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Gradient methods converge quickly on well-conditioned data
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Gradient methods converge slowly on ill-conditioned data
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Ill-conditioning is common in ML data. . .
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. . . and it makes optimization slower!
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Recap: convergence analysis for gradient descent

minimize f (x)

recall: we say (twice-differentiable) f is µ-strongly convex and L-smooth if

µI ⪯ ∇2f (x) ⪯ LI

recall: if f is µ-strongly convex and L-smooth, gradient descent converges linearly

f (xK+1)− p⋆ ≤ LcK

2 ∥x1 − x⋆∥2,

where c = (κ−1
κ+1)

2, κ = L
µ ≥ 1 is condition number

=⇒ want κ ≈ 1

idea: can we minimize another function with κ ≈ 1 whose solution will tell us the
minimizer of f ?
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Preconditioning

for invertible D, the two problems

minimize f (x) and minimize f (Dz)

have solutions related by x⋆ = Dz⋆

▶ gradient of f (Dz) is DT∇f (Dz)

▶ the second derivative (Hessian) of f (Dz) is DT∇2f (Dz)D

a gradient step on f (Dz) with step-size t > 0 is

z+ = z − tDT∇f (Dz)

Dz+ = Dz − tDDT∇f (Dz)

x+ = x − tDDT∇f (x)

this iteration is preconditioned gradient descent (PGD) with preconditioner
P = DDT .
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Preconditioning a linear system

Preconditioning a linear system. for any P ≻ 0,

Ax = b ⇐⇒ P−1/2Ax = P−1/2b

P−1/2AP−1/2z = P−1/2b

where x = P−1/2z .

▶ preconditioning works well when κ(P−1/2AP−1/2) ≪ κ(A)
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Low rank approximation via eigenvalues

given A ∈ Sp
+ (symmetric positive definite), find the best rank-s approximation:

▶ compute the eigenvalue decomposition ▷O(p3) flops)

A =

p∑
i=1

λiuiu
T
i = UΛUT

with λ1 ≥ · · · ≥ λp, Λ = diag(λ1, . . . , λp), u
T
i uj = δij .

▶ truncate to top s eigenvector/value pairs:

Â =
s∑

i=1

λiuiu
T
i = UsΛsU

T
s

where Λs and Us are truncated versions of Λ and U.
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Efficient eigs via randomized NLA

given A ∈ Sp
+, find a good rank-s approximation:

▶ draw random Gaussian matrix Ω ∈ Rp×s

▶ compute randomized linear sketch Y = AΩ.

▶ form Nyström approximation [Tropp, Yurtsever, Udell, and Cevher (2017)]

Ânys = (AΩ)(ΩTAΩ)†(AΩ)T = Y (ΩTY )†Y T .

▶ in practice, construct apx eigs Â = V Λ̂V T using tall-skinny QR, small SVD

properties:

▶ total computation: s matvecs + O(ps2)
▶ total storage: O(ps)
▶ Ânys is spd, rank(Ânys) ≤ s, and Ânys ⪯ A
▶ requires only matvecs with A, streaming ok.
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Speed depends on hardware

CPU: complex, sequential tasks GPU: simple, parallel tasks

▶ traditional matrix decompositions: hopelessly serial (e.g., Gaussian elimination)

▶ randNLA: naturally parallel (mostly matvecs)
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An optimal low-rank preconditioner

▶ suppose ⌊A⌋s = VsΛsV
T
s is a best rank-s apx to A ∈ Sp

+.
▶ the best preconditioner (e.g., for PCG) using this information is

P⋆ =
1

λs+1
Vs(Λs)V

T
s + (I − VsV

T
s )

i

i

before preconditioning
after preconditioning
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Nyström preconditioner

Given a rank-s Nyström approximation

Ânys = V Λ̂V T ≈ A ∈ Sp
+,

the Nyström preconditioner for (A+ µI )x = b is

Pnys =
1

λ̂s + µ
V (Λ̂ + µI )V T + (I − VV T )

inverse can be applied in O(ps):

P−1 = (λ̂s + µ)V (Λ̂ + µI )−1V T + (I − VV T )
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Nyström preconditioner is fast!
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sketch size s = 500.
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Low rank approximation for faster optimization

randNLA allows approximate inverse of p×p matrix A in O(p) time
=⇒ can improve conditioning for many optimization problems.

e.g.,

1. Nyström PCG to solve Ax = b
▶ randomized low rank approximation as preconditioner

2. NysADMM for composite optimization minimize f (Ax) + g(x), e.g.,
▶ lasso
▶ regularized logistic regression
▶ support vector machine

randNLA beats SOTA solver for all these problems!

