beats SOTA solver for all these problems!

3. approximate Newton methods for deep learning and stochastic optimization
low rank approximation for Newton system improves
▶ robustness (vs first-order methods) and
▶ speed (vs other quasi-Newton methods)

Madeleine Udell, Stanford. Hunting the Hessian I. 17

Outline

Preconditioning

Nyström preconditioning

NysADMM

Optimization for deep learning

PINNs

Madeleine Udell, Stanford. Hunting the Hessian I. 18

Composite optimization

minimize ℓ(Ax) + r(x)

▶ A : Rp → Rm linear

▶ ℓ : Rm → R smooth

▶ r : Rp → R proxable

Madeleine Udell, Stanford. Hunting the Hessian I. 19

Proximal operators

r : Rp → R is called proxable if it is easy to compute the proximal operator

proxr (x) := argmin
y

r(y) +
1

2
∥x − y∥2

Madeleine Udell, Stanford. Hunting the Hessian I. 20

Alternating Directions Method of Multipliers

Algorithm ADMM

1 Input: loss function ℓ ◦ A, regularization r , stepsize ρ,
2 initial z0, u0 = 0
3 for k = 0, 1, . . . do
4 xk+1 = argminx{ℓ(Ax) + ρ

2∥x − zk + uk∥22}
5 zk+1 = argminz{r(z) + ρ

2∥xk+1 − z + uk∥22}
6 uk+1 = uk + xk+1 − zk+1

return x⋆ (nearly) minimizing ℓ(Ax) + r(x)

problem: x-min involves the (large) data: not easy to solve!

solution: NysADMM [Zhao, Frangella, and Udell (2022)]

▶ approximate x-min with linear system
▶ solve (to moderate tolerance) with Nyström PCG

Madeleine Udell, Stanford. Hunting the Hessian I. 21

Alternating Directions Method of Multipliers

Algorithm ADMM

1 Input: loss function ℓ ◦ A, regularization r , stepsize ρ,
2 initial z0, u0 = 0
3 for k = 0, 1, . . . do
4 xk+1 = argminx{ℓ(Ax) + ρ

2∥x − zk + uk∥22}
5 zk+1 = argminz{r(z) + ρ

2∥xk+1 − z + uk∥22}
6 uk+1 = uk + xk+1 − zk+1

return x⋆ (nearly) minimizing ℓ(Ax) + r(x)

problem: x-min involves the (large) data: not easy to solve!

solution: NysADMM [Zhao, Frangella, and Udell (2022)]

▶ approximate x-min with linear system
▶ solve (to moderate tolerance) with Nyström PCG

Madeleine Udell, Stanford. Hunting the Hessian I. 21

Alternating Directions Method of Multipliers

Algorithm ADMM

1 Input: loss function ℓ ◦ A, regularization r , stepsize ρ,
2 initial z0, u0 = 0
3 for k = 0, 1, . . . do
4 xk+1 = argminx{ℓ(Ax) + ρ

2∥x − zk + uk∥22}
5 zk+1 = argminz{r(z) + ρ

2∥xk+1 − z + uk∥22}
6 uk+1 = uk + xk+1 − zk+1

return x⋆ (nearly) minimizing ℓ(Ax) + r(x)

problem: x-min involves the (large) data: not easy to solve!

solution: NysADMM [Zhao, Frangella, and Udell (2022)]

▶ approximate x-min with linear system
▶ solve (to moderate tolerance) with Nyström PCG

Madeleine Udell, Stanford. Hunting the Hessian I. 21

Quadratic approximation

if ℓ is twice diffable, approximate obj near prev iterate xk

ℓ(Ax) ≈ ℓ(Axk) + (x − xk)TAT∇ℓ(Axk) +
1

2
(x − xk)TATHℓ(Ax

k)A(x − xk)

where Hℓ is the Hessian of ℓ.

with this approximation, x-min becomes linear system: find x so

(ATHℓ(Ax
k)A+ ρI)x = rk

where rk = ρzk − ρuk + ATHℓ(Ax
k)Axk − AT∇ℓ(Axk)

Madeleine Udell, Stanford. Hunting the Hessian I. 22

Quadratic approximation

if ℓ is twice diffable, approximate obj near prev iterate xk

ℓ(Ax) ≈ ℓ(Axk) + (x − xk)TAT∇ℓ(Axk) +
1

2
(x − xk)TATHℓ(Ax

k)A(x − xk)

where Hℓ is the Hessian of ℓ.