3. approximate Newton methods for deep learning and stochastic optimization
low rank approximation for Newton system improves
▶ robustness (vs first-order methods) and
▶ speed (vs other quasi-Newton methods)
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Composite optimization

minimize ℓ(Ax) + r(x)

▶ A : Rp → Rm linear

▶ ℓ : Rm → R smooth

▶ r : Rp → R proxable
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Proximal operators

r : Rp → R is called proxable if it is easy to compute the proximal operator

proxr (x) := argmin
y

r(y) +
1

2
∥x − y∥2
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Alternating Directions Method of Multipliers

Algorithm ADMM

1 Input: loss function ℓ ◦ A, regularization r , stepsize ρ,
2 initial z0, u0 = 0
3 for k = 0, 1, . . . do
4 xk+1 = argminx{ℓ(Ax) + ρ

2∥x − zk + uk∥22}
5 zk+1 = argminz{r(z) + ρ

2∥xk+1 − z + uk∥22}
6 uk+1 = uk + xk+1 − zk+1

return x⋆ (nearly) minimizing ℓ(Ax) + r(x)

problem: x-min involves the (large) data: not easy to solve!

solution: NysADMM [Zhao, Frangella, and Udell (2022)]

▶ approximate x-min with linear system
▶ solve (to moderate tolerance) with Nyström PCG
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Quadratic approximation

if ℓ is twice diffable, approximate obj near prev iterate xk

ℓ(Ax) ≈ ℓ(Axk) + (x − xk)TAT∇ℓ(Axk) +
1

2
(x − xk)TATHℓ(Ax

k)A(x − xk)

where Hℓ is the Hessian of ℓ.

with this approximation, x-min becomes linear system: find x so

(ATHℓ(Ax
k)A+ ρI )x = rk

where rk = ρzk − ρuk + ATHℓ(Ax
k)Axk − AT∇ℓ(Axk)
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NysADMM algorithm

Algorithm NysADMM

1 input loss function ℓ◦A, regularization r , stepsize ρ, positive summable sequence
{εk}∞k=0, initial z

0, u0 = 0
2 for k = 0, 1, . . . do
3 compute rk = ρzk − ρuk + ATHℓ(Ax

k)Axk − AT∇ℓ(Axk)
4 use Nyström PCG to find εk -apx solution xk+1 to

(ATHℓ(Ax
k)A+ ρI )xk+1 = rk

5 zk+1 = argminz{r(z) + ρ
2∥xk+1 − z + uk∥22}

6 uk+1 = uk + xk+1 − zk+1

7 return x⋆ (nearly) minimizing ℓ(Ax) + r(x)
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The competition

lasso:

▶ SSNAL, a Newton augmented Lagrangian method
[X. Li, Sun, and Toh (2018)]

▶ mfIPM, a matrix-free interior point method
[Fountoulakis, Gondzio, and Zhlobich (2014)]

▶ glmnet, a coordinate-descent method
[Friedman, Hastie, and Tibshirani (2010)]

logistic regression:

▶ SAGA, a stochastic average gradient method
[Defazio, Bach, and Lacoste-Julien (2014)]

SVM:

▶ LIBSVM, a sequential minimal optimization (pairwise coordinate descent)
method [Chang and Lin (2011)]
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Numerical experiments: settings

▶ pick datasets with n > 10, 000 or d > 10, 000 from LIBSVM, UCI, and
OpenML.

▶ use random feature map to generate more features

▶ use same stopping criterion and parameter settings as the standard solver for
each problem class

▶ constant sketch size s = 30
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Lasso results

stl10 dataset. stop iteration when

∥x − proxγ∥·∥1(x − AT (Ax − b))∥
1 + ∥x∥+ ∥Ax − b∥ ≤ ϵ.
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Lasso results

Task
Time for ϵ = 10−1 (s)

NysADMM mfIPM SSNAL glmnet
STL-10 165 573 467 278
CIFAR-10-rf 251 655 692 391
smallNorb-rf 219 552 515 293
E2006.train 313 875 903 554
sector 235 678 608 396
realsim-rf 193 – 765 292
rcv1-rf 226 563 595 273
cod-rna-rf 208 976 865 324
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ℓ1-regularized logistic regression results

Table: Results for ℓ1-regularized logistic regression experiment.

Task NysADMM time (s) SAGA (sklearn) time (s)
STL-10 3012 6083
CIFAR-10-rf 7884 21256
p53-rf 528 2116
connect-4-rf 866 4781
smallnorb-rf 1808 6381
rcv1-rf 1237 3988
con-rna-rf 7528 21513
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Support vector machine results

NysADMM is ≥ 5× faster, although code is pure python!

Table: Results of SVM experiment.

Task NysADMM time (s) LIBSVM time (s)
STL-10 208 11573
CIFAR-10 1636 8563
p53-rf 291 919
connect-4-rf 7073 42762
realsim-rf 17045 52397
rcv1-rf 564 32848
cod-rna-rf 4942 36791
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Optimization landscape

best methods for optimization depend on the landscape

▶ local minima?

▶ saddle points?

▶ ill-conditioning?

what landscapes should we expect in modern problems (eg, deep learning)?
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Architectural choices govern optimization landscape

Source: H. Li, Xu, Taylor, et al., 2018
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Saddle points vs local minima in deep learning

▶ index of critical point is

# negative Hessian eigenvalues = directions of negative curvature

▶ observation: all local minima are (nearly) global minima
▶ but there are plenty of saddles! or just degenerate local minima?

▶ “negative” eigenvalues are all nearly 0

Source: MLP experiments from Dauphin, Pascanu, Gulcehre, et al., 2014; for a modern take, see Sun, Li,

Liang, et al., 2020.
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Landscape-aware optimization

agenda:

1. local minima. ignore them: they are rarely a problem in modern architectures
▶ or try random restarts / judicious initialization . . .

2. saddles.
▶ seek and follow directions of negative curvature? [Royer, O’Neill, and Wright

(2020)]
▶ nah, ignore them: associated eigenvalues are small [Alain, Roux, and Manzagol

(2019) and Rathore, Lei, Frangella, et al. (2024)]

3. ill-conditioning. precondition!

but how to query and use the p × p Hessian of f : Rp → R?
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(2019) and Rathore, Lei, Frangella, et al. (2024)]

3. ill-conditioning. precondition!

but how to query and use the p × p Hessian of f : Rp → R?
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Physics-Informed Neural Networks (PINNs)

goal: solve PDE to find solution u : Ω → R

D(u)(z) = f (z), z ∈ Ω

B(u)(z) = g(z), z ∈ ∂Ω,

where D is a differential operator, f is a forcing
function, B is initial condition/boundary condition
operator, and g is boundary function.

Ω

∂Ω

D(u)(z) = f (z)

B(u)(z) = g(z)z1
z2

z3 z4

z5

PINNs train a neural network uθ(z) to approximate the PDE solution by minimizing
a loss function that includes both data and physics-based terms

1

Nr

Nr∑
i=1

∥D(uθ(zi ))− f (zi )∥2 +
1

NB

NB∑
i=1

∥B(uθ(zi ))− g(zi )∥2

Madeleine Udell, Stanford. Hunting the Hessian I. 36



Physics-Informed Neural Networks (PINNs)

goal: solve PDE to find solution u : Ω → R

D(u)(z) = f (z), z ∈ Ω

B(u)(z) = g(z), z ∈ ∂Ω,

where D is a differential operator, f is a forcing
function, B is initial condition/boundary condition
operator, and g is boundary function.

Ω

∂Ω

D(u)(z) = f (z)

B(u)(z) = g(z)z1
z2

z3 z4

z5

PINNs train a neural network uθ(z) to approximate the PDE solution by minimizing
a loss function that includes both data and physics-based terms

1

Nr

Nr∑
i=1

∥D(uθ(zi ))− f (zi )∥2 +
1

NB

NB∑
i=1

∥B(uθ(zi ))− g(zi )∥2

Madeleine Udell, Stanford. Hunting the Hessian I. 36



PINNs suffer from under-optimization

▶ After training, gradient norm is typically on the order 10−2 or 10−3

▶ L-BFGS stops early because PyTorch detects instability in the preconditioner
▶ Our proposal: fine-tune with NysNewton-CG (NNCG), i.e.,

use Newton’s method and solve linear system with NyströmPCG

0 10000 20000 30000 40000
Iterations

10−4

10−3

10−2

10−1

100

L
os

s

Wave, β = 5

Adam L-BFGS NNCG

Figure: Even after running L-BFGS, the loss can be improved.

Source: [Rathore, Lei, Frangella, et al. (2024)]
Madeleine Udell, Stanford. Hunting the Hessian I. 37



We can access ∇2f (w) with automatic differentiation!

automatic differentiation (AD) on f : Rp → R can compute gradients ∇f (w) and
Hessian-vector products (hvp) (∇2f (w))v in O(p) time!

1. compute gradient with automatic differentiation (AD) g(w) = ∇f (w)

2. define Hessian vector product with vector v

(∇2f (w))v = ∇(g(w) · v)

and compute using AD on g(w) · v (Pearlmutter’s trick)

3. cost: two passes of AD ≈ 4× cost of function evaluation (usually, O(p))
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Newton-CG: a matvec-only nearly-second-order optimizer

Newton-CG: repeat

▶ approximate f locally as a quadratic with A = ∇2f (x0)

f (x) ≈ f (x0) +∇f (x0)
T (x − x0) +

1

2
(x − x0)

TA(x − x0).