with this approximation, x-min becomes linear system: find x so

(ATHℓ(Ax
k)A+ ρI)x = rk

where rk = ρzk − ρuk + ATHℓ(Ax
k)Axk − AT∇ℓ(Axk)

Madeleine Udell, Stanford. Hunting the Hessian I. 22

NysADMM algorithm

Algorithm NysADMM

1 input loss function ℓ◦A, regularization r , stepsize ρ, positive summable sequence
{εk}∞k=0, initial z

0, u0 = 0
2 for k = 0, 1, . . . do
3 compute rk = ρzk − ρuk + ATHℓ(Ax

k)Axk − AT∇ℓ(Axk)
4 use Nyström PCG to find εk -apx solution xk+1 to

(ATHℓ(Ax
k)A+ ρI)xk+1 = rk

5 zk+1 = argminz{r(z) + ρ
2∥xk+1 − z + uk∥22}

6 uk+1 = uk + xk+1 − zk+1

7 return x⋆ (nearly) minimizing ℓ(Ax) + r(x)

Madeleine Udell, Stanford. Hunting the Hessian I. 23

The competition

lasso:

▶ SSNAL, a Newton augmented Lagrangian method
[X. Li, Sun, and Toh (2018)]

▶ mfIPM, a matrix-free interior point method
[Fountoulakis, Gondzio, and Zhlobich (2014)]

▶ glmnet, a coordinate-descent method
[Friedman, Hastie, and Tibshirani (2010)]

logistic regression:

▶ SAGA, a stochastic average gradient method
[Defazio, Bach, and Lacoste-Julien (2014)]

SVM:

▶ LIBSVM, a sequential minimal optimization (pairwise coordinate descent)
method [Chang and Lin (2011)]

Madeleine Udell, Stanford. Hunting the Hessian I. 24

Numerical experiments: settings

▶ pick datasets with n > 10, 000 or d > 10, 000 from LIBSVM, UCI, and
OpenML.

▶ use random feature map to generate more features

▶ use same stopping criterion and parameter settings as the standard solver for
each problem class

▶ constant sketch size s = 30

Madeleine Udell, Stanford. Hunting the Hessian I. 25

Lasso results

stl10 dataset. stop iteration when

∥x − proxγ∥·∥1(x − AT (Ax − b))∥
1 + ∥x∥+ ∥Ax − b∥ ≤ ϵ.

Madeleine Udell, Stanford. Hunting the Hessian I. 26

Lasso results

Task
Time for ϵ = 10−1 (s)

NysADMM mfIPM SSNAL glmnet
STL-10 165 573 467 278
CIFAR-10-rf 251 655 692 391
smallNorb-rf 219 552 515 293
E2006.train 313 875 903 554
sector 235 678 608 396
realsim-rf 193 – 765 292
rcv1-rf 226 563 595 273
cod-rna-rf 208 976 865 324

Madeleine Udell, Stanford. Hunting the Hessian I. 27

ℓ1-regularized logistic regression results

Table: Results for ℓ1-regularized logistic regression experiment.

Task NysADMM time (s) SAGA (sklearn) time (s)
STL-10 3012 6083
CIFAR-10-rf 7884 21256
p53-rf 528 2116
connect-4-rf 866 4781
smallnorb-rf 1808 6381
rcv1-rf 1237 3988
con-rna-rf 7528 21513

Madeleine Udell, Stanford. Hunting the Hessian I. 28

Support vector machine results

NysADMM is ≥ 5× faster, although code is pure python!

Table: Results of SVM experiment.

Task NysADMM time (s) LIBSVM time (s)
STL-10 208 11573
CIFAR-10 1636 8563
p53-rf 291 919
connect-4-rf 7073 42762
realsim-rf 17045 52397
rcv1-rf 564 32848
cod-rna-rf 4942 36791

Madeleine Udell, Stanford. Hunting the Hessian I. 29

Outline

Preconditioning

Nyström preconditioning

NysADMM

Optimization for deep learning

PINNs

Madeleine Udell, Stanford. Hunting the Hessian I. 30

Optimization landscape

best methods for optimization depend on the landscape

▶ local minima?

▶ saddle points?

▶ ill-conditioning?

what landscapes should we expect in modern problems (eg, deep learning)?

Madeleine Udell, Stanford. Hunting the Hessian I. 31

Architectural choices govern optimization landscape

Source: H. Li, Xu, Taylor, et al., 2018

Madeleine Udell, Stanford. Hunting the Hessian I. 32

Saddle points vs local minima in deep learning

▶ index of critical point is

negative Hessian eigenvalues = directions of negative curvature

▶ observation: all local minima are (nearly) global minima
▶ but there are plenty of saddles! or just degenerate local minima?

▶ “negative” eigenvalues are all nearly 0

Source: MLP experiments from Dauphin, Pascanu, Gulcehre, et al., 2014; for a modern take, see Sun, Li,

Liang, et al., 2020.

Madeleine Udell, Stanford. Hunting the Hessian I. 33

Landscape-aware optimization

agenda:

1. local minima. ignore them: they are rarely a problem in modern architectures
▶ or try random restarts / judicious initialization . . .

2. saddles.
▶ seek and follow directions of negative curvature? [Royer, O’Neill, and Wright

(2020)]
▶ nah, ignore them: associated eigenvalues are small [Alain, Roux, and Manzagol

(2019) and Rathore, Lei, Frangella, et al. (2024)]

3. ill-conditioning. precondition!

but how to query and use the p × p Hessian of f : Rp → R?

Madeleine Udell, Stanford. Hunting the Hessian I. 34

Landscape-aware optimization

agenda:

1. local minima. ignore them: they are rarely a problem in modern architectures
▶ or try random restarts / judicious initialization . . .

2. saddles.
▶ seek and follow directions of negative curvature? [Royer, O’Neill, and Wright

(2020)]
▶ nah, ignore them: associated eigenvalues are small [Alain, Roux, and Manzagol

(2019) and Rathore, Lei, Frangella, et al. (2024)]

3. ill-conditioning. precondition!

but how to query and use the p × p Hessian of f : Rp → R?

Madeleine Udell, Stanford. Hunting the Hessian I. 34

Landscape-aware optimization

agenda:

1. local minima. ignore them: they are rarely a problem in modern architectures
▶ or try random restarts / judicious initialization . . .

2. saddles.
▶ seek and follow directions of negative curvature? [Royer, O’Neill, and Wright

(2020)]
▶ nah, ignore them: associated eigenvalues are small [Alain, Roux, and Manzagol

(2019) and Rathore, Lei, Frangella, et al. (2024)]

3. ill-conditioning. precondition!

but how to query and use the p × p Hessian of f : Rp → R?

Madeleine Udell, Stanford. Hunting the Hessian I. 34

Landscape-aware optimization

agenda:

1. local minima. ignore them: they are rarely a problem in modern architectures
▶ or try random restarts / judicious initialization . . .

2. saddles.
▶ seek and follow directions of negative curvature? [Royer, O’Neill, and Wright

(2020)]
▶ nah, ignore them: associated eigenvalues are small [Alain, Roux, and Manzagol

(2019) and Rathore, Lei, Frangella, et al. (2024)]

3. ill-conditioning. precondition!

but how to query and use the p × p Hessian of f : Rp → R?

Madeleine Udell, Stanford. Hunting the Hessian I. 34

Outline

Preconditioning

Nyström preconditioning

NysADMM

Optimization for deep learning

PINNs

Madeleine Udell, Stanford. Hunting the Hessian I. 35

Physics-Informed Neural Networks (PINNs)

goal: solve PDE to find solution u : Ω → R

D(u)(z) = f (z), z ∈ Ω

B(u)(z) = g(z), z ∈ ∂Ω,

where D is a differential operator, f is a forcing
function, B is initial condition/boundary condition
operator, and g is boundary function.

Ω

∂Ω

D(u)(z) = f (z)

B(u)(z) = g(z)z1
z2

z3 z4

z5

PINNs train a neural network uθ(z) to approximate the PDE solution by minimizing
a loss function that includes both data and physics-based terms

1

Nr

Nr∑
i=1

∥D(uθ(zi))− f (zi)∥2 +
1

NB

NB∑
i=1

∥B(uθ(zi))− g(zi)∥2

Madeleine Udell, Stanford. Hunting the Hessian I. 36

Physics-Informed Neural Networks (PINNs)

goal: solve PDE to find solution u : Ω → R

D(u)(z) = f (z), z ∈ Ω

B(u)(z) = g(z), z ∈ ∂Ω,

where D is a differential operator, f is a forcing
function, B is initial condition/boundary condition
operator, and g is boundary function.