▶ (optionally) find a good preconditioner for A

▶ solve linear system Ax = Ax0 −∇f (x0) with PCG.

algorithm only uses gradient evaluations and matrix-vector products with A
=⇒ compatible with AD

Source: [Rathore, Lei, Frangella, et al. (2024)]
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Preconditioners can improve conditioning

plot spectral density of PINN Hessian for different PDEs

▶ blue: original function
▶ orange: after preconditioning
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Hessian Preconditioned Hessian

Figure: The total loss is ill-conditioned for all three PDEs. [Rathore, Lei, Frangella, et al.
(2024)]

Source: Approximate spectral density with kernel smoothing + stochastic trace estimation + Gaussian

quadrature + Lanczos [Ubaru, Chen, and Saad (2017) and Yao, Gholami, Keutzer, and Mahoney (2020)]Madeleine Udell, Stanford. Hunting the Hessian I. 40



Preconditioned optimizers improve fits
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Architectural choices can improve conditioning

plot spectral density of PINN Hessian for wave PDEs

▶ blue: standard MLP architecture
▶ orange: with SAFE-NET architecture (single layer with fourier features)

(a) Early into Training (b) End of Training

Figure: Spectral density for the wave PDE using SAFE-NET and PINN at the early stages of
training and at the end of training.

Source: [Fazliani, Frangella, and Udell (2025)]
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Well-conditioned architectures improve fits

(a) Wave

(b) Allen-Cahn

Figure: SAFE-NET significantly improves each loss component for both PDEs.

Source: [Fazliani, Frangella, and Udell (2025)]
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rlaopt: Randomized Linear Algebra for Scalable Optimization

problems:

▶ solve linear systems Ax = b faster

▶ composite optimization: minimize f (Ax) + g(x)

▶ stochastic optimization: minimize
∑n

i=1 fi (x)

algorithms:

▶ Nyström PCG for solving linear systems

▶ Nyström ADMM for composite optimization

▶ PROMISE: low-rank stochastic optimization

▶ SAPPHIRE: stochastic proximal gradient method
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rlaopt delivers 20× speedups solving dense linear system

acsincome
(1664500 × 3000)
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(16087 × 150360)
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(463715 × 4637)

Dataset (samples × features)

101

102

103

S
ol

ve
T

im
e

(s
ec

on
d

s)

194.3s

1252.9s

2768.8s

166.5s

9.4s

55.7s

121.9s

9.2s

PCG Solver: GPU vs CPU Performance Comparison
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ridge regression solved with PCG + Nyström preconditioner
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rlaopt delivers 25× speedups solving elastic net
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ADMM Solver: GPU vs CPU Performance Comparison
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elastic net with a box constraint solved with NysADMM
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rlaopt delivers 8× speedups solving logistic regression

ledgar
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rcv1
(20242 × 47236)
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Conclusion

does your optimization suffer from ill-conditioning?

preconditioners can help!

▶ spectral preconditioning is feasible at large scale
▶ randomized Nyström approximation
▶ autodiff from Hessian-vector products

▶ randomized preconditioners can speed up
▶ composite optimization (e.g.NysADMM)
▶ deep learning (e.g.NysNewton-CG)
▶ stochastic optimization (e.g.SketchySGD, PROMISE, SAPPHIRE)

▶ (tomorrow) online scaled gradient method
▶ provably competes with the best offline methods
▶ flexible framework can improve many optimization algorithms
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Where can I learn more?

▶ randomized Nyström approximation to a psd matrix:
https://arxiv.org/abs/1706.05736 NeurIPS 2017

▶ Nyström PCG to solve Ax = b: https://arxiv.org/abs/2110.02820 SIMAX 2023
▶ NysADMM for composite optimization minimize ℓ(x) + r(x):

▶ algorithm (NysADMM): https://arxiv.org/abs/2202.11599
▶ convergence (GeNI-ADMM): https://arxiv.org/abs/2302.03863
▶ solver (GeNIOS): https://github.com/tjdiamandis/GeNIOS.jl

▶ almost-second-order stochastic optimization:
▶ SketchySGD (improves SGD): https://arxiv.org/abs/2211.08597 SIMODS 2024
▶ PROMISE (improves SVRG etc.): https://arxiv.org/abs/2309.02014 JMLR 2024
▶ NNCG for PINNs: https://arxiv.org/abs/2402.01868 ICML 2024
▶ SAFE-NET for PINNs: http://arxiv.org/abs/2502.07209

▶ PyTorch implementation of all these methods: rlaopt
https:www.github.com/udellgroup/rlaopt
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