Ω

∂Ω

D(u)(z) = f (z)

B(u)(z) = g(z)z1
z2

z3 z4

z5

PINNs train a neural network uθ(z) to approximate the PDE solution by minimizing
a loss function that includes both data and physics-based terms

1

Nr

Nr∑
i=1

∥D(uθ(zi))− f (zi)∥2 +
1

NB

NB∑
i=1

∥B(uθ(zi))− g(zi)∥2

Madeleine Udell, Stanford. Hunting the Hessian I. 36

PINNs suffer from under-optimization

▶ After training, gradient norm is typically on the order 10−2 or 10−3

▶ L-BFGS stops early because PyTorch detects instability in the preconditioner
▶ Our proposal: fine-tune with NysNewton-CG (NNCG), i.e.,

use Newton’s method and solve linear system with NyströmPCG

0 10000 20000 30000 40000
Iterations

10−4

10−3

10−2

10−1

100

L
os

s

Wave, β = 5

Adam L-BFGS NNCG

Figure: Even after running L-BFGS, the loss can be improved.

Source: [Rathore, Lei, Frangella, et al. (2024)]
Madeleine Udell, Stanford. Hunting the Hessian I. 37

We can access ∇2f (w) with automatic differentiation!

automatic differentiation (AD) on f : Rp → R can compute gradients ∇f (w) and
Hessian-vector products (hvp) (∇2f (w))v in O(p) time!

1. compute gradient with automatic differentiation (AD) g(w) = ∇f (w)

2. define Hessian vector product with vector v

(∇2f (w))v = ∇(g(w) · v)

and compute using AD on g(w) · v (Pearlmutter’s trick)

3. cost: two passes of AD ≈ 4× cost of function evaluation (usually, O(p))

Madeleine Udell, Stanford. Hunting the Hessian I. 38

Newton-CG: a matvec-only nearly-second-order optimizer

Newton-CG: repeat

▶ approximate f locally as a quadratic with A = ∇2f (x0)

f (x) ≈ f (x0) +∇f (x0)
T (x − x0) +

1

2
(x − x0)

TA(x − x0).

▶ (optionally) find a good preconditioner for A

▶ solve linear system Ax = Ax0 −∇f (x0) with PCG.

algorithm only uses gradient evaluations and matrix-vector products with A
=⇒ compatible with AD

Source: [Rathore, Lei, Frangella, et al. (2024)]

Madeleine Udell, Stanford. Hunting the Hessian I. 39

Preconditioners can improve conditioning

plot spectral density of PINN Hessian for different PDEs

▶ blue: original function
▶ orange: after preconditioning

0 100 101 102 103 104

Eigenvalue

10−10

10−7

10−4

10−1

102

D
en

si
ty

Convection, β = 40

−101 −100 0 100 101 102 103

Eigenvalue

10−10

10−7

10−4

10−1

102

D
en

si
ty

Reaction, ρ = 5

0 100 101 102 103 104 105

Eigenvalue

10−10

10−7

10−4

10−1

102

D
en

si
ty

Wave, β = 5

Hessian Preconditioned Hessian

Figure: The total loss is ill-conditioned for all three PDEs. [Rathore, Lei, Frangella, et al.
(2024)]

Source: Approximate spectral density with kernel smoothing + stochastic trace estimation + Gaussian

quadrature + Lanczos [Ubaru, Chen, and Saad (2017) and Yao, Gholami, Keutzer, and Mahoney (2020)]Madeleine Udell, Stanford. Hunting the Hessian I. 40

Preconditioned optimizers improve fits

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x

Adam

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x

Adam + L-BFGS

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x

Adam + L-BFGS + NNCG

0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.002

0.004

0.006

0.000

0.002

0.004

0.006

Convection, β = 40

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x
Adam

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x

Adam + L-BFGS

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x

Adam + L-BFGS + NNCG

0.0

0.2

0.4

0.6

0.8

0.00

0.02

0.04

0.06

0.08

0.00

0.02

0.04

0.06

0.08

Reaction, ρ = 5

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

Adam

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

Adam + L-BFGS

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

Adam + L-BFGS + NNCG

0.00

0.25

0.50

0.75

1.00

1.25

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Wave, β = 5

Madeleine Udell, Stanford. Hunting the Hessian I. 41

Architectural choices can improve conditioning

plot spectral density of PINN Hessian for wave PDEs

▶ blue: standard MLP architecture
▶ orange: with SAFE-NET architecture (single layer with fourier features)

(a) Early into Training (b) End of Training

Figure: Spectral density for the wave PDE using SAFE-NET and PINN at the early stages of
training and at the end of training.

Source: [Fazliani, Frangella, and Udell (2025)]
Madeleine Udell, Stanford. Hunting the Hessian I. 42

Well-conditioned architectures improve fits

(a) Wave

(b) Allen-Cahn

Figure: SAFE-NET significantly improves each loss component for both PDEs.

Source: [Fazliani, Frangella, and Udell (2025)]

Madeleine Udell, Stanford. Hunting the Hessian I. 43

rlaopt: Randomized Linear Algebra for Scalable Optimization

problems:

▶ solve linear systems Ax = b faster

▶ composite optimization: minimize f (Ax) + g(x)

▶ stochastic optimization: minimize
∑n

i=1 fi (x)

algorithms:

▶ Nyström PCG for solving linear systems

▶ Nyström ADMM for composite optimization

▶ PROMISE: low-rank stochastic optimization

▶ SAPPHIRE: stochastic proximal gradient method

Madeleine Udell, Stanford. Hunting the Hessian I. 44

rlaopt delivers 20× speedups solving dense linear system

acsincome
(1664500 × 3000)

e2006
(16087 × 150360)

realsim
(72309 × 20958)

yearpredictionmsd
(463715 × 4637)

Dataset (samples × features)

101

102

103

S
ol

ve
T

im
e

(s
ec

on
d

s)

194.3s

1252.9s

2768.8s

166.5s

9.4s

55.7s

121.9s

9.2s

PCG Solver: GPU vs CPU Performance Comparison

CPU

GPU

ridge regression solved with PCG + Nyström preconditioner
Madeleine Udell, Stanford. Hunting the Hessian I. 45

rlaopt delivers 25× speedups solving elastic net

acsincome
(1664500 × 3000)

e2006
(16087 × 150360)

realsim
(72309 × 20958)

yearpredictionmsd
(463715 × 4637)

Dataset (samples × features)

101

102

103

104

S
ol

ve
T

im
e

(s
ec

on
d

s)
8781.9s

684.5s

252.6s

2757.5s

307.7s

28.7s

10.8s

113.2s

ADMM Solver: GPU vs CPU Performance Comparison

CPU

GPU

elastic net with a box constraint solved with NysADMM
Madeleine Udell, Stanford. Hunting the Hessian I. 46

rlaopt delivers 8× speedups solving logistic regression

ledgar
(70000 × 19986)

rcv1
(20242 × 47236)

realsim
(72309 × 20958)

scotus
(6000 × 126397)

Dataset (Samples × Features)

0

10

20

30

40

50

60
S

ol
ve

T
im

e
(s

ec
on

d
s)

31.38

16.92

22.06

59.37

4.34

2.11
4.08 3.55

Preconditioned SVRG: GPU vs. CPU Comparison

CPU

GPU

logistic regression solved with SketchySVRG

Madeleine Udell, Stanford. Hunting the Hessian I. 47

Conclusion

does your optimization suffer from ill-conditioning?

preconditioners can help!

▶ spectral preconditioning is feasible at large scale
▶ randomized Nyström approximation
▶ autodiff from Hessian-vector products

▶ randomized preconditioners can speed up
▶ composite optimization (e.g.NysADMM)
▶ deep learning (e.g.NysNewton-CG)
▶ stochastic optimization (e.g.SketchySGD, PROMISE, SAPPHIRE)

▶ (tomorrow) online scaled gradient method
▶ provably competes with the best offline methods
▶ flexible framework can improve many optimization algorithms

Madeleine Udell, Stanford. Hunting the Hessian I. 48

Conclusion

does your optimization suffer from ill-conditioning?

preconditioners can help!

▶ spectral preconditioning is feasible at large scale
▶ randomized Nyström approximation
▶ autodiff from Hessian-vector products

▶ randomized preconditioners can speed up
▶ composite optimization (e.g.NysADMM)
▶ deep learning (e.g.NysNewton-CG)
▶ stochastic optimization (e.g.SketchySGD, PROMISE, SAPPHIRE)

▶ (tomorrow) online scaled gradient method
▶ provably competes with the best offline methods
▶ flexible framework can improve many optimization algorithms

Madeleine Udell, Stanford. Hunting the Hessian I. 48

Conclusion

does your optimization suffer from ill-conditioning?

preconditioners can help!

▶ spectral preconditioning is feasible at large scale
▶ randomized Nyström approximation
▶ autodiff from Hessian-vector products

▶ randomized preconditioners can speed up
▶ composite optimization (e.g.NysADMM)
▶ deep learning (e.g.NysNewton-CG)
▶ stochastic optimization (e.g.SketchySGD, PROMISE, SAPPHIRE)

▶ (tomorrow) online scaled gradient method
▶ provably competes with the best offline methods
▶ flexible framework can improve many optimization algorithms

Madeleine Udell, Stanford. Hunting the Hessian I. 48

Conclusion

does your optimization suffer from ill-conditioning?

preconditioners can help!

▶ spectral preconditioning is feasible at large scale
▶ randomized Nyström approximation
▶ autodiff from Hessian-vector products

▶ randomized preconditioners can speed up
▶ composite optimization (e.g.NysADMM)
▶ deep learning (e.g.NysNewton-CG)
▶ stochastic optimization (e.g.SketchySGD, PROMISE, SAPPHIRE)

▶ (tomorrow) online scaled gradient method
▶ provably competes with the best offline methods
▶ flexible framework can improve many optimization algorithms

Madeleine Udell, Stanford. Hunting the Hessian I. 48

Conclusion

does your optimization suffer from ill-conditioning?

preconditioners can help!

▶ spectral preconditioning is feasible at large scale
▶ randomized Nyström approximation
▶ autodiff from Hessian-vector products

▶ randomized preconditioners can speed up
▶ composite optimization (e.g.NysADMM)
▶ deep learning (e.g.NysNewton-CG)
▶ stochastic optimization (e.g.SketchySGD, PROMISE, SAPPHIRE)

▶ (tomorrow) online scaled gradient method
▶ provably competes with the best offline methods
▶ flexible framework can improve many optimization algorithms

Madeleine Udell, Stanford. Hunting the Hessian I. 48

Where can I learn more?

▶ randomized Nyström approximation to a psd matrix:
https://arxiv.org/abs/1706.05736 NeurIPS 2017

▶ Nyström PCG to solve Ax = b: https://arxiv.org/abs/2110.02820 SIMAX 2023
▶ NysADMM for composite optimization minimize ℓ(x) + r(x):

▶ algorithm (NysADMM): https://arxiv.org/abs/2202.11599
▶ convergence (GeNI-ADMM): https://arxiv.org/abs/2302.03863
▶ solver (GeNIOS): https://github.com/tjdiamandis/GeNIOS.jl

▶ almost-second-order stochastic optimization:
▶ SketchySGD (improves SGD): https://arxiv.org/abs/2211.08597 SIMODS 2024
▶ PROMISE (improves SVRG etc.): https://arxiv.org/abs/2309.02014 JMLR 2024
▶ NNCG for PINNs: https://arxiv.org/abs/2402.01868 ICML 2024
▶ SAFE-NET for PINNs: http://arxiv.org/abs/2502.07209

▶ PyTorch implementation of all these methods: rlaopt
https:www.github.com/udellgroup/rlaopt

Madeleine Udell, Stanford. Hunting the Hessian I. 49

https://arxiv.org/abs/1706.05736
https://arxiv.org/abs/2110.02820
https://arxiv.org/abs/2202.11599
https://arxiv.org/abs/2302.03863
https://github.com/tjdiamandis/GeNIOS.jl
https://arxiv.org/abs/2211.08597
https://arxiv.org/abs/2309.02014
https://arxiv.org/abs/2402.01868
http://arxiv.org/abs/2502.07209
https:www.github.com/udellgroup/rlaopt

	Preconditioning
	Nyström preconditioning
	NysADMM
	Optimization for deep learning
	PINNs

